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The Friis Equation
Suppose we have two antennas “pointing 
at each other” a large distance R apart.

R

AT ARPT PR

PT = transmitted power

PR = received power

PR

PT

=
AT AR

λ2R2
.

If

then
(Friis Equation)
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Antenna Gain over an Isotropic Radiator

Isotropic Radiator: An antenna that 
radiates energy uniformly in all directions 
(transmit).

On receive, it is equally sensitive to 
energy from all directions (by reciprocity).

If at a distance R from an isotropic radiator, we

place a receive aperture AR

PR

PT

=
AR

4πR2

surface area of sphere

of radius R

PR

PT

=
AR

4πR2
=

AiAR

λ2R2
⇒ Ai =

λ2

4π
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Note that the usual requirements for 
aperture size are not met.


However, it works in the Friis equation.


For this reason we will find it useful.

Ai =
λ2

4π
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The gain of AT over Ai is

G =
(PR/PT )T

(PR/PT )i

=
(PR)T

(PR)i

=
4πAT

λ2

So in general, the relation between the effective
area A and gain G of antenna is

G =
4πA

λ2
A =

λ2G

4π

Gain is often expressed in dB:

G(dB) = 10 log10 G (dB)
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Antenna Gain...
By reciprocity, the gain of an antenna on 
transmit is equal to the gain of an antenna 
on receive.


The Friis Equation can be written in terms 
of antenna gains:

PR

PT

=
GT GRλ2

16π2R2
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Antenna Directivity and Beam Pattern

For a uniformly illuminated aperture

GT =
4πATG

λ2

If ATG is not uniformly illuminated

GT =
4πAT

λ2
=

4πATG

λ2
η

If we go off axis by θ (azimuth) and φ (elevation)

the gain is not as large as in direction (θ, φ) = (0, 0).

It can be written as

G(θ, φ) =
4πATG

λ2
· f(θ, φ)

Aperture

Efficiency?
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Looking back at the aperture off-axis we see a 
“virtual aperture” with a phase shift across it.

In general, at angle (θ, φ) we have

G(θ, φ) =
4πATG

λ2
· f(θ, φ)

f(θ, φ) =

(

1

ATG

)

∣

∣

∣

∫ ∫

ATG
exp

{

i
2π

λ
[x sin θ + y sin φ]

}

E(x, y) dx dy

∣

∣

∣

2

∫ ∫

ATG
|E(x, y)|2 dx dy

.
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f(θ, φ) =

(

1

ATG

)

∣

∣

∣

∫ ∫

ATG
exp

{

i
2π

λ
[x sin θ + y sin φ]

}

E(x, y) dx dy

∣

∣

∣

2

∫ ∫

ATG
|E(x, y)|2 dx dy

This expression acts like an efficiency, taking on

values between 0 and 1.

It provides a measure of the directivity of

the antenna for transmitting and receiving power.


We call this quantity the beam pattern of

the antenna.
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The Radar Equation

Given that power PT is transmitted,
what is the received power PR?

To answer this, we must understand
the target’s behavior.
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Target Scattering Characteristics

Assume target has following characteristics:

(i) As a receive aperture, it has AR = σ (m2);

(ii) It reradiates all of this received energy isotropically.
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Ai =
λ 2

4π

AR = σ
From Radar

To Radar

(i) As a receive aperture, it has AR = σ (m2);

(ii) It reradiates all of this received energy isotropically.

Assumed Target Characteristics
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The power received by the target is given by

Pσ

PT

=
Aσ

λ2R2

PR

Pσ

=
AiA

λ2R2
=

(λ2/4π)A

λ2R2
=

A

4πR2

The fraction of the reradiated power received is

It follows that

PR

PT

=
PR

Pσ

·

Pσ

PT

=
A2σ

4πλ2R4
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The Radar Equation

PR

PT

=
A2σ

4πλ2R4

(i)
PR

PT

proportional to
1

R4

(ii)
PR

PT

proportional to σ
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Notes on Radar Equation

Alternative form using antenna gain(s) 
instead of effective area can be derived.


Bistatic version with different transmit and 
receive ranges and effective areas can be 
derived (requires generalization of radar 
cross section.)

As we will see, radar cross section and 
geometric cross section can be quite 
different—don’t let this throw you for now.

4 . 1 4

Radar Targets

RCS is used to characterize the scattering 
characteristics of target.

Defined in terms of hypothetical target—
defines an equivalence class of targets.

Is used to describe physical targets that 
behave nothing like the hypothetical 
target that defines it. This is OK!

PR

PT

=
A2σ

4πλ2R4

Radar Cross

Section
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RCS Contributing Factors

Size of Object 


Shape of Object

Wavelength of Radiation

Material(s) Object is Made of


Orientation w.r.t. Radar
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Table 4.1: Typical Values fo the Radar Cross Section of some Common Objects.

Object RCS (m2)

Small Insect (
y) 10�5

Large Insect (locust) 10�4

Medium-Sized Bird 0.001

Large Bird 0.01

Small Open Boat 0.02

Small Missile 0.1

Man 1

Small Single-engine Airplane 1

Small Fighter or Four-Passenger Jet 2

Helicopter 2

Bicycle 2

Small Pleasure Boat (20{30 ft.) 2

Large Tactical Fighter Airplane 6

Cabin Cruiser (40{50 ft.) 10

Large Bomber or Commercial Airliner 40

Jumbo Jet 100

Automobile 100

Pickup Truck 200

Ship 3000{1000000
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For real targets, we almost never know the

value of the RCS a priori.

We may know a range of values that σ may lie in:

σL ≤ σ ≤ σU

Sometimes it makes sense to treat σ as a random variable:

σ(ω) defined on (S,F , P )

Sometimes it makes sense to treat σ as a random process:

σ(t, ω) defined on (S,F , P )
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RCS of a Sphere
A strong function of wavelength

The Optical Region, where 2πa/λ > 20
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RCS of a (Perfectly Conducting) Sphere

A strong function of wavelength

The Optical Region, where 2πa/λ > 20

The Rayleigh Region, where 2πa/λ < 0.4

The Mie Region, where 0.4 < 2πa/λ < 20

· · ·

· · ·
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RCS of a (Perfectly Conducting) Sphere

In the Optical Region, σ ≈ πa2. This is the geometric

cross section of a sphere.

Because a sphere is invariant to changes in its orientation,

it makes a cconvenient calibration target.

σ ≈ 9πa
2

(

2πa

λ

)4

= πa
2
[

9(ka)4
]

In the Rayleigh Region, where λ >> a,
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RCS of a (Perfectly Conducting) Sphere
In the Mie Region, where λ ≈ a, “creeping waves”
travel around the sphere and interfere with the
specular reflection:

This gives rise to the “resonance” seen in this region.
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RCS of a Perfectly Conducting Plate

Assume perpendicular orientation to incident wave.

In the far field, the plate is uniformly illuminated.

Consider a perfectly conducting plate with dimensions.

much greater than λ.

Radar
Ap

R

Assume area Ap.

The plate reflects or radiates the wave as if it were a

uniformly illuminated aperture of area Ap. (It is!)
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Applying the Friis equation twice—once for

each trip—we get

PR

PT

=
Pσ

PT

·

PR

Pσ

=
AAp

λ2R2
·

ApA

λ2R2
=

A2A2
p

λ4R4

But
PR

PT

=
A2σ

4πλ2R4

Equating these expressions, we have
A2A2

p

λ4R4
=

A2σ

4πλ2R4
σ =

4πA2
p

λ2
.⇒
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