ECE678 Radar Engineering Fall 2024

Mark R. Bell MSEE 336

Homework Assignment #5

Due Midnight, Wednesday, November 13, 2024

Reading Assignment: Chapter 7: The Ambiguity Function in the draft text, and/or Levanon Chapters 6 and 7.

1. If the ambiguity function of s(t) (an arbitrary finite-energy signal) is $\beta_s(\tau, \nu)$, show that the ambiguity function of $v(t) = s(\alpha t)$ is

$$\beta_v(\tau,\nu) = \frac{1}{|\alpha|} \beta_s\left(\alpha\tau, \frac{\nu}{\alpha}\right),\,$$

for all real numbers $\alpha \neq 0$.

2. Show that for an energy normalized signal u(t), (*i.e.*, having E = 1),

$$\frac{\partial^2 \beta_u(0,0)}{\partial \nu^2} = -4\pi^2 \int_{-\infty}^{\infty} t^2 |u(t)|^2 dt.$$

3. Prove that the two-dimensional Fourier transform of $|\beta_s(\tau, \nu)|^2$ is equal to the function itself. That is,

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |\beta_s(\tau,\nu)|^2 e^{i2\pi\nu t} e^{-i2\pi\tau f} \, d\tau \, d\nu = |\beta_s(t,f)|^2.$$

4. Calculate the asymmetric ambiguity function $\beta_s(\tau, \nu)$ of the signal

$$s(t) = Be^{-t^2/T^2}.$$

What is the value of B that makes the signal unit energy?

5. Calculate the ambiguity function of the signal

$$s(t) = Be^{-t^2/T^2}e^{i\pi\alpha t^2}.$$

(n.b., This is the same signal as in the previous problem, except it is modulated by a linear FM chirp.)

6. Levanon, 7.3: Draw the following four cuts of the ambiguity function of three coherent single frequency pulses: $|\beta(\tau, 0)|, |\beta(0, \nu)|, |\beta(T, \nu)|, \text{ and } |\beta(2T, \nu)|$. The width of each

pulse is t_p , the pulse repetition interval is T, and $T \approx 5.5 t_p$. In the last three cuts, find the value of the ambiguity function at $\nu = 1/2T$.

- 7. Levanon, 7.4: A 10 GHz radar utilizes a linear FM pulse of duration $t_p = 20 \,\mu s$ and frequency deviation $\Delta f = 1 \,\mathrm{MHz}$. The pulse is relected from a point target approaching the radar with a radial velocity of 150 m/s. What will be the bias error in measuring the range? (Assume that the range is determined by the delay at which the matched filter ouput—the matched filter for a non-Doppler shifted pulse—reaches a peak.)
- 8. Prove that if a (baseband) s(t) has an ambiguity function $\Gamma(\tau, \nu)$, then the (baseband) pulse $s(t)e^{i\pi\alpha t^2}$ has ambiguity function $\Gamma(\tau, \nu - \alpha \tau)$.
- 9. Using the result of problem 8, calculate $\Gamma(\tau, \nu)$ for the following waveforms (a) $s(t) = e^{i\pi\alpha t^2} \cdot 1_{[-T/2,T/2]}(t).$ (b) $s(t) = e^{i\pi\alpha t^2} \cdot e^{-\pi\beta t^2}$, where β is a positive real number.