Session 26*

* You are not responsible for the material in this lecture on the Final Exam.

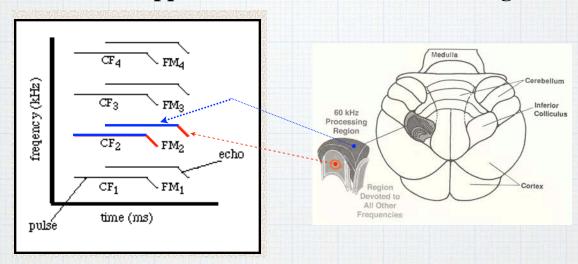
Biologically Inspired Nonlinear Processing of Radar Waveforms

Shahzada Rasool and Mark R. Bell School of Electrical and Computer Engineering Purdue University

Other Approaches to Waveform Processing

- Matched-filtering has the goal of maximizing SNR, not optimizing delay-Doppler resolution.
- Echo-locating bats appear to possess spatial resolution characteristics superior to that dictated by the ambiguity function of their transmitted waveform.
- This suggests they are doing something other than matched-filtering:
- Neurological studies of echolocating bats indicate that the perform a form of nonlinear correlation of the received signal with the transmitted signal.
- Neurological studies indicate that different temporal parts of the waveform are processed in different parts of the brain—they are processed separately and combined.

Other Approaches to Waveform Processing



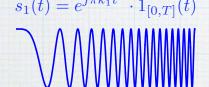
- This suggests that the bat processes different parts of the waveform separately and then combines the results using some form of (nonlinear) neural processing.
- Perhaps mimicking this separated processing structure would yield useful results in terms of delay-Doppler resolution enhancement or ambiguity reduction.

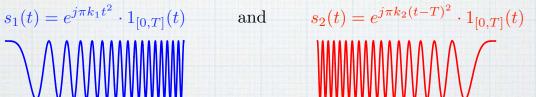
The V-Chirp Waveform

The V-chirp signal is made up of two successive chirps: an up-chirp with chirprate k_1 and a down-chirp with chirp rate k_2 .

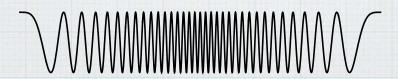
$$s(t) = s_1(t) + s_2(t - T),$$

where



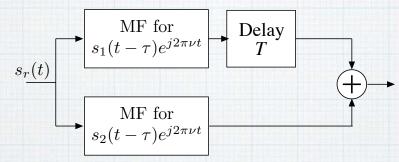


$$s(t) = s_1(t) + s_2(t - T)$$

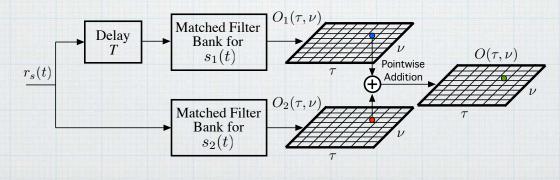


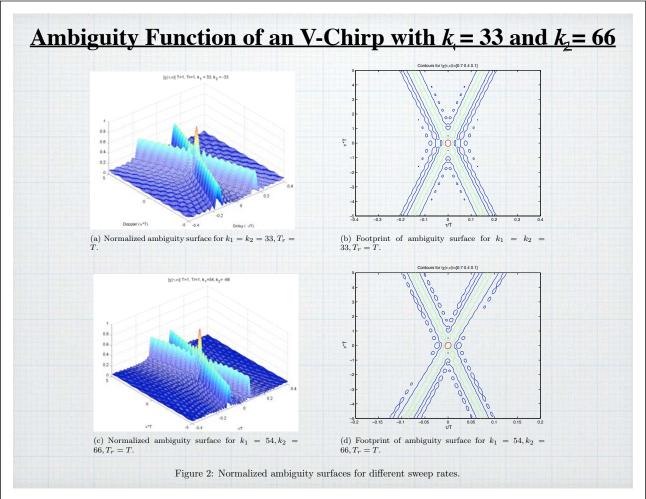
Approaches to Processing a V-Chirp

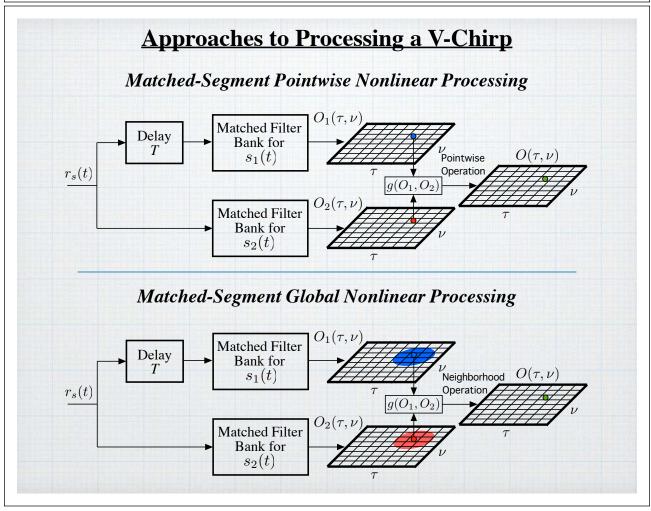
Matched-Filter Processing

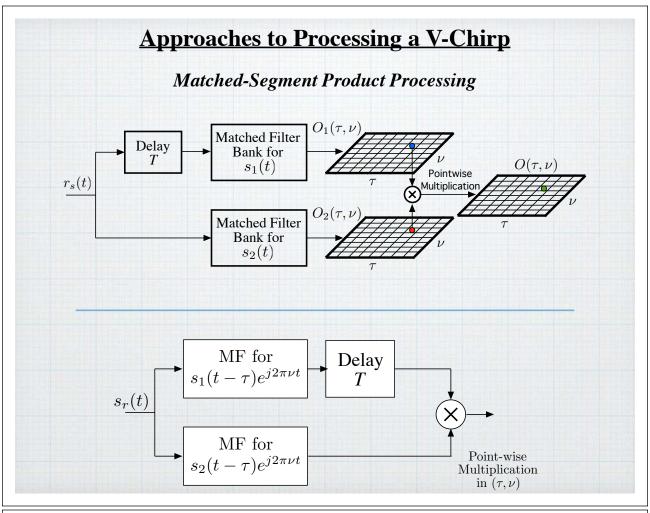


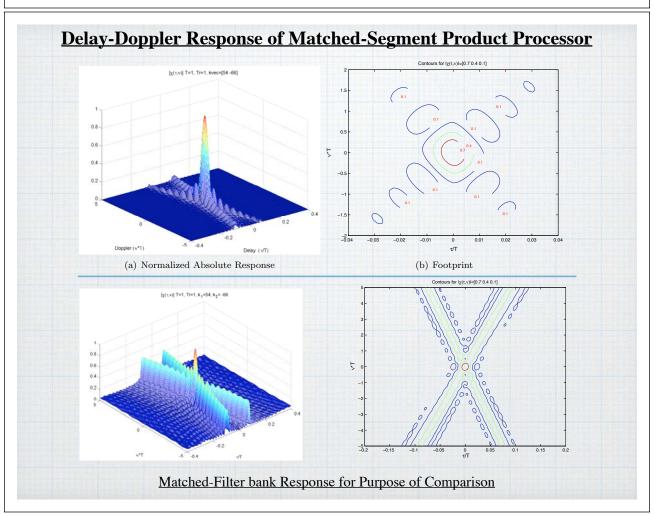
Matched-Filter Bank Processing





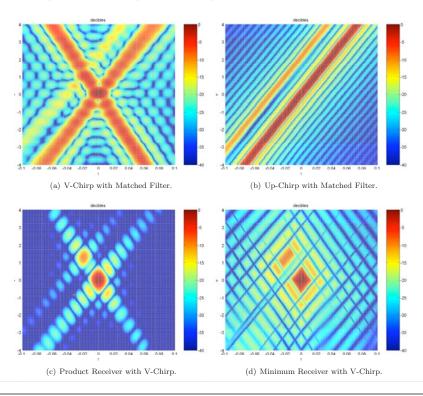






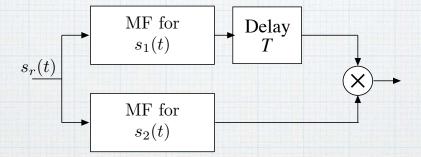
Two Targets: One at (0,0) and one at (0.02,1) [-10dB]

For V-chirp, T = 1, $T_{max} = 2$, $k_1 = 54$, $k_2 = -66$.



Detection Performance

Consider a particular resolution cell (τ_0, ν_0) where we are testing for a target. Assume $(\tau_0, \nu_0) = (0, 0)$ WLOG:



Let $s_1(t)$ and $s_2(t)$ be two orthogonal signals, each of duration T, and let

$$s(t) = s_1(t) + s_2(t - T).$$

Detection Performance (Continued)

Assuming that a slowly fluctuating point target is present, the received signal is

$$s_r(t) = \begin{cases} Bs(t-\tau)e^{j2\pi\nu t} + n(t), & \text{under } H_1, \\ n(t), & \text{under } H_0, \end{cases}$$

where B is a complex Gaussian random variable and n(t) an independent zeromean complex Gaussian white noise process with variance $\sigma_n^2 = N_0$ (each quadrature component is $N_0/2$). We let $E[|B|] = \sqrt{\pi/2} \sigma_b$ and $E[|B|^2] = 2\sigma_b^2$.

Using our proposed receiver structure, the received signal is correlated with $s_1(t)$ and $s_2(t)$ individually:

$$\mathcal{O}_1(\tau, \nu) = \int_{\mathbf{R}} s_r(t) s_1^*(t - \tau_0) e^{-j2\pi\nu_0 t} dt,$$

$$\mathcal{O}_2(\tau, \nu) = \int_{\mathbf{R}} s_r(t) s_2^*(t - \tau_0) e^{-j2\pi\nu_0 t} dt.$$

Detection Performance (Continued)

Without loss of generality, we can take $\tau_0 = \nu_0 = 0$. Then the output of the first correlator under H_1 is

$$\mathcal{O}_1(\tau,\nu) = \int_{\mathbf{R}} \left[B(s_1(t-\tau) + s_2(t-\tau)) e^{j2\pi\nu t} + n(t) \right] s_1^*(t) dt$$
$$= B \left[\chi_{1,1}^*(\tau,-\nu) + \chi_{1,2}^*(\tau,-\nu) \right] + n_1.$$

Similarly,

$$\mathcal{O}_2(\tau,\nu) = B\left[\chi_{2,2}^*(\tau,-\nu) + \chi_{2,1}^*(\tau,-\nu)\right] + n_2.$$

$$X_{jk}(z,y) = \int_{-\infty}^{\infty} S_{j}(t) S_{k}(t-z) e^{+i2\pi yt} dt$$

Detection Performance (Continued)

For simplicity, let

$$R_1 \stackrel{\triangle}{=} \mathcal{O}_1(\tau, \nu)$$

and

$$R_2 \stackrel{\triangle}{=} \mathcal{O}_2(\tau, \nu).$$

When a target is present at the nominal delay and Doppler, we have $\tau = \nu = 0$. Since $\chi^*(0,0) = 1$, and by signal orthogonality $\chi^*_{1,2}(0,0) = 0$, we have

$$R_{i} = \begin{cases} B\left[\chi_{i,i}^{*}(\tau, -\nu)\right] + n_{i}, & : H_{1}, \\ n_{i}, & : H_{0}. \end{cases}$$

for i = 1, 2. Since B and n_i , i = 1, 2 are independent gaussian variates, therefore, R_1 and R_2 are complex normal random variables:

$$f_{R_i|H_1}(r_i) = \frac{1}{\pi (2\sigma_b^2 + N_0)} \exp\left[\frac{-r_i^* r_i}{2\sigma_b^2 + N_0}\right],$$

$$f_{R_i|H_0}(r_i) = \frac{1}{\pi N_0} \exp\left[\frac{-r_i^* r_i}{N_0}\right],$$

for i = 1, 2.

Detection Performance (Continued)

Under H_0 , R_1 and R_2 are uncorrelated and thus independent. So $|R_1|$ and $|R_2|$ are independent Rayleigh RVs. Letting $Z = |R_1R_2|$, we have

$$f_{Z|H_0}(z) = \frac{4z}{c_0^2} K_0(2z/c_0)$$

where

$$c_0 = N_0,$$

and $K_0(z)$ is zero order modified Bessel function of the second kind

Under H_1 , $R_i \sim \mathcal{CN}(0, 2\sigma_b^2 + N_0)$ and the covariance between real (imaginary) components of R_1 and R_2 is σ_b^2 , and cross components are independent. R_1 and R_2 are thus correlated Rayleigh RVs. Letting $c_1 = 2\sigma_b^2 + N_0$

$$f_{Z|H_1}(z) = \frac{4z}{c_0(2c_1 - c_0)} I_0\left(\frac{2z(c_1 - c_0)}{c_0(2c_1 - c_0)}\right) K_0\left(\frac{2zc_1}{c_0(2c_1 - c_0)}\right),$$

where

 $I_0(x) = \text{zero-order modified Bessel function of first kind.}$

Detection Performance (Continued)

The resulting likelihood ratio is

$$\mathbb{L}(z) = \frac{c_0}{2c_1 - c_0} I_0 \left(\frac{2z(c_1 - c_0)}{c_0(2c_1 - c_0)} \right) \frac{K_0(\frac{2zc_1}{c_0(2c_1 - c_0)})}{K_0(2z/c_0)} \mathop{\gtrless}_{H_0}^{H_1} \gamma.$$

Since I_0 and K_0 are monotone functions, an equivalent test is

$$Z \underset{H_0}{\overset{H_1}{\gtrless}} \gamma_c,$$

where γ_c is a function of c_0 and c_1 and is selected to achieve a specific false alarm probability.

Detection Performance (Continued)

Probability of false alarm:

$$P_{FA} = \Pr[Z \ge \gamma_c | H_0]$$

$$= \int_{\gamma_c}^{\infty} \frac{4z}{c_0^2} K_0(2z/c_0) dz$$

$$= \frac{2\gamma_c \cdot K_1(2\gamma_c/c_0)}{c_0},$$

where $K_1(z)$ is 1st order modified Bessel function of second kind.

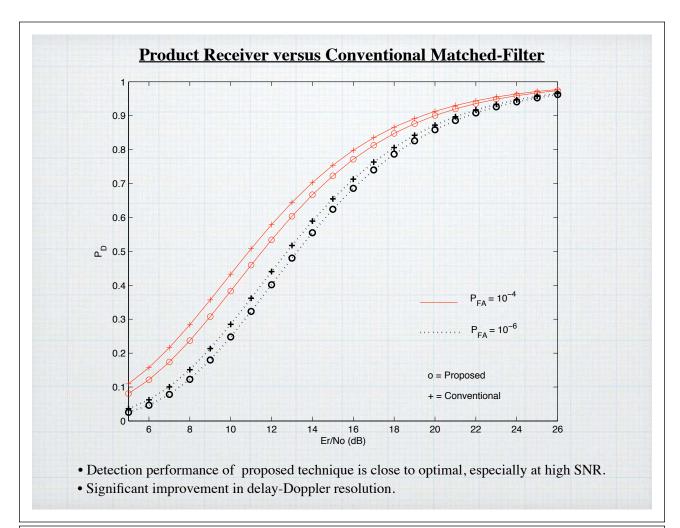
Probability of detection:

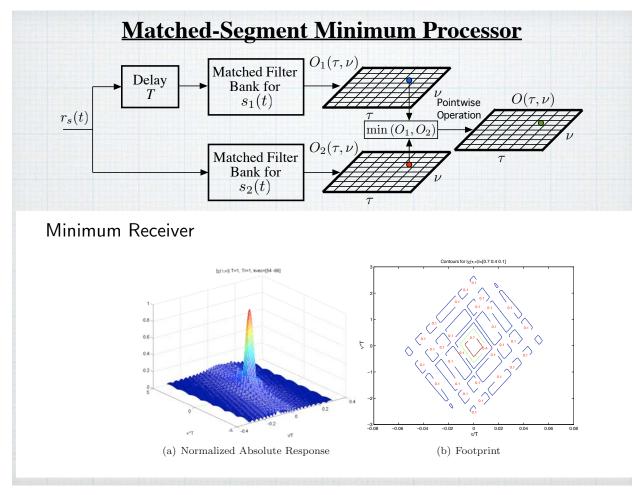
$$P_{D} = \Pr[Z \ge \gamma_{c} | H_{1}] = \int_{\gamma_{c}}^{\infty} f_{Z|H_{1}}(z)dz$$

$$= \frac{2z}{c_{0}(2c_{1} - c_{0})} [I_{0}(2\gamma_{c}\alpha)K_{1}(2\gamma_{c}\beta)c_{1}$$

$$+ I_{1}(2\gamma_{c}\alpha)K_{0}(2\gamma_{c}\beta)c_{1} - I_{1}(2\gamma_{c}\alpha)K_{0}(2\gamma_{c}\beta)c_{0}]$$

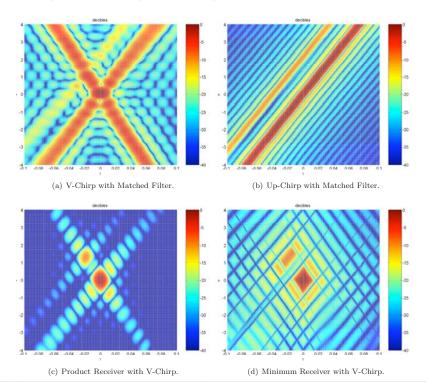
where
$$\alpha = \frac{(c_1 - c_0)}{c_0(2c_1 - c_0)}$$
 and $\beta = \frac{c_1}{c_0(2c_1 - c_0)}$.

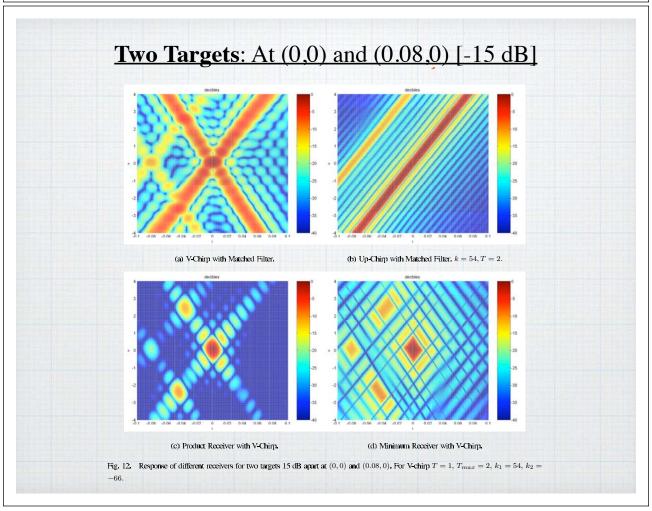


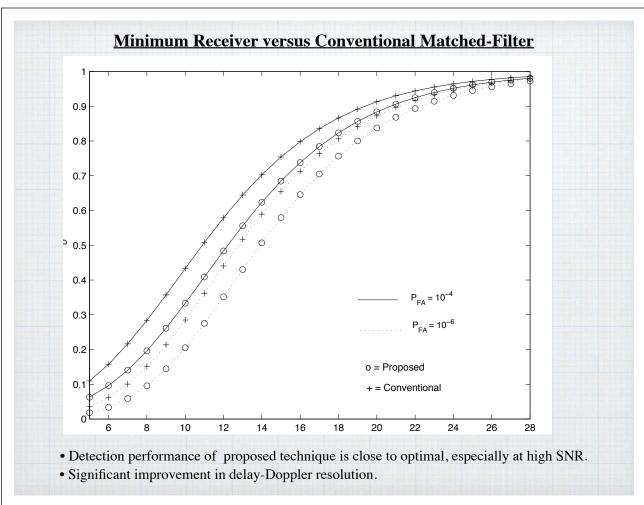


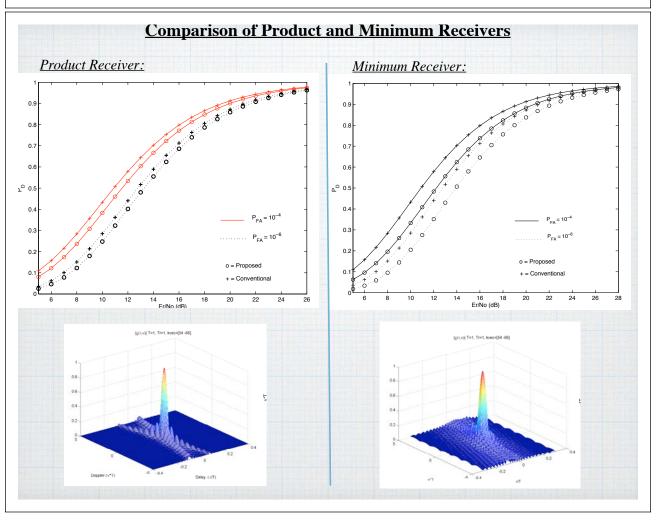
Two Targets: One at (0,0) and one at (0.02,1) [-10dB]

For V-chirp, T = 1, $T_{max} = 2$, $k_1 = 54$, $k_2 = -66$.

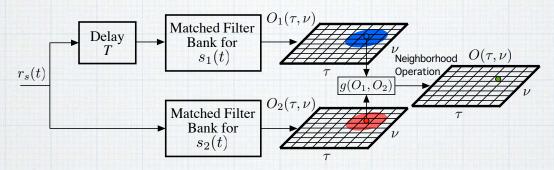








Future Work: Extension from Pointwise to Neighborhood Combining



- There may be advantages to moving beyond pointwise nonlinear operations to nonlinear operations in a neighborhood about the delay-Doppler cell being processed
- Information about the modulus and phase of the segment ambiguity functions may be useful in formulating a neighborhood combining function.
- Example: Inhibition / Excitation models of cochlear and retinal processing.
- Closed-form detection performance may not be possible.

Future Work: Coded Waveform Segments

- Chirps are not the only waveforms that can be used with the *matched-segment processor*.
- We have investigated Costas waveforms. Moderately encouraging results, but further work needed.

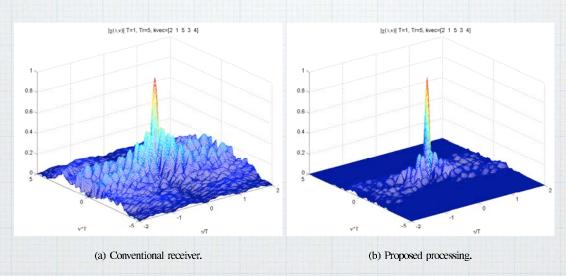


Fig. 13. Ambiguity surfaces for the Costas sequence of length 5.