ECE678 Radar Engineering Fall 2024

Homework Assignment #6

Due Friday, December 6, 2024

Reading Assignment: Coded waveform material in slides and Ch. 8 of Levanon.

- 1. Levanon, 8.1: The first three elements of a length N = 6 frequency hopping sequence 2, 4, 5, *, *, * are 2, 4, 5. For the remaining three elements, find all possible combinations that will yield a Costas sequence.
- 2. Levanon, 8.2: Determine the sidelobe matrix of the Costas sequence

- 3. Find a Costas sequence $\{a_n\}$ of length 16.
- 4. Levanon, 8.14: Learn about Frank codes on pp. 153–159 of Levanon. Then(a) Find the Frank code of length 9.
 - (b) Calculate and draw its autocorrelation sequence.
- 5. Using the algorithm presented in class, find a binary complementary code pair of length 8. Calculate and draw its autocorrelation function, assuming that the two sequences are separated by an interval of 9 chip lengths.
- 6. An unfocused SAR is a synthetic aperture radar that forms its synthetic aperture by simply adding the received responses without applying any phase shifts to the returns. As a result, it has a relatively short synthetic aperture length \mathcal{L} , because if the aperture is too long, there can be a significant phase difference between the response at the middle and the end of the synthetic aperture. Suppose that the maximal allowed two-way phase difference across the aperture is $\pi/2$.
 - (a) Find the maximum length \mathcal{L} of the unfocused SAR aperture as a function of h, the height of the aperture above the surface being imaged. (You may assume $\lambda \ll h$.)
 - (b) Show that the along-track resolution of the unfocused SAR is $\Delta x = (\lambda h)^{1/2}/2$.
- 7. In order to avoid Doppler ambiguity (aliasing), a SAR's pulse repetition frequency (PRF) must be higher than twice the highest Doppler shift. For a SAR staring broadside, show that the lower limit on the PRF is

$$\mathrm{PRF} \ge \frac{2V}{L},$$

where V is the platform velocity and L is the length of the real antenna aperture (along track).