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Detection Theory
The most basic task of a RADAR system is 
to detect whether or not an object 
(target) is present.

We may also wish to detect if some 
“feature” is present in the scattered 
signal:


Spectral Component

signal family characteristic

depolarized wave component
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How do we design an optimal test in this 
case?

We want as small a number of “false 
alarms” as possible.

We want as small a number of “misses” as 
possible.

Clearly theses two goals contradict each 
other.

An “optimal” test must trade these two 
goals off against each other. But how?

An Optimal Test?
Reca l l . . . 1 3 . 2

Processor Decision

Signal Model

General Framework for Radar Detection

Reduces Signal to a

Vector of Observations

Reduces Vector of

Observations to

Binary Decision

Input to processor is a random process y(t).

Processor output X = (X1, . . . , XN )T is a vector of
jointly distributed random variables—a random vector.
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For now, we will focus on the decision block

X = (X1, . . . , Xn)T

H0 H1
H1 = feature present

H0 = feature absent

Decision

We will assume that after processing by the processor, the
the random vector X is described by a cdf parameterized
a parameter vector θ:

Fθ(x) = Pθ({X1 ≤ x1} ∩ · · · ∩ {XN ≤ xN})

How do we design optimal decision blocks?
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A CX , , X z , . . . , Xu)T

Binary Hypothesis Testing

Let

X = (X1, . . . , XN )T = vector of observations

governed by

Fθ(x) = Pθ({X1 ≤ x1} ∩ · · · ∩ {XN ≤ xN}),

where

Pθ = probability measure parameterized by θ
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Suppose X1, . . . , XN are i.i.d Gaussians with mean µ

and variance σ
2.

Fθ(x) = Fθ(x1, . . . , xN )

= Fθ(x1)Fθ(x2) · · ·Fθ(xN )

= Φ

(

x1 − µ

σ

)

Φ

(

x2 − µ

σ

)

· · ·Φ

(

xn − µ

σ

)

and

θ = (µ, σ2)T
∈ Θ = R × [0,∞)

For example:

where

�(z) =

Z z

�1

1p
2⇡

e�v2/2 dv,
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Let Θ0 and Θ1 be a partition of Θ (the parameter space)

(i.e., Θ0 ∩ Θ1 = ∅ and Θ0 ∪ Θ1 = Θ)

Either

θ ∈ Θ0 ⇒ H0 is true

⇒ H1 is trueθ ∈ Θ1

or

We will assume both H0 and H1 are simple hypotheses.

Defn. A hypothesis Hi is said to be a simple hypothesis

only a single element θi. If Θi contains more than
one element, then Hi is a composite hypothesis.

if its corresponding parameter set Θi contains
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If H0 and H1 are both simple, then

Θ0 = {θ0} and Θ1 = {θ1}

Then if hypothesis Hi is true, X has a single cdf Fθ
i
(x),

for i = 0, 1.

For a composite Hi, there is a corresponding set of cdfs:

{Fθ(x); θ ∈ Θi}

Hypothesis Hi is true if any one of these cdfs describes X.

and

Θ = Θ0 ∪ Θ1 = {θ0, θ1}
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Given a random vector X having cdf Fθ(x), θ ∈ Θ,
we can define a binary test of the form

φ(x) =

{

1, for x ∈ R,
0, for x ∈ A,

where

R = rejection region of H0

A = acceptance region of H0

Assuming real RVs X1, . . . , XN , x ∈ R
N , and

A ⊂ R
N

R ∪A = R
N

R ⊂ R
N R ∩A = ∅
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Recap: Binary Hypothesis tests

X = (X1, . . . , Xn)T

H0 H1
H1 = feature present

H0 = feature absent

Decision

X = (X1, . . . , XN )T = vector of observations

governed by

Fθ(x) = Pθ({X1 ≤ x1} ∩ · · · ∩ {XN ≤ xN}),

We will assume both H0 and H1 are simple hypotheses.

Under H0, Θ0 = {θ0} ⇒ X ∼ Fθ
0
(x)

Under H1, Θ1 = {θ1} ⇒ X ∼ Fθ
1
(x)
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φ(x) =

{

1, for x ∈ R,
0, for x ∈ A,

R = rejection region of H0

A = acceptance region of H0

Note the language:

If φ(X) = 0, we accept hypothesis H0.

If φ(X) = 1, we reject hypothesis H0.

(and effectively accept H1)
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In general, two types of errors can occur:

H0 is true, but φ(X) = 1.

H1 is true, but φ(X) = 0. Type II Error or Miss

Type I Error or

False Alarm

The probability of Type I error is called the size or

probability of false alarm of the test.

It is given by

α = Pθ
0
({φ(X) = 1})

when H0 is simple.
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Note that the size can also be written as

α = Pθ
0
({φ(X) = 1})

= Eθ
0
[φ(X)]

n.b. the subscripts θ0 mean these quantities are

computed using cdf Fθ
0
(x) or corresponding

pdf fθ
0
(x)

If H0 is composite, the size is defined as

α = sup
θ∈Θ0

{

Eθ[φ(X)]
}

Here “sup” means supremum (i.e., the least upper bound)
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α = sup
θ∈Θ0

{

Eθ[φ(X)]
}

Note that

represents the worst-case false alarm for any possible

θ0 ∈ Θ0.

If H1 is in effect and φ(X) = 1 ⇒ Correct Decision

If H1 is simple, the probability of correctly deciding H1

is called the power or probability of detection of φ(·):

β = Pθ
1
({φ(X) = 1}) = Eθ

1
[φ(X)]
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β(θ) = Pθ({φ(X) = 1}) = Eθ [φ(X)] , ∀θ ∈ Θ1

If H1 is composite, we compute β for each possible

θ1 ∈ Θ1:

Note the asymmetry between H0 and H1:

α = sup
θ∈Θ0

{

Eθ[φ(X)]
}

(worst case)

(each case)β(θ) = Eθ [φ(X)] , ∀θ ∈ Θ1

Why? Fundamental nature of frequentist hypothesis test.
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α = sup
θ∈Θ0

{

Eθ[φ(X)]
}

(worst case)

(each case)β(θ) = Eθ [φ(X)] , ∀θ ∈ Θ1

⇒ α is maximum possible probability of false alarm.

⇒ Evaluate the probability of detection for each
possible target.

A Radar Interpretation
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Because β is the “probability of detection,” we
sometimes write it as

PD = β = Probability of Detection

The probability of deciding that H0 is in effect when

in fact H1 is —a type II error—is called the
miss probability

PM = 1 − β = 1 − PD

PFA = α = Probability of False Alarm

Because α is the probability of false alarm,” we
sometimes write it as
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