ECE678 Radar Engineering Fall 2024

Homework Assignment #4

Due Monday, October 21, 2024

Reading Assignment: Read the Bayesian Detection section in Chapter 5 and Chapter 6 on Matched Filters of the course notes.

- 1. Consider the following detection problem defined in the Bayesian context:
 - (a) Call $f(\underline{\theta}, \underline{x})$ the joint probability mass function-probability density function of $\underline{\theta}$ and \underline{x} :

$$f(\underline{\theta}, \underline{x}) = \begin{cases} p_0 f_{\underline{\theta}_0}(\underline{x}), & \underline{\theta} = \underline{\theta}_0; \\ p_1 f_{\underline{\theta}_1}(\underline{x}), & \underline{\theta} = \underline{\theta}_1. \end{cases}$$

Find the conditional probability mass function of $\underline{\theta}$ given \underline{X} .

- (b) One criterion for testing H_0 versus H_1 would be to evaluate the posterior conditioal pmf (part (a)) at $\underline{\theta}$ for the measurement \underline{X} —call the result the *posterior likelihood*— and select H_1 when the posterior likelihood of H_1 exceeds the posterior likelihood of H_0 . Show that the resulting test is a likelihood ratio test, and find the threshold to which the likelihood ratio L(X) must be compared.
- 2. (Binary Optical Communication): A laser transmits a binary digit ("0" or "1") by transmitting N_T photons in the time interval [0, T], where the number of photons transmitted is a Poisson random variable with pmf

$$p_i(n) = P(\{N_T = n\}) = \frac{(\lambda_i T)^n e^{-\lambda_i T}}{n!}, \quad n = 0, 1, 2, \dots, \quad i = 0, 1.$$

Here the rate parameter λ_i is λ_0 under H_0 and λ_1 under H_1 , where $\lambda_1 > \lambda_0 \ge 0$. Now assume that each transmitted photon has a probability p of being detected. Furthurmore, assume that the digits "0" and "1" have prior probabilities p_0 and p_1 , respectively. You are to decide whether a "0" or "1" was sent based on the observed number of detected photons M_T in the interval [0, T].

- (a) Find the probability mass function of M_T .
- (b) Find the decision rule that minimizes the probability of error, and express it as a function of λ_0 , λ_1 , p, p_0 , p_1 and T.
- (c) Write an expression for the resulting probability of error.
- 3. Assume that H_0 is the hypothesis that no target is present and H_1 is the hypothesis that a target is present. The prior probability of H_1 is p_1 . Assume that the loss associated with a type I error is L_{01} and with a type II error is L_{10} ; also assume that $L_{00} = L_{11} = 0$. We observe a scalar random variable X, which under H_0 has pdf

$$f_0(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{\frac{-x^2}{2\sigma^2}\right\},$$

and under H_1 has pdf

$$f_1(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{\frac{-(x-A)^2}{2\sigma^2}\right\},\,$$

where A is a positive constant.

- (a) Find a threshold test on X yielding the Bayes decision rule, and specify the threshold x_0 to which X must be compared.
- (b) Compute the value for the threshold x_0 as a function of p_1 when A = 1, $\sigma = 1$, $L_{01} = 1$, and $L_{10} = 2$.
- (c) Compute α , the probability of type I error, and 1β , the probability of type II error, as a function of p_1 for the numerical values given in part (b). Plot these for $0 < p_1 < 0.9$.
- (d) Compute the Bayes risk for the values given in part (b) and plot it for $0.1 < p_1 < 0.9$.
- (e) The minimax test is the test that minimizes the Bayes risk over all possible priors p_1 . Consider the result of part (d), and find the minimanx test corresponding to the values given in part (b).
- 4. Consider the signal

$$s(t) = A \cdot 1_{[0,T]}(t)$$

in additive white Gaussian noise with power spectral density

$$S_{nn}(f) = N_o/2,$$

where A is a positive constant and T is the duration of the pulse.

- (a) Find the impulse response of the matched filter whose output is sampled at time T.
- (b) Find the peak SNR at the output of the matched filter in this case.
- 5. Consider the signal

$$s(t) = Ae^{i\pi\alpha t^2} \cdot \mathbf{1}_{[0,T]}(t)$$

in additive white Gaussian noise with power spectral density

$$S_{nn}(f) = N_o/2,$$

where A is a positive constant, T is he duration of the pulse, and $\alpha > 0$ is the "chirp rate" of this linear FM pulse.

- (a) Find the impulse response of the matched filter whose output is sampled at time T.
- (b) Find the peak SNR at the output of the matched filter in this case.