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Signal Design for Transmitter Diversity
Wireless Communication Systems
Over Rayleigh Fading Channels

Jiann-Ching Guey, Michael P. Fitz, Mark R. Bell, and Wen-Yi Kuo, Member, IEEE

Abstract—In this paper, transmitter diversity wireless com-
munication systems over Rayleigh fading channels using pilot
symbol assisted modulation (PSAM) are studied. Unlike conven-
tional transmitter diversity systems with PSAM that estimate
the superimposed fading process, we are able to estimate each
individual fading process corresponding to the multiple trans-
mitters by using appropriately designed pilot symbol sequences.
With such sequences, special coded modulation schemes can then
be designed to access the diversity provided by the multiple
transmitters without having to use an interleaver or expand the
signal bandwidth. The notion of code matrix is introduced for
the coded modulation scheme, and its design criteria are also
established. In addition to the reduction in receiver complexity,
simulation results are compared to, and shown to be superior to,
that of an intentional frequency offset system over a wide range
of system parameters.

Index Terms— Channel coding, diversity methods, Rayleigh
channels.

I. INTRODUCTION

ROVIDING an architecture with diversity is important

for maintaining high performance in wireless mobile
communications. Diversity can be achieved by using multiple
antennas, using interleaved coded modulation, resolving prop-
agation paths in time or spatially, and using multicarrier trans-
mission [1], {2]. Perhaps the most commonly used technique is
interleaved coded modulation. The coding adds the redundancy
to provide diversity and the interleaving separates the code
symbols to (hopefully) provide independent fading distortion
for each of the code symbols. The problem with standard
interleaved coded modulation is that a tradeoff must be made
between decoding delay (a function of the interleaver depth)
and demodulation performance. This is especially important
in applications where performance is decoding delay sensitive
(e.g., voice transmission). For situations with small Doppler
spread (e.g., pedestrian or stopped vehicle), either a very long
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interleaver is needed to achieve quasi-independent distortion
on code symbols or else interleaving is not effective.

An effective technique in wireless communications is trans-
mission diversity. The advantage of transmission diversity is
that by transmitting from multiple spatially separated antennas
(e.g., a base station) diversity can be achieved without greatly
increasing the complexity of the receiver (e.g., a portable unit).
The simplest idea is to switch between the transmitters at
different time instants and allow only one transmitter to be on
at a time. Because the transmitters are operated intermittently,
their peak power is considerably higher than their average
power, which complicates the design of their output amplifiers.
Other transmission diversity techniques that do not switch off
the transmitter are ones using an intentional time offset [3] or
frequency offset [4], phase sweeping [5], frequency hopping
[6], and modulation diversity [7]. Most of these techniques
use phase or frequency modulation of each transmitter carrier
to induce intentional time-varying fading at the receiver.! The
advantage of these techniques is that the modulation level of
the carrier and the interleaving depth can be chosen to achieve
near ideal interleaving. In these applications, a shorter inter-
leaver depth is usually only achieved with an expanded signal
bandwidth. The focus of this paper is the exposition of a fairly
simple alternate system architecture which can provide the
diversity inherent in multiple transmissions without requiring
interleaving even with low mobility.

In this paper we consider linear modulation on frequency
nonselective fading channels. Consequently, applications of
this work are in modems using narrowband or multicarrier
modulation. Decoding of error control codes in frequency non-
selective fading channels requires an estimate of the channel
state (or multiplicative distortion), and transmitted reference
techniques usually provide the simplest method for channel
state estimation. Common transmitted reference techniques
are tone-calibration techniques (TCT) [8] and pilot symbol
assisted modulation (PSAM) [9]. PSAM is preferred in prac-
tice because it typically provides a better peak to average
transmitted power ratio without the need to redesign the
modulation pulse. Both TCT and PSAM are amenable to a
performance analysis for ideal interleaved coded modulation
{1] and for correlated fading [10]. In fact, the work in [11]
designed and analyzed the performance of a system using
interleaved coded modulation and frequency offset diversity

!'Note this is not the case for [3] and [7].

0090-6778/99$10.00 © 1999 IEEE



528

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 47, NO. 4, APRIL 1999

Channel 1
o p oy wr L Of «
Py dpi dy 1dy 7 Kk . dp“ . .. de
1! Pi o k4l k+2 kK Py Py n
Channel 2
12 e ef o |,@ @ e
L o Jdi Jd2 el R b
Py Py k+l k+2 k+K P Py "
Channel L
S af w|, W | w “ @
dpl dpi d, dp 1{dg 1 dp | 9
| -
Py P, k+l k+2 k+K P Py n

Fig. 1. The transmitted signals.

transmission using PSAM. At the time of our study [12],
the system of [11] was the highest performing complete
transmitter diversity system and will be used as a benchmark
for comparison to our proposed system.

In this paper, we propose a new coded modulation scheme to
access the diversity of a multiple transmitters system without
having to use interleaving. This method is similar to the
modulation diversity method proposed by [7], but does not
require an equalizer for decoding. The relationship between
the system’s error performance and the design of the coded
modulation scheme is also thoroughly examined from a more
general point of view. Since the proposed coded modulation
scheme requires the knowledge of the states on all channels,
not just the single state of the superimposed process, pilot
symbol sequences need to be appropriately designed. This
important issue-that has been missing in {7] will be addressed
in a solid mathematical framework.

The rest of this paper is organized as follows. The next
section formulates the problem and introduces the notation
used throughout this paper. A receiver architecture is devel-
oped and its error performance is analyzed in Section III. The
information provided by this analysis is then used as design
criteria in Sections IV and V, where code matrix and pilot
symbol matrix designs are considered, respectively. In Section
VI, an example is shown and compared to the result of an
intentional frequency offset system. Section VII concludes.

II. PROBLEM DESCRIPTION

In the sequel, bold lowercase italic denotes vectors, bold
uppercase italic denotes matrices; £*, =T, and 27 will denote
the complex conjugate, transpose, and Hermitian transpose of
z, respectively; {x,y) denotes the inner product between two
vectors z and y, |C| denotes the determinant of C, and I
denotes an identity matrix of dimension K.

Assuming that m bits per baud are transmitted, a repre-
sentation of the transmitted signals for a transmitter diversity
system is given in Fig. 1 where each channel represents the
signal on a different antenna. When a linearly modulated
information bearing signal, s(t) = %, d,u(t — nT), where

u(t) is the unit energy pulse shape and T is the symbol time,
is transmitted over a frequency nonselective, time-varying,
isotropic scattering, Rayleigh fading channel, the signal at the
receive end is modeled by

y(t) = c(t)s(t) + n(t) M

where c(t) is a zero mean complex Gaussian multiplicative
distortion (MD) random process and n(t) is a zero mean
AWGN process with one-sided spectral density Ng. The
processes c(t) and n(t) are assumed independent and the
isotropic Rayleigh scattering assumption implies that c(t) is
a wide sense stationary random process with autocorrelation
function [2]

Re(r) & Ele(t)c*(t — 7)) = EsJo(2nfp7) (D)

where fp is the Doppler spread of the channel, E, is the
average energy per transmitted symbol, and Jo(-) is the Bessel
function of zeroth order. Using superscript ({) to index the
transmitter, the multiple transmitter case can be described as

L
y(t) = > D)) +n(t) ©)

=1

where {c(M(t),c)(t), -, clF) ()} are assumed iid. with
an autocorrelation function given in (2). The assumption
of independent multiplicative distortions for each antenna
implies the antennas are separated appropriately. For indoor
network topologies this separation can be a small number of
wavelengths. For elevated outdoor antennas, greater care in
placement of antennas is important [2].

By assuming the fading is slow enough to be roughly con-
stant over the support of the pulse and that «(t) is appropriately
shaped so that intersymbol interference can be ignored, the
matched filter outputs are approximate sufficient statistics and

given as
[ o)
Tk =/
— 00
L

y(tu(t — kT) dt

4
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where cg) is complex Gaussian with E[cg)cgfm} = R.(mT).

The validity of this assumption can be ascertained by the
results in [13].

By arranging each of the transmitted symbols for each
antenna in a matrix, we define a code matrix transmitted
starting at symbol time £ as

1 2 L
4 4@ 4o
(1) (2) (L)
D(k) — dk.+1 dk.+1 dk.—f—l (5)
1 ‘ 2 ’ L '
d;:—{)—K—-l dgc-l-)-l(—-l d§e+>K—l

where dg-l) is a complex modulation symbol transmitted on the
ith antenna and on the jth baud and K is the length of the
code. Note that a total of 2™¥ code matrices are used in this
transmission scheme and a block of m K information bits will
select a code matrix for transmission. We define the set of all
code matrices (the code) as Z=p and use a subscript to denote
different elements within the code (i.e., D, € Ep).

One set of observations to be used to demodulate the
information symbols is the sequence of K complex values
given as

L
=y doc) +
=1

L
l [}
Tkl = Z di:-)}-lcgc-)i-l + N1
=1

!
ThtK-1= ) A 1 ld gy T kb1 (6)
=1

To consider an individual code matrix, we drop the subscript
k to minimize confusion and define

T=[Tk Ths Tk -1]”
n= [nk Nk41 nk+K—1]T
Ap = [D(l) D@ D(L)]
c=[cV" @7 DT )

! . ! 1
where D) = diag [di) d®

k+1
DO (D 1T Note that the notation diag [a
ko Ckt1 k+K—1

indicates a square matrix where the diagonal elements are the
elements of a and all other elements are zero. Consequentially
the observation for a particular code matrix (6) is written as

dgiK_l] and ¢V =

L
r=Apc+n= Z DOD 4 g, (8)
=1

Aside from observations associated with the information
code matrices, a set of known sequences are inserted every
P,,,s symbols for the purpose of channel state estimation. For
channel state estimation at a particular baud, the receiver uses
the N nearest pilot symbol observations to acquire the channel
state information required for decoding. The pilot symbol

sequences can also be collected in an N x L matrix:

L
dyy  dp, dp,
1 2 L
P= d’(?) d’(T’) d’(’f) ©)
'1 .2 ‘ L
déz\z dl(JN d1(7N)

where d,(,ij) are pilot symbols transmitted on the ith antenna
and at the p;th baud. The observations corresponding to the
pilot sequences are

L
Tpy = Z dl(’ll)cl(ill) + Np,
=1

L
D
Tp, = Z d;Z)cgz) + np,
=1

)
Tpy = Z dgglcgz + Npy (10)
=1

where pr, = p;1 + Pins * (k — 1), or in a matrix form (with
subscript p obviously indicating its associafion with pilot
symbols):

L
T, = Apcy, + 1, = Z P(l)cl(,l) +ny
I=1

1D

where z,, Ap, ¢p, 20 , cf,l), and n,, are all defined in a similar
manner as (7) and (8). Note that the ith row of P will be
referred to as dp,, and its jth column as dg). Also note that
the elements of P do not necessarily belong to the information
symbol alphabet.

III. RECEIVER ARCHITECTURE AND PERFORMANCE ANALYSIS

In this section, a near optimal receiver structure,? given
in Fig. 2, for the model described in the previous section
is established. This demodulator assumes symbol and frame
synchronization.

The demodulator takes the output of the sampler and de-
multiplexes the data samples z and the pilot samples z,. The
pilot samples are used to form a channel state estimate, ¢, for
each code matrix. The observation vector £ and the channel
estimation ¢ are then fused at the maximum-likelihood detector
to form the final decision on the transmitted code matrix.
This mechanism is discussed and analyzed in the following
subsections.

A. Maximum-Likelihood Detector

The maximum-likelihood detector using both the data ob-
servation x and the pilot observations x, computes

D = arg max f(z|zp, D)

D,c=

(12)

2x and zp is not a sufficient statistic for demodulation unless fp = 0.
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Fig. 2. Block diagram of the receiver.

where since r and z,, are both zero mean and jointly Gaussian

1
= 7K det (Copp)

- exp [—(z - £)C

f(z|zp, D)

a@=#)f] a3

where £ = Elz|z,,D,] and C,, = cov(z|z,, D,). Note

C.;p = E[(z — Ap,&)(z — Ap.&)F|e, D]

=Ap,Cov(e)AF + Nolk (14)

where.
Cov(e) = E[(c - &)(c—&)"]. (15)
C.|p is not a function of the pilot observations but is a

function of the postulated transmitted code matrix. To reflect
this dependence, we modify notation slightly and denote C
by C,. Since

z|p

Elz|z,,D,] = E[Ap_c + nl¢, D,
= Ap,Elcld = Ap,

& (16)

the sufficient statistic resulting from the pilot observations is
the MMSE channel state estimator é.

Hence, the conditional probability density function of z
given z, and D, is

f(zlzp, Dy) = (“K|C'y|)-1

. exp(—(z - Agwé)HC’,;l(z - ADA,&)).
amn

It should be noted that this demodulator has a complexity
which is O(LK?mX) and can be implemented in a recursive
fashion as in [14] and [15]. Often in PSAM based systems [1],
[9], the following reduced complexity form of the conditional
density function is utilized:

f(zlzy, D)) = (WK'C'YDQI

: exp(—(ﬂ: ~Ap,&)7C (z - Ap, e))

(18)
where
C, = NoIx (19)
or
C, = diag [(C;)11,(C1)22, -, (C)) ke k] (20)

Estimator

where (C, );; is the ith diagonal element of C.,. These reduced
complexity demodulators have a complexity of O(LKm™);
and if the transmitted signals have a trellis structure, the
complexity can be reduced to a complexity of O(LK). It
should be noted that the demodulator using (19) is equivalent
to assuming that channel state estimate produced by the
pilot symbols is perfect, and that the demodulator using (20)
ignores the information about the channel state in . We will
investigate in detail the optimal demodulator, but either of the
demodulators described by (19) or (20) is a simple extension.

The function of the maximum-likelihood detector in Fig. 2
is then to form the decision statistics f(z|z,, D) (or, equiv-
alently, In[f(x|x,, D,)]) for all D, € Z. Decoding is accom-
plished by selecting the largest f(z|z,, D).

B. Channel State Estimation

This subsection details the finite dimensional channel state
estimator using the received pilot symbols. The optimum
channel state estimation would obviously use all pilot symbols,
but here we only consider the estimator which uses the NV
closest pilot symbols. After the extraction of the N nearest
pilot symbols to a code matrix, the channel state estimator
interpolates between these samples to construct an estimate of
the distortion at every symbol period for every channel. In this
paper we adopt the generalization of the Wiener filter proposed
in [9] as specified in (16). Although the Wiener filter was only
used to estimate the distortion process of a single channel in
[9], it is straightforward to apply it to the multiple-channel
case. The minimum mean square error estimator of the state
vector ¢ takes the form

¢ = Fldz,]. 20

Due to the jointly Gaussian nature of the problem, this

becomes a linear estimator

¢ = Elcz)/|Cov(z,) 'z, S Hz, (22)
where Cov(z,) is the covariance matrix of z,. Using the
orthogonal projection theorem [16] of the minimum mean
square error estimator, the covariance matrix of the channel
state estimation error & 2 ¢ — & can be written as

Cov(e) = Cov(c) — Cov(e)
= Cov(c) — E[czf]Cov(zP)—lE[xch]. (23)

Note Cov(¢) is precomputable.
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C. Union Bound

In this subsection, we will analyze the error performance of
the receiver architecture. Usually, the information stream being
transmitted is binary. An outer encoder is used to map this
stream into the code matrix symbols that have been discussed
so far. Therefore, our real interest is the bit error probability
(BEP), not the code matrix error probability.

Define the pairwise code matrix error event {D, — Dg} as
the event that the receiver decodes code matrix Dg when D, is
actually transmitted. The BEP given that D, is transmitted is

PB(EIDa)
D3€E,D#D.
( number of error bits in event D, — Djg >

number of information bits per code matrix
24

P(D, — Dy}

where
P{D. — Dy} = P{ In[f (zalzy, D))

> max
D.€Z,D,#Dg

In[f(z.|zp, D)) } (25)

where z, = Ap_c + n.
Equation (25) is analytically intractable and is usually
upper-bounded by a union bound (e.g., [1])

P{D, — Dg} < P{In[f(a|zp, Dp)] Z In[f(Zalzp, Da)l}

2 P {D, — Dg}. (26)
To evaluate (26), we can rewrite it in a quadratic form
Pi{Ds — Dg} = P{2"Q 3z < ba} (27)

where 6,5 = In(|Cal/ICs|), z = [zZ&"]T and as shown in
(28) at the bottom of the page.

Since both z, and ¢ are complex Gaussian vectors, we can
use results for the quadratic form of complex Gaussians. Using
characteristic functions, contour integration, and some algebra,
(27) can be evaluated by the following formula [1]:

Pl{Da - Dﬂ}
_Z Residue[¢(s) exp(S(Sa,ﬁ)/s]Right Plane poles)

_ if6 <0
Z ReSidue[d)(s) exp(35a,ﬂ)/s]Left Plane poles U{0}»

if6 >0
29

where
o(s) 2 E'[exp(—szHQaﬂz)]
1

(30

N k11 + 5Cov(2)Q, sl

is the characteristic function [17] of the random variable
2 Q,p2- Note this is a slight generalization of the results
in [1] since the channel and channel estimate are not assumed
to be independent for each code symbol. The union bound on
the bit error probability given that D, is transmitted is

Pp(E|Dq)
< 2
Dg€e=,Dy#D,
( number of error bits in event D, — Dg )

number of information bits per code matrix
(31)

Pl{Da — Dﬂ}

IV. CODE MATRIX DESIGN

The above analysis provides a very accurate approximation
to the real error performance of our modeled system. However,
it does not provide much insight on the relationship between
the system performance, the design of the coded modulation
scheme, and the design of pilot symbol sequences. For the
purpose of code matrix design, we will make some further
assumptions to simplify the model.

From the analysis of Section III, it is clear that the code
design will depend on the fading rate. However, our interest
is in a nonadaptive coded modulation scheme. Therefore, we
will design our code assuming stationary fading, and then show
this provides acceptable performance in time-varying fading.
With this assumption, the channel state remains constant over

the interval of the entire code matrix, i.e., cffil = cg_)n =
0]

=g 2 ¢ for all I and (8) can be simplified as

z=Dc,+n (32)
where ¢, = [¢() 2 BN is an L x 1 column
vector whose elements are i.i.d. zero mean complex Gaussian
random variables with variance F,, and n is a K x 1 vector
whose elements are i.i.d. zero mean complex Gaussian random
variables with variance Ny. Note that we have replaced the
K x KL matrix Ap by D in the matrix representation of
a code matrix given in (5), and the dimension of ¢s is now
L x1,not KL x 1.

For the purposes of simplification and isolating the code
design from the pilot symbol sequence design, we next assume
that the channel state ¢, can be perfectly estimated. With this
assumption, the conditional probability density function of z
given ¢, and D, is then

f(x|cs’D"r) = (WNO)—K

— H(p
oxp (_(z Dvcs)No(z Dvcs)) (33)

Following the derivation in Section III-C, we can write down
the upper bound of the pairwise error event that code matrix

c;'-ct
Qaﬂ g

- AgaC;1 - Agﬁcfgl AgﬁCElADIS - Ago C(IIADO(

C:'Ap —C7A
a TP T s Ds } (28)



D, is decoded as code matrix Dg as

Pl{Da - Dﬂ} :P{ln f(zorlDaacs)

< In f(za|Dpg,cs)} (34)
or
P {Dy — Dg} =P{(za — Dacs)H(xa — Dyes)
> (2o — Dpe) (2o — Dpe,)}. (35)

To simplify (35), we note since D, is assumed transmitted,
we can replace z, by D,cs + n and get

Pi{Dy — Dy} = P{2R[n" (Ds — Dy )c;]
> ¢ (Dg — Do) (Dg — Da)e.} (36)

where R(-) denotes the real part of its argument.
Due to the singular value decomposition theorem [18] any
K x L matrix, Dg — D, can be written

Ds-D,=VEsW (37

where V is a K x K unitary matrix, W is an L X L unitary
matrix, and ¥ = [o;;] is a K x L nonnegative matrix whose
elements are given as ¢;; = 0 for all ¢ # 7, and 031 > 092 >
“Opp > Opil, pp1 = - = 0qq = 0, where ¢ = min{K, L}
and p is the rank of (37). The numbers ¢;; are the nonnegative
square roots of the eigenvalues of (Dg — D,)(Dg — D, ).
Now (36) is written as

Pl{Da - Dg}
= P{2RnAVHEWe, ) > EWH RHYVVE SWe, ).
(38)

Since V is a unitary matrix, VV# isa K x K identity matrix
and by letting n’ = Vn and ¢, = XWc,, (38) becomes

Pi{D, — Dg} = P{2R[w'¥¢| > P} (39)

where it can be easily shown that n’ is a zero mean i.i.d.
Gaussian random vector with covariance matrix Nol g, and
¢, is a zero mean Gaussian random vector with a diag-
onal covariance matrix E, XX having diagonal elements
{Es0%,,Es0%,, -+, Es02,,0,---,0}, and n’ and ¢, are in-
dependent. The result in (39), while seemingly innocuous,
implies a great deal about good signal design for multiple
transmitters. First, the diversity gained in a multiple transmitter
system L4 is

L, = Rank[D, — Dg] < min[L, K]. (40)

Since it is typically easier to build longer codes than more
transmitters, it is appropriate to assume L, < L in stationary
fading. Second, repetition coding across the antennas without
a time shift is obviously not effective since then the rank of
[Do — Dg] would be 1. The transmitter switching scheme
mentioned in the Introduction obviously achieves L, = L.
Furthermore, (39) shows that appropriately designed codes can
achieve L, = [ while simultaneously transmitting from all
antennas, and this is our goal. Also note in a stationary fading

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 47, NO. 4, APRIL 1999

channel that the full diversity available can be achieved with
K = L, so the only advantage in choosing K > L is to
achieve a greater bandwidth efficiency.

Since at most L diversity levels are available for a sys-
tem with L transmitters in stationary fading, and the error
performance of a code depends on the metric between the
code matrices defined as the diagonal elements of X, i.e.,
the nonnegative square roots of the eigenvalues of (Dg —
D,)(Dg — Dy)H | we can summarize the codeword design
criteria as follows.

1) An ideal codeword set should have full rank for all
Dg — D, (so that the number of nonzero entries in
25 is min{K,L}).

2) o%y,0%, -+, 02, should be evenly distributed and max-
imized subject to the total available signal energy.

A. An Example for Code Matrix Design

This example presents a simple block code design. More
powerful codes can be designed, and subsequent to the com-
pletion of this work [12] they have been designed [19]. The
upper half of Fig. 3 shows the encoder of the design example.
In this example, we consider a code matrix of block length
K = L = 3 with m = 4/3 bits per baud.? By letting V = Iy
and choosing W as a 3 x 3 constant-magnitude unitary matrix

0 40 IO
W= |ei0 gi2n/s gianss @1
\/g 6j() ej47r/3 ej87r/3
the code matrix can be expressed as
D=TwW (42)

where T' is a diagonal matrix whose diagonal elements
{di,d2,d3} can be drawn from the alphabet of a QAM
constellation. If a block of 4 information bits {1, I3, I3, 14}
(assume each of them takes on values +1) is to be encoded, a
simple scrambled repetition code matrix set is constructed as

dy = \/% (2L + L) + (2L + 1))

2 .
doy = Tg ((2I4+13)+j(212+11))

d z\/%((213+12)+j(214+11)) “3)

where a factor of \/2/15 is introduced to normalize the energy.
The resulting code matrix

dlejo dlejo d]ejo
D= —— derO d26j21r/3 d26j47r/3 (44)
\/—g d3ej0 d36j47r/3 d36j87r/3

will then have no zero elements and, therefore, no transmitter
is shut off at anytime. Also, the metric between any pair
of code matrices defined earlier as the set of nonnegative

3 These parameters are chosen to be comparable to those in the simple block
code in [11].
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Fig. 3. Codeword design example.

eigenvalues of

(Dg ~ Da)(Ds — Da)?

= (TgW - T W)([sW — T ,W)H

= (Fﬂ - FG)WWH(FH - ra)H

= ([ —Ta)(Ts—Ta)" (45)
is jllSt {Idﬂl - da1|2, |d52 - daglz, |d33 - da3]2}. It is easy to
see that none of the eigenvalues is zero since the mapping in
(43) is one to one for each symbol.

V. PILOT SYMBOL MATRIX DESIGNS

Although a direct relationship between the probability of
pairwise error event and pilot symbol sequences is established
in Section III, the optimization problem of minimizing the
overall bit error probability over all possible pilot sequences
is extremely difficult if not impossible. However, it is apparent
that accurate channel state estimation will lead to better system
performance. Therefore, once the code is determined, the error
performance of the system will be decided by the accuracy of
the channel state estimation, which in turn is determined by
the error covariance matrix Cov(é) E E[(c—¢&)(c—&)T]. A set
of good pilot symbol sequences should then lead to an error
covariance matrix that has the following properties.

1) The total estimation error over all channels is minimized.

2) The estimation errors are evenly distributed over all
channels.

3) The cross correlation between channel state estimation
errors, i.e., the off-diagonal elements of Cov(¢), should
be kept as small as possible.

4) The above properties should remain shift-invariant from
frame to frame.

Furthermore, the associated optimal Wiener filter coefficients
(see Section III) should be periodic with a short period so that
a large memory is not needed to store the filter coefficients.
Let us first look at the total error variance of channel state
estimates over an entire code matrix. This is just the trace of
the error covariance matrix of ¢ which [using (23)] can be
expressed as
Tr[Cov(e)]
=Tr [E[ccH] - E[ca:f] Cov(:z:p)_lE[r,ch]]
= Tr[E[ec™]] - Tr[E[ex]] Cov(z,) L E[z,c"]]
= Tr[E[ccH]] - Tr[Cov(.'z:p)“lE[zch]E[cxf]]
(46)
where in the last equality we have used the property Tr[AB] =

Tr[BA]. With some manipulation and noting that all channels
are i.i.d., one can show that the elements of Cov(z,) are

[Cov(m,))i; = Noli—3)+ [E[e0" ]| (dy,,) @47)
%7

and the elements of E[z,c”]Elcz!] are

[B[zpe”] E[C-'”f]]i,j
= [E [C’(’I)C(I)H]E[C(”c’(’l)H}]i’j<dpi,d,;]) )

where the superscripts (I) are arbitrary. Equations (47) and
(48) therefore imply that (46) is completely determined by the
inner products between d,,’s. Hence, a sufficient condition
for the pilot symbol sequences to be shift-invariant is (i.e.,
property 4 above) (dp,,dp, ) = (dp,,dp,, ) for all i, j, and
k. A particular set of sequences with this property is

1 2(r+e)i -1 -1)
d;,l!) = ﬁ exp< 7 ) (49)
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Tr{Cov(@]/N, (dB)
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Fig. 4. Total estimation error variance as a function of € for various fading
rate fpT = 0.0,0.01,0.02 and 0.03. E; /Ny = 15dB, P,s = 7. N = 12.

with inner product

L .

1 -j2 k(l-1

(i) = 7 3 oo LD s
=1

With such pilot sequences, (46) becomes a function of a single
variable ¢ and can be calculated.

As an example, let K = L = 3, Py, = 7, E/Nog = 15
dB, and N = 12. Since the dimension of ¢ is KL = 9,
Tr[E[cc?)}]/No = 15 + 10 log9 = 24.54 dB. Fig. 4 shows
curves of the total normalized estimation error given in (46)
as a function of e for various fading rates. For ¢ = 0, the
d,.’s in (49) are orthogonal. Therefore, from (46) we know its
resulting channel state estimation error is the same as that of
the antenna-switching system. The effective sampling period
on each individual channel is then LP,,; = 21 instead of 7.
From Fig. 4 we“have noted that when this effective sampling
rate is at or above Nyquist rate, ¢ = 0 minimizes the total
estimation error for pilot sequences of the form in (49) and
achieves property 1 above.

Now, we will inspect the individual error variance F [lég) 12]
for a particular instant and channel. Recall that PY s a
diagonal matrix whose diagonal elements are the [th column of
P. Therefore, P()’s are invertible if and only if all elements
of P are nonzero. If this is the case, then

B[10¢] = E[1Pr] - B[l
=FE [|c§:)]2] -E [cg)x:f] Cov(z,) 'E [z,,cg)H]
= B[] - B[]
. (P(l)_1 Cov(zp) (P(I)H ) _1) _1E [cg)cg)H] .
(1)

Now let U®) = pO~ Cov(zp)(P(l)H)'l, then one can show
that the elements of U are

OMON
! Ny . X E [CP:' Cp; ]
WOs = g 8=+ — e {dpu ). (52)
[dp. | dp, dp;
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A sufficient condition for (52) to be equal for all [ and property
2 to be satisfied is

|d§,’3[2 is a constant for all [
and either
<dP17de>:0 1# )
or

d;'i) dgj)* is a constant for all [ and ¢ # j.

That is, d),,’s are either orthogonal or a scalar multiple of one
another. The set of sequences in (49) with ¢ = 0 satisfies
these conditions.

If L divides N, one can also easily show that when the

fading is stationary (i.e., fp7 = 0), the error covariance
matrix is a block diagonal matrix
A0 --- 0
: 0 A --- 0
Cov(e)=|. . . . (53)
0 0 --- A
where the elements of the K x K diagonal blocks are all
E N,
Ay = % ° . (54)
1‘ Es + NO

As long as the fading process is being sampled at or above
Nyquist rate, we have noted that even in relatively fast fading
(e.g., fpT = 0.01), the magnitude of the off-diagonal entries
of the error covariance matrix are still less than one percent
of its diagonal elements. Thus, with appropriately designed
pilot symbol sequences, we can obtain nearly independent
estimations of the channel states by observing the same set
of receiver outputs and satisfy property 3 above.

Therefore, we conclude that a good choice for the pilot sym-
bol matrix can be obtained by collecting L constant-magnitude

orthogonal row vectors dy,,d,,,--,dy,, and repeating them
in the same order:
el 2 L
—dpl W dl(h) dl(h) d§71)
: o 3
dy, | | df7 s
P=|dn | = |df) df dyy) (55)
o B PORC R
B i . )

The sequence given in (49) is a particular example. Similar
ones can also be generated by concatenating binary or mul-
tiphase Hadamard matrices for various L. Take L = 4, for
example, we have

[T S S

PT =

|

[N ST MR ST
|

ECTEEI TP ST NI T
|
|

M= M= N~ N

|
D= D= N~ D=
|
|
)

D= D[ N N
Nl= N[ N[ D=
N[ Nf= B b=

(56)
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VI. SIMULATION RESULTS AND COMPARISON

In this section, we present some simulation results for a
system using the simple codes presented in Section IV-A
(L = 3) and the pilot matrices for L = 3 discussed in the
previous section. Note that an effort has been made to choose
the system parameters like the simple block code in [11], so
that a fair comparison can be made. Each 3 x 3 code matrix
is produced by 4 information bits {I3, I, I3, [4}. Two code
matrices are placed between two consecutive pilot symbol
slots, i.e., Pins is 7. The pilot symbol sequences P used here
take the form of (49) with e = 0 and L = 3. N = 12 nearest
pilot observations are used to get the channel estimations for
the code. This is shown in Fig. 3.

Since pilot symbols are inserted every Pi,s symbols, the
normalized information bit energy is

})iHS

Ey=FE, ———.
’ sPins—l

(57)
The bit error probability of this system is then plotted in
Fig. 5 for both fpT = 0 and fpT = 0.01 against E;/Ny.
Optimal Wiener filter coefficients and the decoding algorithm
derived in Section III are used for both fading rates. That is,
we assume an adaptive system exists that can keep updating
the channel statistics and control the filter coefficients when
channel statistics change. Both union bound results derived in
Section III-C and simulation results are shown. The number of
Monte Carlo simulations ranged from 108 to 10® depending on
the error rate. Simulated Rayleigh fading is generated by the
Jakes model [2]. Consequently, this figure demonstrates that
the union bound is a very accurate performance estimator, and
the remainder of the discussion will focus on the union bound
analytical results.

The best performance occurred when the fading is station-
ary. Since there is no variation in the channel states with time,
the channel state estimation is very accurate, and therefore
we have lower error rates. As the fading rate increases, the
channel state estimation becomes less accurate (due to a larger
interpolation filter bandwidth) and error rates get higher. The

BEP of the proposed system for fpT = 0 and fpT = 0.01.

SNR, dB

difference between these two extremes is about 1 dB. Also
note that for stationary fading, the channel state estimation
for each channel is completely independent, while at higher
fading rate, they are correlated. This also contributes to this
larger gap between the two extremes, that is not characteristic
of standard PSAM demodulation.

Next a direct comparison is made with the pilot symbol
assisted frequency offset transmitter diversity system proposed
in [11]. The union bound of the conditional BEP of the
information block {1, 1, 1, 1} for the herein proposed system
is plotted in Fig. 6. Also plotted in the same figure is the
union bound of the conditional BEP of the same information
block for the intentional frequency offset system studied in
{11], which has the same parameters, except that a frequency
offset of foT = 0.005 between antennas is used. Note the
union bound presented here is the 2-D progressive union bound
developed in [11]. The intentional frequency offset system
requires interleaving to achieve independent fading for each
symbol and for fT = 0.005, this depth is about 57. Both
results of fpT" = 0 and fpT = 0.01 are given. The former are
shown in solid lines, while the latter are indicated by dashed
lines.

The comparison between the herein proposed scheme and
the intentional frequency offset scheme analyzed in [11]
demonstrates several interesting characteristics. Compared
to the intentional frequency offset method, our worst case
(fpT = 0.01) performance is approximately the same as its
performance at stationary fading. The reason is as follows.
For our method, since there are three channels that need
to be estimated, the sampling period for each individual
channel is in effect 3P,; = 21 instead of 7 as with the
intentional frequency offset system. This is a critical value for
fpT = 0.01, and the channel state estimation is expected to
be less accurate than that of the intentional frequency offset
system. However, as discussed in Section V, the estimation
errors of our method are nearly independent, whereas for the
intentional frequency offset method, the estimation errors are
highly correlated, especially when fading is slow, since the
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Fig. 6. Conditional BEP (only union bound results are shown) curves of the information block {1, 1, 1, 1} for the proposed scheme and the intentional

frequency offset system.

pilot symbol observations are drawn from overlapped samples.
This gives a little edge to our method and roughly cancels the
degradation caused by the less accurate channel estimation.

One disadvantage of our scheme is, however, that it cannot
operate at as high a Doppler spread as the frequency offset
scheme, since the equivalent fading rate is L times the fading
rate of an individual channel. In an intentional frequency
offset system, on the other hand, this equivalent fading rate
is approximately the larger one of fpT and foT.

VII. CONCLUSION

We .have considered transmitter diversity in wireless
communication systems over Rayleigh fading channels using
coded modulation with pilot symbol assisted channel state
estimation. A new method of accessing diversity provided
by muitiple transmit antenna systems is proposed. Unlike the
conventional phase-sweeping or frequency offset methods, the
diversity is gained at the level of coded modulation instead of
carrier phase or frequency, which most often will require some
bandwidth expansion. Furthermore, this new method does not
require an interleaver to separate symbols of a code to obtain
independent fading effects or an equalizer. This significantly
reduces the receiver complexity and avoids possible decoding
delay. :

Because of the special structure of the coded modulation
scheme considered, the channel state estimator is required to
estimate all individual channel states of the multiple trans-
mitters, unlike the conventional methods where only a single
channel is to be estimated. The design of such sequences
is carefully studied, and their general constructions are de-
rived. A detailed optimal receiver design and its performance
analysis are also presented. Simulation results have shown
that our method is superior to the conventional intentional
frequency offset system with similar normalized parameters.
Improvement is even more significant when the simplification
of our system is taken into account.
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