

Detection Theory

- **The most basic task of a RADAR system is** to detect whether or not an object (target) is present.
- \odot We may also wish to detect if some "feature" is present in the scattered signal:
- $>$ Spectral Component

Recall...

- > signal family characteristic
- depolarized wave component

For now, we will focus on the decision block $\underline{X} = (X_1, \ldots, X_n)^T$ H_0 = feature absent H_0 H_1
 H_1 = feature present H_0 = feature absent Decision We will assume that after processing by the processor, the the random vector \underline{X} is described by a cdf parameterized a parameter vector θ : $F_{\theta}(\underline{x})=\mathrm{P}_{\theta}(\{X_1\leq x_1\}\cap\cdots\cap\{X_N\leq x_N\})$ How do we design optimal decision blocks? $C X_1, X_2, \ldots, X_n$ Binary Hypothesis Testing Let $\underline{X} = (X_1, \ldots, X_N)^T$ = vector of observations governed by $F_{\theta}(\underline{x})=P_{\theta}(\lbrace X_1 \leq x_1 \rbrace \cap \cdots \cap \lbrace X_N \leq x_N \rbrace),$ 13.5

where

 P_{θ} = probability measure parameterized by θ

For example:

Suppose X_1, \ldots, X_N are i.i.d Gaussians with mean μ and variance σ^2 .

$$
F_{\underline{\theta}}(\underline{x}) = F_{\underline{\theta}}(x_1, \dots, x_N)
$$

= $F_{\underline{\theta}}(x_1) F_{\underline{\theta}}(x_2) \cdots F_{\underline{\theta}}(x_N)$
= $\Phi\left(\frac{x_1 - \mu}{\sigma}\right) \Phi\left(\frac{x_2 - \mu}{\sigma}\right) \cdots \Phi\left(\frac{x_n - \mu}{\sigma}\right)$

 μ

 \setminus

where

$$
\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-v^2/2} dv,
$$

and

$$
\underline{\theta} = (\mu, \sigma^2)^T \in \Theta = \mathbf{R} \times [0, \infty)
$$

Let Θ_0 and Θ_1 be a partition of Θ (the parameter space) (i.e., $\Theta_0 \cap \Theta_1 = \emptyset$ and $\Theta_0 \cup \Theta_1 = \Theta$)

Either

$$
\underline{\theta} \in \Theta_0 \qquad \Rightarrow \qquad H_0 \text{ is true}
$$

or

$$
\underline{\theta} \in \Theta_1 \qquad \Rightarrow \qquad H_1 \text{ is true}
$$

We will assume both H_0 and H_1 are simple hypotheses.

Defn. A hypothesis H_i is said to be a *simple hypothesis* only a single element $\underline{\theta}_i$. If Θ_i contains more than one element, then H_i is a *composite hypothesis*. if its corresponding parameter set Θ_i contains

If H_0 and H_1 are both simple, then

 $\Theta_0 = {\theta_0}$ and $\Theta_1 = {\theta_1}$

13.8

and

$$
\Theta = \Theta_0 \cup \Theta_1 = \{ \underline{\theta}_0, \underline{\theta}_1 \}
$$

Then if hypothesis H_i is true, \underline{X} has a single cdf $F_{\underline{\theta}_i}(\underline{x})$, for $i = 0, 1$.

For a composite H_i , there is a corresponding set of cdfs:

 ${F_{\theta}(\underline{x}); \underline{\theta} \in \Theta_i}$

Hypothesis H_i is true if any one of these cdfs describes X.

Given a random vector <u>X</u> having cdf $F_{\theta}(\underline{x}), \theta \in \Theta$, we can define a binary test of the form

$$
\phi(\underline{x}) = \begin{cases} 1, & \text{for } \underline{x} \in \mathcal{R}, \\ 0, & \text{for } \underline{x} \in \mathcal{A}, \end{cases}
$$

where

 \mathcal{R} = rejection region of H_0 $\mathcal{A} = acceptance\ region$ of H_0

Assuming real RVs $X_1, \ldots, X_N, \underline{x} \in \mathbb{R}^N$, and

 $\mathcal{A} \subset \mathbf{R}^N$ $\mathcal{R} \cup \mathcal{A} = \mathbf{R}^N$ $\overline{\mathcal{R}} \subset \overline{\mathbf{R}}^N$ $\overline{\mathcal{R} \cap \mathcal{A}} = \emptyset$

$$
\phi(\underline{x}) = \begin{cases} 1, & \text{for } \underline{x} \in \mathcal{R}, \\ 0, & \text{for } \underline{x} \in \mathcal{A}, \end{cases}
$$

$$
\mathcal{R} = rejection \ region \ of \ H_0
$$

$$
\mathcal{A} = acceptance \ region \ of \ H_0
$$

Note the language:

If $\phi(\underline{X}) = 0$, we accept hypothesis H_0 . If $\phi(\underline{X}) = 1$, we reject hypothesis H_0 . (and effectively accept H_1)

.) 2004 by Mark R. Bell, mrb@ecn.purdue.edu

In general, two types of errors can occur:

 \overline{H}_0 is true, but $\phi(\overline{X}) = 1$. Type I Error or False Alarm

 H_1 is true, but $\phi(\underline{X}) = 0$. Type II Error or Miss

The probability of Type I error is called the *size* or probability of false alarm of the test.

It is given by

$$
\alpha = P_{\underline{\theta}_0}(\{\phi(\underline{X}) = 1\})
$$

when H_0 is simple.

) 2004 by Mark R. Bell, mrb@ecn.purdue.edu

Note that the size can also be written as

$$
\alpha = P_{\underline{\theta}_0}(\{\phi(\underline{X}) = 1\})
$$

 $\mathrm{E}_{\underline{\theta}_0}[\phi(\underline{X})]$

n.b. the subscripts $\underline{\theta}_0$ mean these quantities are computed using cdf $F_{\underline{\theta}_0}(\underline{x})$ or corresponding pdf $f_{\underline{\theta}_0}(\underline{x})$

If H_0 is composite, the size is defined as

$$
\alpha = \sup_{\theta \in \Theta_0} \left\{ \mathcal{E}_{\underline{\theta}}[\phi(\underline{X})] \right\}
$$

Here "sup" means supremum (i.e., the least upper bound) !c 2004 by Mark R. Bell, mrb@ecn.purdue.edu

Note that

$$
\alpha = \sup_{\underline{\theta} \in \Theta_0} \left\{ \mathcal{E}_{\underline{\theta}}[\phi(\underline{X})] \right\}
$$

represents the worst-case false alarm for any possible $\underline{\theta}_0 \in \Theta_0.$

If H_1 is in effect and $\phi(\underline{X})=1 \Rightarrow$ Correct Decision

If H_1 is simple, the probability of correctly deciding H_1 is called the *power* or *probability of detection* of $\phi(\cdot)$:

$$
\beta = P_{\underline{\theta}_1}(\{\phi(\underline{X}) = 1\}) = \mathcal{E}_{\underline{\theta}_1}[\phi(\underline{X})]
$$

!c 2004 by Mark R. Bell, mrb@ecn.purdue.edu

If H_1 is composite, we compute β for each possible $\underline{\theta}_1 \in \Theta_1$:

$$
\beta(\underline{\theta}) = P_{\underline{\theta}}(\{\phi(\underline{X}) = 1\}) = \mathcal{E}_{\underline{\theta}}[\phi(\underline{X})], \quad \forall \underline{\theta} \in \Theta_1
$$

Note the asymmetry between H_0 and H_1 :

$$
\alpha = \sup_{\underline{\theta} \in \Theta_0} \{ \mathcal{E}_{\underline{\theta}}[\phi(\underline{X})] \}
$$
 (worst case)

$$
\beta(\underline{\theta}) = \mathcal{E}_{\theta} [\phi(\underline{X})], \quad \forall \underline{\theta} \in \Theta_1
$$
 (each case)

Why? Fundamental nature of frequentist hypothesis test.

A Radar Interpretation

 $\alpha = \sup$ $\theta \in \tilde{\Theta}_0$ $\{E_{\theta}[\phi(\underline{X})]\}$ (worst case)

 1217

 $\Rightarrow \alpha$ is maximum possible probability of false alarm.

 $\beta(\underline{\theta})=\mathrm{E}_{\theta} [\phi(\underline{X})]$, $\forall \underline{\theta} \in \Theta_1$ (each case)

 \Rightarrow Evaluate the probability of detection for each possible target.

2004 by Mark R. Bell, mrb@ecn.purdue.edu

Because β is the "probability of detection," we sometimes write it as

 $P_D = \beta = \text{Probability of Detection}$

The probability of deciding that H_0 is in effect when in fact H_1 is —a type II error—is called the miss probability

 $P_M = 1 - \beta = 1 - P_D$

Because α is the probability of false alarm," we sometimes write it as

 $P_{FA} = \alpha = \text{Probability of False Alarm}$

2004 by Mark R. Bell, mrb@ecn.purdue.edu