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Diversity Waveform Sets for Delay-Doppler Imaging

Jiann-Ching Guey, Member, IEEE, and Mark R. Bell, Member, IEEE

Abstract— Properties of the ambiguity function and the un-
certainty relation of Fourier transforms assert fundamental m-
itations on the ability of any single radar waveform of con-
strained time-bandwidth product to distinguish two or more
targets closely spaced in both time-delay (range) and Doppler-
shift (radial velocity). These same mechanisms place fundamental
limits on the ability radar imaging systems to distinguish separate
scatterers in delay and Doppler. In this paper, the problem of
using multiple waveform sets to make enhanced discrimination
delay-Doppler measurements is considered. While small coded
waveform sets for enhanced discrimination delay-only measure-
ment are known (e.g., the Golay sequences), these waveforms do
not have good Doppler discrimination properties. The problem
of designing multiple waveform sets for enhanced discrimination
delay-Doppler measurement is investigated, and the composite
ambiguity function (CAF) is introduced as a tool to measure the
delay-Doppler discrimination characteristics of these waveform
sets. The problem of designing optimal coded waveform sets
under a time-bandwidth product constraint is considered, and
explicit optimal phase, frequency, and joint phase—frequency
coded waveform sets having constant amplitude are presented.
Algorithms for the construction of such waveform sets of arbi-
trary size and practical implementation issues are also presented.

Index Terms— Ambignity functions, coded waveforms, radar
waveforms, signal theory, time-frequency resolution,

1. INTRODUCTION

Apulsc—ccho delay-Doppler measurement system such as a
radar or active sonar measures an environment of interest
by illuminating it with electromagnetic or acoustic radiation.
The illuminating field scattered by objects in the environment
is collected by a receiver, which processes the scattered signal
to determine the presence and scattering characteristics of
the objects that scattered the illuminating field. Two primary
attributes characterizing the echo return are the round-trip
propagation delay and the change in the received waveform
resulting from the Doppler effect. The Doppler effect induces
a compression or dilation of the time axis as a result of radial
target motion toward or away from the pulse-echo sensor,
For narrowband signals normally encountered in radar and
scatterer motion having constant radial velocity, this is well
approximated by a shift in the scattered waveform’s center or
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carrier frequency proportional to the carrier frequency and the
closing radial velocity between the target and scatterer [1]. In
this paper, we will concentrate our attention on narrowband
waveforms for which this approximation is valid. For such
radar and sonar systems, the time-delay and Doppler-shift
associated with the return from a scatterer are used as primary
coordinates or indices for characterizing the scattered return.

A radar or other pulse-echo delay-Doppler measurement
system can be viewed as an imaging system that forms a
delay-Doppler image of the illuminated environment. We can
think of the individual delays and Doppler shifts associated
with individual scatterers in the illuminated environment as
specifying points in a two-dimensional image with coordinates
of delay = and Doppler frequency shift v. When the received
signal is processed by a matched filter matched to a replica
of the transmitted waveform delayed by = and shifted in fre-
quency by v, the resulting measurement problem is equivalent
to imaging the reflectivity of the illuminated environment us-
ing an aperture that is a function of the illuminating waveform
[2, Ch. 9], {3, p. 58]. In the narrowband case, which we will
assume throughout this entire paper, the point-spread function
of the aperture is determined by the ambiguity function of the
transmitted waveform.

When we view a radar system as an imaging system, it
becomes clear that its ability to distinguish or discriminate
between scatterers in delay and Doppler is determined by its
convolution kernel or point-spread function. We have some
control in selecting this kemel, since it is the ambiguity
function of the waveform we choose to transmit. However,
some fairly strong constraints on the mathematical form of
the ambiguity function prohibit us from obtaining the ideal
imaging kernel—a delta function located at the origin of the
(7, v)-plane. Hence it may not be possible to obtain the
desired discrimination capability using a single-pulse echo
measurement made with a single waveform.

We use the term discrimination to denote the ability of an
imaging radar system to separate and discern the presence of
separate scatterers in a delay-Doppler image, and note that the
discrimination properties of such a systern are determined by
the point-spread function of the imaging system (the ambiguity
function). While there is a relationship between discrimination
and resolution, there is a distinct difference as well. When
speaking of the delay-Doppler resolution of a radar system,
one is usually referring to the ability of the system to separate
two closely spaced scatterers, and the ability of a system
to do this is determined by the main lobe of the ambiguity
function. So strictly speaking, resolution is a function only of
the main lobe of the imaging point-spread function. However,
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in delay-Doppler imaging of a scattering environment, low
sidelobes can be essential in order to differentiate between
or distinguish between mainlobe and sidelobe returns. If the
sidelobes are too large, a small scatterer being imaged in the
presence of a much larger scatterer may not be distinguished or
resolved because it is hidden in the sidelobes of the ambiguity
function. This problem, dealing with the sidelobe behavior of
the point-spread function in addition to the mainlobe behavior
is sometimes called waveform self-clutter [4], but has also
been called resolution or resolvability in the radar literature
[2, Sec. IV-C]. However,.in this paper we are focusing on
sidelobe elimination in the imaging point-spread function. For
this reason we will use the term discrimination rather than
resolutioni so that there is no confusion.

When discussing the resolution of a radar imaging system;
we must be careful to define our terminology. The resolution
of an imaging system is-usually characterized by the point-
spread function of the imaging system, which includes the
sidelobe behavior of the point-spread function in addition
to the main lobe behavior. However, most often discussions
on resolution—and especially radar resolution—focus on the
ability to separate two closely spaced, isolated targets, and the
ability of a waveform to do this is determined by the width of
the main lobe of its ambiguity function.

Viewing a radar system as a delay-Doppler imaging system
that is the mathematical analog of an optical imaging sys-
tem suggests a way around the delay-Doppler discrimination
limitations of a single waveform measurement. In optical
imaging and image processing, a number of investigators
have considered the problem of constructing a high-resolution
image using a number of low-resolution imaging systems
having sufficiently different point-spread functions [5]-{7].
The analogy between pulse-echo delay-Doppler measurements
and optical imaging suggests that one way around this problem
is to make multiple pulse-echo measurements using waveforms
having sufficiently different ambiguity functions and then
process and combine the individual waveform returns to
form an enhanced discrimination delay-Doppler image. Such
a waveform-diverse measurement technique would allow for
increased capability to spatially discriminate among scatterers
in radar imaging (where one coordinate is derived from delay
and the other from Doppler shift).

In this paper, we consider the use of this waveform-diverse
measurement technique for obtaining enhanced discrimination
delay-Doppler radar images, and we investigate the problem
of designing phase, frequency, and phase—frequency coded
waveform sets for making these measurements. In Section
II, the discrimination characteristics of conventional single-
waveform radar are described, and a multiple-waveform model
leading to enhanced imaging capability is proposed which
leads to the introduction of the composite ambiguity function
of a set of waveforms. In Section HI, a fundamental theorem
for composite ambiguity function is established. With this
theorem serving as a general rule, various coding schemes
are investigated in Section IV for the purpose of designing
enhanced discrimination waveform sets for this diversity-
waveform radar imaging technique. Finally, practical imple-
mentation issues are addressed in Section V.
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II. PROBLEM DESCRIPTION

We now consider how a pulse-echo delay-Doppler measure-
ment can be viewed as an imaging problem. Let s(t) be the
baseband analytic signal transmitted by the radar system. After
being demodulated down to baseband, the received signal due
to a scatterer with round-trip delay 7 and Doppler frequency
shift v is '

r(t) = s(t — 1p)e? 20t ed®

where /¢ is the phase shift in the received carrier due to the
propagation delay To; hence ¢ = 2 fo7o. If we process this
signal with a matched filter

e (8) = 8*(T — t + 7)e 32T~
matched to the signal
q(t) = s(t.~ 1)e?*™!

and designed to maximize the signal output at time 7, the
matched filter output at time 7' is given by
ey

Or(r, v) =e x,(r — T, v — 11)-

Here y.(r,v) is the ambiguity function of s(t) given by
xalryv) = / ()57 (¢ — 7)™ g,
— o0

Because h. ,(t) is a linear time-invariant filter, if p{r, v)
describes a continuous scattering density, the response of the
matched filter k. ,(t) to this scattering density is

Or(r,v) = / / Yt vixs(T —t, v —v)dtdv (2)
where
y(1, 1) = plT, v)e I foT

This is the two-dimensional convolution of ~y(r, ) with
Xxs(7, v), and can be thought of as the image of (7, v)
obtained using an imaging aperture with point-spread function
x(7, v) [8, Ch. 4]. ‘

From this imaging analogy of the delay-Doppler measure-
ment process, we see that an ideal radar signal for simultaneous
discrimination in delay and Doppler should have an ambiguity
function that is a two-dimensional Dirac delta function é(r, v/)
centered at the origin of the (7, v)-plane. The fundamental
properties of ambiguity functions preclude the existence of
a waveform having such ideal ambiguity function. This being
the case, the next best thing to do is search for waveforms that
have ambiguity functions approximating this ideal—ambiguity
functions with a thumbtack-like shape (i.e., a narrow central
peak surrounded by a low-level pedestal). This ensures that
the response to a mismatched filter is uniformly small. This
general approach to designing a radar signal approximat-
ing this ideal has been studied by several investigators [2],
{91-[11]. However, the properties of ambiguity functions limit



1506

Fig. 1.

Ambiguity function of a chu;p waveform

9(t) = exp{irat
of duration 1 and o = 4.

Hi—1/2,1/21(t)

the degree to which such an ambiguity function can be
approximated.

The viewpoint of a radar acting as an imaging system
making a delay-Doppler image through an aperture whose
point-spread function x,(r, v) is a function of the transmitted
signal s(t) is enlightening in terms of obtaining enhanced dis-
crimination delay-Doppler images. We have some flexibility in
selecting the point-spread function x (7, #/) through selection
of the waveform s(¢). There are, however, some fairly strong
restrictions on the form of the ambiguity function x,(7, ). In
particular, the volume under its ambiguity surface! is given by

Vamb = /:: /_0; Ixs (T, v)? dr dv
={/_Z Is(t)[? dt i

which is the energy in s(t) squared. Therefore, for a fixed
signal energy, the amount of ambiguity Vomn is fixed and
cannot be reduced by modulating the signal, although doing so
may redistribute the ambiguity in the (7, v)-plane. Also note
that the ambiguity surface attains its maximum at (T, vy =

(0, 0} and
x(0,0= [ ”

These two properties and several others [2], [3] strongly
constrain the set of two-dimensional functions that can be
ambiguity surfaces. The volume under the surface must equal
the square of the maximum. Any attempt to increase the peak
height of the ambiguity function will result in increase in
volume V1, under the ambiguity surface. Furthermore, the
uncertainty principle, which states that the product of mean-
square duration (At)? and the mean-square bandwidth (A )2
of the signal s(t) must satisfy (A£)2(Af)% > 1/(4x)? [12],
[13], imposes the restrictions on simultaneously discriminating
in both delay and Doppler. However, by correctly selecting
a set of waveforms and then properly combining their indi-

s(t)s*(t) dt = E.

In general, the modulus squared of the ambiguity function is referred to
as the ambiguity surface, while the volume under the ambiguity surface is
referred to as the amount of ambiguity or simply the ambiguity of the signal.
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Fig. 2. Resuliing ambiguity function from the coherent combination of the
match filter outputs of 16 chirp waveforms

5;(t) = exp{z‘:rajt Hi-1/2, 1/2](*)
of duration 1, with {a;} = {-8, ---, =1, 1, ---, 8}.

vidual matched-filter outputs, it is possible to bypass these
constraints. The following example illustrates this.

Fig. 1 shows the ambiguity function of a single chirp
waveform s(t) = exp {jmat®} - 1_r/2,1/9) With duration
T = 1 and parameter ¢ = 4. As can be seen from this
figure, the overall delay-Doppler discrimination capabilities of
a single-chirp waveform are not exceptionally good; strong
returns can result from scatterers over a range of locations
(7, v) about the line ¥ = ar. It is impossible to determine
from a single measurement where, within this region, the
scatterer is actually located. If, however, we transmit a number
of chirp pulses {sy(t), -+, sx(t)} of the form s.(t)
exp { jvrakti’}[[_ 172,1/2}(t), each separated by a time interval
of at least 1 (time unit), and process each using its respective
matched filter and then coherently combine the matched filter
outputs, the resulting ambiguity function (or output response)
is as shown in Fig. 2, where 16 distinct chirp pulses were used.
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Note that the resulting overall point-spread function is a great
improvement over that of Fig. 1 for a single-chirp waveform if
the goal is discrimination among scatterers in delay-Doppler
imaging. Bernfeld [14] similarly showed that delay-Doppler
resolution could be increased using multiple-chirp waveforms,
although he used the inverse Radon transform to provide a
tomographic reconstruction of the distribution of scatterers
in delay and Doppler. This example only gives a qualitative
result. The improvement can only be visually observed. To
study quantitative aspects of this problem we will use an
idealized mathematical model described as follows.

Consider an idealized situation in which a radar system
is capable of operating simultaneously and independently on
several independent channels. Each channel has its own trans-
ceiver and signal processor and is perfectly time-synchronized
with the other channels. We also assume there is no crosstalk
between channels. Hence, at the output of each channel we
have a two-dimensional image of the target environment, For
a point target located at (g, o), this can be formulated as

O%(r, v) =elte 32—l (1 — 15, v — 1)
= Xeo (T ~ 70, ¥ = 1)
Ok(r, v) =/ 2T =)Moy (7 — 14, ¥~ 1)

:281(7— =T, V¥V — UO)

OF (7, v) = efte 2100y

:281\{_1(7— - TO) v UO)

AT — 1, v — )

(3

where O4.(t, v) is the image obtained through the 4th channel
and the notation ¥ is introduced to incorporate the complex
modulation factor e/¢e~727(*~*)70 jnto the ambiguity func-
tion. Coherently summing the images up gives a composite
image

N-1
OF (7, v) = efe32mlv—ro)T0 Z Xs; (7~ 10, ¥ — 1) (4)
- =0

which can be thought of as an image of a point target generated
by a new point-spread function

N-1
C(Ta V) = Z Xs; (T» U)~ &)
t=0

This new point-spread function will be called the composite
ambiguity function (CAF) or combined ambiguity function, as
has been used in {4], to distinguish it from the ambiguity
function of a single signal.

The key limitation in implementing this multiple-waveform
delay-Doppler imaging scheme is the ability to get several
independent noninterfereing measurements of the target en-
vironment at a particular point in time, or else be able to
estimate and compensate for scatterer motion if the measure-
ments are made in time sequentially. In situations where the
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target environment repeats periodically—for example, in some
radar astronomy or radar imaging problems where there is
sufficient control of the radar-target trajectory—this would
be straightforward. In most applications, this will not be
the case, and the channels need to be separated either in
time or frequency domain. This will sometimes invalidate
the assumption that the N radar images can be coherently
combined in the manner described in (4), because in dif-
ferent time or frequency channels, the complex envelopes
e%e~727(v=0)70 that modulate the ambiguity functions may
be different and cannot be accounted for to unwrap their
effects on the individual images before they can be coher-
ently combined. The implementation methods of realizing the
method of coherent combining were briefly mentioned in [4].
An extensive discussion in the correspondences that followed
[15], [16] lead to no apparent conclusion. In Section V, we
propose an algorithm to approximate the coherent combining
given in (4). For our theoretical interests, we will assume that
(4) can be realized for the rest of the paper.

We will now study the composite ambiguity function and
its use in the design of signal sets having improved delay-
Doppler discrimination capabilities over single waveforms.
Intuition suggests that we select the waveforms in our diversity
waveform set so they have ambiguity functions that are in
some sense as different as possible. In this way, there will be
unique information in each individual waveform measurement.
Alternatively, we can adopt the point of view that we wish
to select waveforms that have the property that, with proper
coherent combining of the filter outputs, large sidelobes in
the ambiguity function can be canceled. In Section III, we
will show that this intuition is indeed true if we measure the
diversity among signals as the £s distance between their ambi-
guity functions. In addition, by establishing the main theorem
of CAF, we will show that waveform-diverse multiple mea-
surements can improve radar discrimination significantly by
reducing the amount of ambiguity of a point-spread function.
In Section IV, we will investigate various coded waveform
sets that have nice CAF properties. Since the signals used in
each channel are different, we will have more flexibility in
shaping the point-spread functions.

[II. MAIN THEOREM ON COMPOSITE AMBIGUITY FUNCTION
We now consider the composite ambiguity function and its
properties.

Definition 1: The compeosite ambiguity function (CAF) of
a set of waveforms {so(t), s1(t). - -+, sx—1(¢)} is defined as

K-1
C(Ta V) = Z ng(Ta V)

i=0

where x,, is the ambiguity function of s;(t), ¢ = 0,1, ---.
K — 1.

The following theorem provides upper and lower bounds on
the volume under a composite ambiguity surface and gives the
conditions under which the lower bound is achieved.
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Theorem 1: For a set of signals {so(t),s1(2), -, sx—1(f)}

with total energy

Er = Z f ()Pt

i=0

define the volume V;;)b under théir associated composite
ambiguity function C(r, v) as

- 2
Z Xs; (7-3 V)
i=0 )

oo oo [K~1
Va‘(r?b = / f dr dv.
—o0 J —oo —
Then
1) The volume v mh satisfies
E K—-1K-1 oo 2
K = a(;l)b = Z Z / si(t)sh(t)dt| < EZ.

=0 7=0
2) Furthermore, the minimum is achieved when {so(t),
s1(t),---,8x-1(t)} is a set of equal-energy orthogonal
signals.
To prove this theorem, we need the following lemma.

Lemma 1: Given any two signals s;(t) and s;(¢) of finite
energy and their associate ambiguity functions xs, (T, 1/) and
Xs; (7, v), then

/ / oo V), () i

[oa) (e o)
= / / Xs; (T u)x;(r, v)dr dv
—o0 J ~00

= l/_:: s4(t)s5(t) di ’
Proof:

o o0
/ / Xo: (7 V)XG. (T, v)dr dv
—o0J oo ’

- /_ °° [ - /_ : si(t)st(t — T)e~ It gy

/ 85 (u)s;(u — 7)ed2™ duy dr dv

/ / / 545 (6 = o3 )y =7

[ _927’”(”“) dvdtdudr

B /.Z /.Z /_Z si(t)si (¢ = )} (s (u ~ 7)

-6(t —u)dtdudr
= [ stwsitu= nisisste - ndudr

- l /_ 0:0 s:(t)83(t) dt i
_ /_ c: f_ c: Xy (7, D)x:; (y v) dr dv.
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Proof of Theorem I:
1) Right inequality:

v® / /
amb““

Z st(Tﬁ V)
K-1 K-1

= Z Z / / Xs; (v V)X5, (T, v) dT dv

=0 j=0 ¥~
K-1K-1

dr dv

2
Lemma 1

/co s;(t)s}(t) dt

=0 g=
K—-1K-—

< s de [ lss(e) de
> 5 [ o [

i=0 j=
Schwarz Inequality

s(t)lzdt) = E2.
(2_,;/ | 2

ii) Left inequality:

=0
1

K-1 K-1

22

2

v = si(t)s3(t) dt

2

2
s:(t)s;(t) dt

K-1

>

=0

> Bt
- K

i=0 j=0 /°°
i=0
I
oo 2
/ |si()[? dt

K-1) .00
-y f i (8) |2 dt
—o0
K-1 K-1| oo
=0 =0 /OO
J#
Equalities hold when the signal set is equal-energy and or-
thogonal. O

IV

So for a given total available energy, a composite ambi-
guity function will never have more ambiguity than a single
ambiguity function—that is, the volume under the composite
ambiguity surface will never be greater than the volume under
the ambiguity surface of any single waveform. Note also that
by choosing orthogonal signals in our signal set, we can
decrease the volume under its composite ambiguity surface. It
is actually this property that allows us to remove the ambiguity
of a point-spread function by means of waveform-diverse
multiple-measurements technique. This theorem provides a
general rule of selecting a signal set for waveform-diverse
measurements. Together with phase and frequency coding, it
enables us to design a point-spread function not only with
distribution of interest to us but also thh a small amount of
ambiguity.

Observation: Consider the set of all ambiguity functions as
a metric space having metric defined by the £, norm

d(Xs, 5 Xog) = / / X5y (Ts V) — Xap (T, ¥)|* dT dv.
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Then the distance between two ambiguity functions y,, and
Xaa

Ao ) = [

—00

I

+/ Ixss (7, u)|2 dr dv
—oo

— 2Re {/ Xs (T V)xG, (T, v) dr du}
had® +]

o0

|Xs. (T) ) = Xoa (7, V)|* dT dv

|Xs1 (Ta V)Iz dT dV

> \
=FE2+ E2 - zl f s1(£)s3(t) di
—_—0

is maximized when s,(¢) and s»(t) are orthogonal. If we
measure the diversity between ambiguity functions using the
L, distance, Theorem 1 has justified our intuition of selecting
our signals as diverse as possible so that more information
can be obtained through the difference in the matched-filter
ambiguity responses provided by the diversity of the signal
set.

IV. CODED WAVEFORMS DESIGN

Theorem 1 serves as a general rule for selecting a set of sig-
nals for waveform-diverse multiple measurements. However,
it does not provide a constructive method for doing so. A set
of orthogonal signals may have a small composite ambiguity
volume Va(rfl)b, but this ambiguity volume may be poorly
distributed. To distribute the ambiguity so that the composite
ambiguity surface has a sharp central peak and uniformly
low delay-Doppler sidelobes, appropriate modulation schemes
are necessary. In this section, we will investigate various
phase- and frequency-coded modulation schemes that yield a
composite ambiguity surface having these properties. We will
study only coded waveforms, because these waveforms result
in designs that can be easily implemented in real systems.
Particular families of waveforms that are investigated include

1) phase-coded waveforms;
2) frequency-coded waveforms;
3) jointly phase- and frequency-coded waveforms.

Unless otherwise specified, the coded waveform set will
contain K signals {so(t), s1(t), ---, sxk—1(#)}, where each

N-1
si(t) = Y in(t — nT) exp{j2nd; nt/T} exp{jchi,n}
=0
©)

consists of a sequence of N baseband pulses of length 7,
each having finite energy. Each pulse in the sequence is
modulated by an integral frequency-modulating index d; ,
and a phase ¢; ,, that can take on any real-number value. To
specify the modulating frequency and phase patterns of our
coded waveforms, we will use tables of the form of Table L
All omitted items in these tables are assumed to be zero. For
example, if the frequency hopping pattern d;. is omitted, then
all di’s are zero and the signal is not frequency-modulated.
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TABLE 1

CODING PATTERN FOR A QUADRUPLE-PHASE COMPLEMENTARY SET

n o} 1 2 3
s0(t) | don | O 0 0 10
5(t) | din {0 2m/4 4n/4 6m/f4
S(t) | dan | O 4nf4 8x/4 12n /4
83(8) | s | O 6n/4 12n/4 187 /4

din =0, PialE) = Pr(t)

A. Composite Ambiguity Function of a Coded Waveform Set
The ambiguity function of the signal in (6) is

Xs, (T, V)‘ = /_Z

N-1N-1

= 37 Y eilin—tin) ei2nlanm/ DT

n=0 m=0

) [w T/”i,n(t"“ nT)'l,L':m(t— mT — T).

e~ —(di, n—di m/T))t gy

si(t)sr(t — T)e_jzm't dt

N—1N-1

— Z Z 6j(¢i,n“¢i,M)ej27r(di.m/T)"'e—jZ"n’nT
n=0 m=0

d d

RV —aT T p__, MM
x,’,,t_n,phm(’r nl +mif, v T + T)
N-1N-1

= 3y ety @ (7, 0) )
n=0 m=0

where Xy, (7, v) is the cross ambiguity function between
Pn(t) and 4y, (t), defined as

Xt (T V) = / ' P (B (t — T)e—jzmz di

and
B3 j2m(dd; TYyr —j2wrend
'n( ,)m (‘T, U) = et (i m/T) e’

d; d;
. s —nT T, v— =t 2. (R
Xw,,nw,‘m("r ni +ml, v T -+ T ) ()

The composite ambiguity function of the signal set can be
wrilten as

C(r, v) = . ej(‘-f"'-”_é"'m)xg’)m(v', v)
i=0 n=0 m=0
K—-1N-1
=33 X (rv)

1= n=0
K-1IN-1N-1

+ eJ(‘;bi.u""f’i\m)XS:")m(T’ 1/). )
i=0 n=0 ::;0

Note that we have decomposed the CAF into self-ambiguity
and cross-ambiguity terms. Thus C(r, ©) is the superposition
of N auto-ambiguity functions (sidelobes) located at the



1510

origin and N x (N — 1) cross-ambiguity functions located
at ((n — m)T, (di,n — di m)/T) on the delay-Doppler plane.
Furthermore, each of the cross-ambiguity function carries a
complex phase factor ¢7(¢»~9m), By appropriately designing
the waveforms in a waveform set such that the locations
and phases of the cross-ambiguity terms in (9) result in
significant cross-term cancellation, we can design radar signal
sets that provide substantial improvement in delay-Doppler
discrimination.

B. Phase-Modulated Codes and Their Composite
Ambiguity Functions

Perhaps the most well known family of phase-coded wave-
forms for the purpose of enhanced discrimination range mea-
surements are the complementary sequences introduced by
Golay [17]. These sequences are used to modulate the phase of
the transmitted radar signal. A pair of binary complementary
sequences have the property that if the two sequences are
transmitted with a spacing longer than the length of each
sequence, each sequence is processed with its corresponding
matched filter, and the matched filter outputs are coherently
added (after proper delay to account for the differing times of
transmission), a cancellation of all sidelobes in the ambiguity
function along the zero-Doppler axis occurs. Thus if we
were interested in imaging scatterers of identical Doppler,
a pair of complementary sequences provides an ideal set of
pulse-echo waveforms. Other investigators have considered the
properties of these sequences and related codes [18]-[21], and
considered generalizations to sets that have more than a pair of
signals [22] and polyphase complementary sequence sets [23].
Unfortunately, although the effective ambiguity functions of
these complementary code sets have ideal properties along the
zero-Doppler axis, off of the zero-Doppler axis they have many
peaks, making unambiguous delay-Doppler imaging difficult.

Sivaswami [4] identified this problem and proposed the sub-
complementary sets of sequences consisting of N sequences
of length-N phase-modulated by a binary Hadamard matrix.
The CAF of this sequence set has all its ambiguity sidelobes
canceled. Instead of taking an ad hoc approach, in this section
we derive a necessary and sufficient condition for a set of
phase-modulated sequences to be “subcomplementary,” as
defined in [4], by exploiting Theorem 1.

If the coding patterns of the signal set are identical except
for the phase-modulating indices ¢; ;, then from (8) the

ng )m s are identical. Thus from (9) (dropping the index 7 on

X'n m) the CAF of this signal set is

K-1
Z X (75 v)
i=0

N-1

=K Z Xn,n(T) v)

n=0

N—-1N-1

+Y° 3 Xnmlrv) Z efPin=dum) (10)

n=0 m=0
mEn

C(r,v)=
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If the phase coding patterns are selected such that

K-1 )
Z eJ(¢i,vz_¢i‘m) =0’
i=0

the second term in (10) vanishes and the sidelobes of the
resulting CAF are completely canceled, leaving only the
ambiguity functions of all individual pulses. In matrix form,
this can be expressed as

forall n £ m

30" = KIy (11)
where »
e®o.0 eldr.0 eiPK-1,0
® eldo,1 el®1,1 eJPK-1,1
eito, n—1 it N1 edbr—1, N1

is a matrix whose ith column is the phase-coding pattern of
the ith signal, ® is its Hermitian transpose, and Iy is the
N x N identity matrix.

For N > K, (11) has no solution, so we will consider the
case of N = K. Solutions to (11) for NV = K will be referred
to as multiphase complementary sequences. One of them, for
arbitrary N, is ’

2rin
‘2511, n — N
for which
NZboo
Z els2mi/N)n—m) — ¢ n# m.
i=0

Another solution can be constructed using Hadamard matrices.
For example, for a set of two signals, the phase-modulating

pattern can be
1 1
®=H, = [1 _1]

for a set of 2" signals, the modulating sequences can be
obtained by using the expansion of a binary Hadamard matrix

Hn«—l Hn—l]

Hn - [Hn—l

The length of the sequencés so constructed can only be powers
of two. We can generalize this Hadamard matrix approach to
waveform set construction. For example,

_Hn—l

el e i
) : 313 s dx
H, = |0 oIF oIF
ei® 3% ¥

can be expanded by

B eH,_4 e-T Hn 1 €0 H,,_
H,=|e0H, , &% H,1 1 e Hn 1
CJOH.,;._l GJTHT,_I e-’ 8 Hn 1
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Fig. 3. CAF surface of signals in Table [, T = 8.

Moreover, if all ¢,,(¢)’s have the same energy E, then the set
is orthogonal, because for all i # k&

/_ o; si(t)s3(t) dt = /

. Z o (t — 1rthT)«f3"~7""”°'m dt

m=0

N-1

- Z ed(Fi,n—dr =)

n=0

(n+1)T
.

N-1 :
= E Z el(bin—du.n) — .
n=0
This follows from the fact that for K = N, & = NIy if
and only if ®"® = NIy, which is true if and only if the rows

of @ are orthogonal. Thus we see that if the set of N signals
{s0(t), -, s N 1(t)} satisfies the following conditions:

1} s:(t) =

oo N-—-1

Z Pn(t — nT)ebin
n=0 .

[ (t — nT)|* dt

z Yot —nT)ei?in §=0,1,--+, N1,

2 J Wa(®Pdi=E, foralln=0,1,---, N1,

[¢h:, ] is in the matrix form described above,
then its composite ambiguity function is

N-1
N Z e_ﬂ’w"TXwn('r, v).

n=0

(12)

Furthermore, the set is an orthogonal set. Thus by Theorem
1, the multiphase complementary set is optimum in the sense
of minimizing the volume under its CAF surface. Since the
phase coding eliminates all of the sidelobes of the cross-
ambiguity functions between different pulses and leaves only
auto-ambiguity functions of all N individual pulses, (12)-is
exactly the CAF of the signal set

{VNo(t), VN (t = T), .-, VNypy_1(t — (N = 1)T)}.

Fig. 4. Ambiguity surface of so(¢) in Table I, T = 8.

However, the multiphase complementary set has the advantage
of having lower peak power, which is desirable in many radar
applications. '

An example of the multiphase complementary sequences
of length 4 is given in Table I. Its associated CAF surface
is plotted in Fig. 3. Compared to the ambiguity surface in
Fig. 4 of s¢(t), a single signal with length 47, its range
discrimination is four times better while maintaining the same
Doppler discrimination.

C. Frequency-Modulated Codes and Their Composite
Ambiguity Functions

From (8), we know that the ambiguity sidelobe locations
of a frequency-coded waveform are given by ((n — m)T,
(di,n — di,m)/T), which are completely determined by the
frequency hopping pattern d; ;. To study how the sidelobes
are distributed on the (7, )-plane, we construct the sidelobe
matrix as a matrix whose ¢, jth entry contains the number
of sidelobes located at (37, j/7T). An example of a sidelobe
distribution matrix is shown in Fig. 5. It corresponds to a
frequency hopping sequence {0, 2. 5, 1, 3, 4}. Note that since
the ambiguity function is odd-symmetric with respect to the
zero-delay axis, it is actually sufficient to display only half of
the matrix.

For a coded waveform of length V, there are N x (N —1)
sidelobes that need to be allocated in the sidelobe matrix. A
good frequency hopping pattern should then have a sidelobe
matrix that contains no strong spikes other than the central
peak and maintain a small signal bandwidth. Perhaps the
most widely used frequency-modulated radar signal is the
linear chirp s(t) = exp{jmat?}. It can be approximated by
a linear stepped frequency-modulated signal with frequency-
modulating pattern dg = 0, d; = 1, ,dy_1 = N — 1.
If a thumbtack shape is considered optimal, then the linear
frequency modulation (FM) is perhaps the worst possible
frequency hopping waveform; its ambiguity function has a
large ridge along the line of slope o in the (7, v)-plane.
Costas [24] has suggested a new criterion for selection of fre-
quency hopping pattern that yields ambiguity sidelobe matrix
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Sidelobe Matrix

5 1
4 1 1
3 111 1
2 1 2 1
1 1]1 1 2
0 6
-1 2 1 111
-2 1 2 1
-3 1 111
411 1
-5 1

5 4 -3 -2-101 2 3 4 5

Fig. 5. Example of a sidelobe matrix.

approaching the ideal thumbtack shape. A Costas sequence of
length N is a permutation of N consecutive integers that has
a sidelobe distribution matrix containing only zero and one.
Table IT shows an example for Costas sequence of length 16.
Its sidelobe matrix is given in Fig. 6. Our design of frequency
hopping waveform set will be based on this particular category
of signals.

A. Complementary Generalized Costas Pairs

To design a frequency-modulated code set for waveform-
diversity multiple measurements, we can take a very long
Costas sequence and break it into N equal-length subse-
quences. The sidelobe matrix of the resulting CAF is the
summation of the sidelobe matrices of each individual se-
quence. For example, the Costas signal in Table II can be
divided into three even pieces to form a set of signals in
Table II1. The sidelobe matrix of the resulting CAF is shown
in Fig. 7. However, this is not an efficient way of allocating
ambiguity on the (r, v)-plane since there are still many
unoccupied spaces. ‘

One way to solve this problem is to find a pair of equal-
length Costas sequences that have complementary sidelobe
distribution patterns. By coherently combining the ambiguity
functions of these two signals, it is possible to increase
the main lobe to sidelobe ratio by a factor of two without
increasing the signal bandwidth. Unfortunately, it has been
shown [253] that any two Costas signals of length N must
have at least one common ambiguity sidelobe if N > 3.
In this section, we introduce the idea of generalized Costas
sequences and with a slightly increased signal bandwidth, we
are able to find a pair of sequences that have complementary
sidelobe distributions. In order to do this, we define the distinct
differences property [26].

Definition 2: For integers M and N, let
Ine={0,1,---, M -1}
and

Iy={0,1,.--, N —1}.
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Sidelobe Matrix

15 1
14 1
13 1 1
12 11
11 1 1 1
10 1 1 1
9 1|1 1
8 11 1
7 1| 1 1 1
6 1)1 111 1
5 1111 1| |1 1
4 1|1 1[1 1
3 1]1 1)1 11 1
9 T{1|1|1]1]1 1
1 1]1 1|11 1] 1 1
0 [16
-1 1 1|1 1]1]1 1
2 [1]1]1 1 1
3 1] |1 1[1 1
4 1(1|11]1 1
5 1|1 1 1 1
8 111 1 1
7 1 1 1
-8 11 1
-9 1 R
-10 1 1 1
-11 1 1
-12 K
-13 1
.14 1
.15
0 1 2 3 4567 89 10 11 12 13 14 15

Delay
Fig. 6. Sidelobe matrix of the signal in Table II.

TABLE II
Costas SiGNAL oF LENGTH 16
n 0j112131 45|67 |8f9|10j11(12]{13]14}15
sty [dn|O]2]8]0[12]4)1af10f25]13] 763 |11]1]5
= 0, 9 (t) = Pr(t)

A function f: Iy — Ips has the distinct differences property

if
F+h)—f@)=fG+h) ~f(i) —i=

for all integers h, i, and §, with 1 < h < N — 1 and

0Lt i< N-h-1. :

A Costas sequence can then be thought of as a permutation
J: In — Iy that satisfies the distinct differences property.

Definition 3: For N < M, we define the generalized
Costas sequence as a mapping f: Iy — Ipr with distinct

differences property of Iy into one of the permutations of N
distinct integers in Iy,
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Sidelobe Matrix
12 ) 1
11 1
10 1 1
9 1{1
8 111
7 1
6 1|1
5 111
4 11111 1
3 111 1
2 1 111
1 {1
0 |16
-1 1 11
-2 111 1
-3 1
-4 1l1
-5 1
-6 1
-7
-8 1l1
-9
-10 {1
0 1 23 45
Delay

Fig. 7. Sidelobe matrix of the signal in Table III

For example,

f(O):(L .f(l):la f(2)=6, .f(3)=3
) =1, j6)=2, f6)=5

or simply {0,1,6,3,7,2,5} is a generalized Costas se-
quence of f: Iy — Ig. Note that unlike a Costas sequence,
the range of this function is not a set of consecutive integers.
In the given example, the number 4 is not in the range.

It is obvious that the collection of Costas sequences of
length N is a subset of the generalized Costas sequences
of f: Iy — Ipp for all M > N. Thus we have created
a larger set in which we can search for pairs of sequences
that have complementary sidelobes distributions. Table IV lists
the number of generalized Costas sequence for f: I — Ig.
The notation Iy — {z} indicates that the number i is left out
in the range space. As expected, when 0 and 1 are left out,
the number of generalized Costas sequences is 200, same as
that of the Costas sequence of length 8. When 3 and 4 are
left out, it increases to 572. With a slight increase of signal
bandwidth, the available sequences with distinct differences
property increases from 200 for normal Costas sequence to
3232 for generalized Costas sequence.

Exhaustive search is performed by checking if any sequence
pair among all possible generalized Costas sequences in the
mapping I — Ips satisfies the complementary condition.
The results show that complementary generalized Costas pairs
exist for f: Iy — Iyyq up to N = 8. For f: Iy — Inyo,
they exist for N up to 10. The following are some examples.

1513

TABLE III
THE BREAKDOWN OF A LONG COSTAS SEQUENCE
n 0 1 2 3 4 §
so(t) { dow | O 2 8 9 12 4
81(t) din | 4 14 10 15 13 7
Sg(t) d?,fl 7 6 3 11 1 5
TABLE IV

NUMBER OF GENERALIZED (COSTAS SEQUENCES FOR f: I7 — g ‘
T | L | & | L | & | & | & Is
—{0} [ {1} | —{2} | {3} | —{4} | —{5} | —{6} | —{7}
number of | 200 | 364 | 480 | 572 | 572 | 480 | 364 | 200
sequences

total
3232

1) f: I; — Ig, a total of 16 pairs have been found, one
of which is

f1 4 3 7 2 0 6
6 0 2 7T 3 4 1{
2) f: Iy — Iy, four pairs have been found, one of which is
1 8 3 76 0 2 5
7 05 1 2 8 6 3|
3) f: 1o — Iyi, 32 pairs have been found, one of which is

2 3 96 40 8 1 10
10 1 8 0 46 9 3 2

4) f: 119 — Iy, four pairs have been found, two of which
are

4 8 10 11 T 0 6 9 1

b2

{731094115210}

7T 3 1 0 9 4 11 5 2 10
10 2 5 11 4 9 0 1 3 7/

These results are summarized in Table V. For a mapping
in which a complementary Costas pair exists, the maximum
achievable peak to sidelobe ratio is 2N : 1. The cost of
using sequences in a bigger set is a slight increase in signal
bandwidth. A good indication of the bandwidth-efficient signal
design is therefore the ratio between the peak-to-sidelobe ratio
to the highest frequency component (i.e., M) in the signal set.
This value is always one for a single Costas sequence. For a
complementary generalized Costas pair found in the mapping
I; — Ig, this ratio is (14 : 1)/8.

A complementary generalized Costas pair can be further
divided into a larger set of shorter complementary sequences.

For example,
(1 4 3 7 2 0 6
6 0 2 7 3 4 1

can be divided into a set of four sequences

1 4 3 7
7 2 0 6
6 0 2 7(° as
7 3 4 1
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TABLE V¥
SUMMARY OF EXHAUSTIVE SEARCH
highest freq. | number of generalized number of max. peak to
component Costas sequences complementary pairs | sidelobe ratio
Iy - Iy 8 3232 16 14:1
Is— I 9 9860 16:1
Ig s d Im 10 28968 0 i o1
Iy — In 11 328756 32 18:1
Lo—In 11 82116 0 10:1
ho — Iz 12 1151904 4 20:1
TABLE VI 7 ) 1
COMPLEMENTARY GENERALIZED COSTAS PAIR OF LENGTH &
611 1 1 1
n 1 2 3 4 5 6 7 8
5 1 1
So(t) | don | 1 8 3 7 6 0 2 5
a®) |dal7 |0 |5 |t |2 |s8 |s 4 1)1 111
Pin(t) = Pr(t) foralli and n 3 111 111
2 11 111
. . . . .. 111 1 1 1
The sidelobe matrix of the resulting composite ambiguity func-
tion for these four sequences is given in Fig. 8. The columns 0 16
right next to the zero-delay column are almost full. Compared 11 1 1 1
with the sidelobe matrix of a single Costas sequence, this is 2 111 111
a much more efficient way of allocating ambiguity. Note that 3 N i
complementary triplets or higher order sets also exist. A trivial
example for a triplet is to divide the length-16 Costas sequence -4 111 1]1
given in Table I into three subsequences: {0, 2, 8, 9, 12, 4}, 5 1 1
{4, 14, 10, 15, 13, 7}, and {7, 6, 3, 11, 1, 5}, which can be &l SEOED
further reduced to {0, 2, 8, 9, 12, 4}, {0, 10, 6, 11, 9, 3},
and {6, 5, 2, 10, 0, 4}. It is obvious that they are a comple- -7 ! !
mentary triplet of Iy — I;3. However, we are not sure if 3 2 -1 0123

I3 is the smallest range in which a complementary triplet of
length 6 exists. An exhaustive search process of such triplets
is very time-consuming and, therefore, was not attempted in
this study.

To demonstrate the improvement in peak-to-sidelobe ratio
over a single Costas waveform, a pair of complementary gener-
alized Costas sequences are used to modulate the waveform set
in Table VI. Its CAF surface is plotted in Fig. 9. The ambiguity
surface of sp(¢) in the same table is plotted in Fig. 10 for
comparison. Several cross cuts along fixed delays of these two
ambiguity surfaces are plotted in Figs. 11-16. The lower peak-
to-sidelobe ratio and smaller amount of ambiguity reveal the
advantage of using waveform-diverse multiple measurements.

B. Circular Caostas Signal Set

In Theorem 1, we showed that the minimum achievable
volume of a composite ambiguity surface is the total energy
of the signal set squared divided by the number of signals.
Thus a pair of signals can only reduce the ambiguity volume
V;(;)b to half that of a single signal at most. To further
reduce the volume of the point-spread function, we need a
larger set. Theorem 1 also states that the minimum is attained
when the set is orthogonal and equal-energy. An arbitrary set
of frequency-modulated orthogonal signals may have a very
small amount of composite ambiguity, but it may not have

Fig. 8. Sidelobe matrix of the signals in (13).

the desired distribution, i.e., the thumbtack-like shape. On the
other hand, if we pick any NV signals that have nice distribution
properties (e.g.. N equal-length Costas signals), they may not
be orthogonal.

In this section we introduce the circular Costas signal
set which is a -collection of equal-length orthogonal Costas
signals. The construction of this set requires the use of Welch
construction method [27], [28] described below.

Consider the Galois field GF(p) of prime order p with

integer elements {0, 1,---,p — 1} and integer arithmetic
modulo p. Let g be a primitive root of GF (p). Then the
sequence {g, 92, -+, g~ '} (mod p) is a Costas sequence of

length.p — 1. Furthermore, every circular shift of the original
sequence is a Costas sequence of length p — 1. A Costas
sequence with this property is said to be a circular Costas
sequence [29]. . , '

For example, 3 is a primitive root modulo 7. Therefore,
{326451} is a Costas sequence; so are all its circular shifts.
If we add together the sidelobe-distribution matrices of all six
Costas sequences obtained by circular shifts of this original

sequence, the resulting sidelobes will have a distribution as in
Fig. 17. Note that the pealk-to-cidelobe ratic decreases linearly
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Fig. 9. CAF surface of signals in Table VI, T = 16.
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128

Fig. 10. Ambiguity surface of sp(f) in Table VI, T = 16.

1
0.8
0.6
0.4
0.2
-0.5 -0.25 2 0.25 0.5
v

Fig. 11.

as the column index increases. In the last column, the peak-
to-sidelobe ratio is 36 : 1 compared to 6 : 1 of a single
Costas sequence of length 6. This code is used to modulate
the frequency hopping pattern of the signal set in Table VII,
Since ¥; .(t) = Pr(t) for all 7 and n, where

Pr(t) = 110, 1(t)

it is clear from the fact that

T
/ elF2m =D/ g 0, fori # j
0

i28
1
0.8
0.6
0.4
0.2 ”
0 0
~-0.5 -0.25 0.25 0.5
AY

Left: Cross cut of Fig. 10 at 7 = 0. Right: Cross cut of Fig. 9 at 7 = 0.

that the set is orthogonal, since each frequency is transmitted
only once in each time slot. Thus we have a construction for
an orthogonal signal set with the desired ambiguity properties.

The CAF surface of this signal set is plotted in Fig. 18.
Compared with the ambiguity surface in Fig. 19 of a single
Costas signal, its peak-to-sidelobe ratio decreases rapidly as 7
increases as opposed to the constant value of a single Costas
signal. This significant improvement is demonstrated by the
plots (Figs. 20-25) of cross cuts along integral multiples of T
of Figs. 18 and 19.
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Fig. 12. Left: Cross cut of Fig. 10 at 7 = 7. Right: Cross cut of Fig. 9 at v+ = T
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Fig. 13. Left: Cross cut of Fig. 10 at 7 = 2T. Right: Cross cut of Fig. 9 at 7 = 27.
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Fig. 14. Left: Cross cut of Fig. 10 at 7 — 3T. Right: Cross cut of Fig. 9 at 7 = 3T.
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Fig. 15. Left: Cross cut of Fig. 10 at 7 =

C. Mixed-Phase and Frequency-Modulated Codes

-0.25

0

Vv
5T. Right: Cross cut of Fig. 9 at 7 = 5T

and Their Composite Ambiguity Functions

In the example given in Table I, the baseband signal 1, (¢) is
a rectangular pulse. Even though the signal set is optimal in the
ambiguity volume sense because it is orthogonal, its composite
ambiguity surface does not have the desired thumbtack shape.
The composite ambiguity can be distributed more evenly if we

0.

25

0.

5

0.2%
0.2
0.15%
0.1
OMW\/VV\A/\/\M

0.05
~0.5 -0.25 ¢  o0.25 0.5

V-

are willing to frequency-modulate 3, (¢). The following is an
example of applying both phase coding and frequency coding
on a set of signals. ~

Consider a set of four signals {so(t), s1(t), 32(t), sa(¢)}.
defined by .

3
3;(t) = Z T, (t — 4nT)e! Psn

n=>0
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Fig. 16. Left: Cross cut of Fig. 10 at 7 = 7T. Right: Cross cut of Fig. 9 at 7 = 7T.

Sidelobe Matrix

5 3 3
41 5 5 1
3 213 (4 3|2
211142 4 |5 514 2|1
111121131415 5 3121
0 36
-111 (2131415 5143121
2|1 5 5 201
-3 3|4 41312
411 5 5 1
-5 3 3

-5 -4 -3 -2 -1 01 2 3 4 5

Delay

Fig. 17. Sidelobe matrix of a circular Costas sequences of length 6.

where @, ,, is coded by the gquadruple-phase complemen-
tary code, i.e., ®; , = 2min/4 and ¥,(¢)’s are frequency-
modulated by the hopping pattern given in (13)

27r4t

Uo(t) = Prit)e™ + Pr(t — T)e™ ™"
+ Pr(t — 2T)e™F™ + Pr(t — 3T)e™ 7"
Uy (t) = Pr(t)e™ + Pr(t — T)e 7
+ Pr(t — 2T) + Pr(t — 3T)e™ 7

Wy(t) = Pr(t)e” 4 PT(t ~T)
+PT(t——2T)e T +PT(t—‘3T) 2#7
‘I’3(t) —PT(t) + PT(t _ ) FELEH

+PT(t~2T)6 X +PT(t-—3T)

Table VIII contains the overall coding pattern of this signal
set if we express the signals in the form

15
5;(t) = Z exp(Ji n) exp(§2nd; nt/T )t n(t — nT).

n=0

The W, (t)’s all have the same energy, and they are or-
thogonal, and from (12) their composite ambiguity function

151_7
0.25
0.2
0.15
. 0.1
0 0
-0.5% -0.25 0.25 0.5
AY
TABLE VI
CIRCULAR COSTAS SEQUENCES OF LENGTH 6

n 0 1 2 3 4 5

So(t) dO,n 0 2 1 5 3 4

sl(t) dl.ﬂ 2 1 5 3 4 1]

g(t) [ don | 1 5 3 4 0o i2

s3(t) | dsn [ B 3 4 0 2 1

S4(t) | dan |3 4 0 2 1 5

s5(t) | dsn | 4 0 2 1 5 3

Yin(t) = Pp(t) for all i and n
18
3
4 Z e—j27‘run4TX\p“ (’7’, I/) (14)
n=0

where Yy, (7, v) is the auto-ambiguity funciion of ¥, ().
Since 7247 {5 one whenever v is an integral multiple of
1/T, the sidelobe distribution matrix of (14) remains the same
as in Fig. 8. Thus we have constructed a set of signals whose
composite ambiguity function has the following desirable
ambiguity properties.

1) With highest frequency being 7/T, it has a peak-to-
sidelobe ratio of 16 : 1 that could have only been
achieved by using a single Costas sequence of length
16 (i.e., a signal with highest frequency being 15/7.)

2) It has total ambiguity E2 /4, which can only be achieved
by a single signal with energy Er/2.

3) It has zero ambiguity for 7 > 47, which can only be
achieved by a single signal with length less than 47T

The CAF surface of this signal set is plotted in Fig. 26.
Also plotted in Fig, 27 is the ambiguity surface of the Costas
sequence of length 16 in Table II for comparison. It is clear
that the CAF surface of the signal set in Table VIII has
significantly less ambiguity than the ambiguity surface of a
Costas sequence of length 16. Moreover, the ambiguity of the
Costas sequence spreads over the entire (7, v)-plane while
the ambiguity of the coded waveform set is confined in the
region —128 < 7 <« 128 and —0.25 < v < 0.25. It is
easy to generalize this construction technique to the design
of waveform sets with larger sequence lengths n. Hence we
have a general technique for the design of joint phase- and
frequency-coded waveform sets having very good composite
ambiguity behavior.
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Fig. 18. CAF surface of signals in Table VI, T = I6.
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Fig. 19. Ambiguity surface of so{t) in Table VII, T = 16.
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Fig. 20. Left: Cross cut of Fig. 19 at 7 = 0. Right: Cross cut of Fig. 1§ at 7 = (

V. IMPLEMENTATION

As mentioned in Section II, if the target environment cannot
be exactly reproduced to allow the forming of multiple images
using different point-spread functions, the multiple waveforms
will have to be separated either in time slots or frequency
channels. In this section we propose a time-division method
for channel separation. Its frequency-domain duality can be
obtained in a similar manner.

Suppose that the multiple signals are transmitted succes-
sively in time and that they are equally spaced by T, the pulse
train can then be expressed as '

N-1
s(t) = Z 8, (t — nT).

n=0

If T is large enough so that there is no overlap between
echoes of different pulses, a conventional pulse-Doppler radar
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processor would consider s(¢) as a single waveform and
match-filter the received signals over a time duration less
than T in which the echoes are expected. As pointed out by
Zeoli [15], this conventional processing method is actually
equivalent to forming the targets® composite image using the
CAF of {so(t), s1(t=T), ---, sy-1(t—(N—=1)T)}. Since the
ambiguity function of s(t —nT') is exp{—j2wenT}x,, (T, V),
the radar images of a point target located at {7p, 1) corre-

-0.25

0

AY

0.25

0.5

sponding to the individual waveforms are, as in (3),

O%(r, v) = Xao (T ~ T0, ¥ — 1)

O}(T, v) =e—j2”("_"°)chsl(‘r — T, ¥ — )

ON3(r, v) = e~ 2 =)N-DT

s (T — To, ¥ — ).

15)
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Fig. 26. CAF surface of signals in Table VIII, T = 16.

TABLE VIII
CODING PATTERN FOR A MIXED-FREQUENCY AND PHASE-MODULATED CODE
n of1]2]a]a]s]e6[7]slofr0f11]12]13T14 25
sot) [ dow 1[4 [3]7|7[2]0]6 602|773 ]a]1
don 0 0 0 0
ai(t) [din [1]4]3]7]7]2]0]6]6]0]2 77341
d1n 0 2 /4 4 /4 6m/4
so(t) [ daw [1]4[3]7[7]2]0]6(6]0] 27| 7]3]4]1
: dan 0 4 /4 8n/4 127 /4
sas(t) [dsm [1]4[3]7[7]2]0] 660l 2717341
dan 0 brr/4 127/4 18r/4
Pin(t) = Pr(t) for all i and n.

Note that for v — 1y = k- 1/7, where % is an integer, the
modulating terms in (15) become one. Therefore, the CAF
obtained by summing up the images in (15) is identical at these
frequency values to that obtained by summing up the images
in (3). Thus for the frequency-modulated codes described in
Section IV-C, their sidelobe distributions remain the same even
if the signals are staggered in time,

However, this is not the case for phase-modulated codes
since the validity of these codes relies on the perfect alignment
in both time and frequency at all values for exact sidelobe
cancellation, Therefore, in order to use the phase-modulated

codes, we must form the CAF of {s0(¢), s1(¢),
from the echoes of

{so(t), s1(t = T), - -, sy-1(t — (N = 1)T)}.

To do this, let us consider the pulse train as NV individual
waveforms and define the impulse response of the matched
filter for the nth waveform as

e SN—l(t)}

s(t — nT — 1) exp{j2rv(t - nT)}

as opposed to s(t — nT — 1) exp{j27vt} in pulse-Doppler
processor. Equation (15) becomes

ORT, V) = Xeo (T ~ 0, ¥ — 1) A
O»},(T, v) = ej2"”°T)'231'(7' — 70, ¥ — g)

OF Y (r, v) =¥ W -1T5 | (T -1, v —wo). (16)

It is now clear that in order to combine the images in the
way described throughout the paper, i.e., forming the CAF
of {so(t), s1(t), ---, sn—1(£)}, we need to estimate v, and
then co-phase the individual images by multiplying them by
a complex factor exp{—j2wiynT} before summing them up
together. ) S .



GU'EY ‘AND BELL: DIVERSITY WAVEFORM SETS FOR DELAY-DOPPLER IMAGING

Fig. 27. Ambiguity surface of signal in Table I, T' = 16.

As an example of using diverse waveform, consider mi-
crowave imaging in which the dynamic range of targets’
reflectivities can be very large (60-90 dB). As a result it can
be very difficult to differentiate between sidelobe returns of
stronger targets and main lobe returns of weaker targets. Since
the location of a stronger target can be accurately estimated, its
CAF can be formed as discussed above, thus creating a “clean
area” in which smaller targets cannot be hidden. Thus the
weaker targets can be made visible if appropriate waveforms
are chosen.

Note, however, that a second target located in (71, #1) will
be “out of focus” when the CAF of the first target is being
formed since its image will be

N-1

Of (7, v) = Z eI =iy (1 — 1, v — 1)
=0

(17)

unless i; — vp happens to be a multiple of 1/7". However, its
total energy on the 7 — v plane does not go away as one can
easily show that the ambiguity in (17) is the same as that of
the focused image if the signals are orthogonal. It will then
be detected and its parameters can be estimated by adjusting
the focus of the imaging system.

A further complication may arise when the area being
imaged contains several scatterers of high reflectivity. In this
case it may be difficult to estimate the Doppler of one or more
scatterers with sufficient accuracy. One possible approach
to dealing with this problem is to use the best Doppler
estimates available from the system and then perturb these
estimates and iterate on them to increase discrimination by
numerically maximizing the image contrast in a way similar
to phase-correction procedures sometimes applied in synthetic-
aperture radar. Even small residual errors from this type of
procedure may make it impossible to detect smaller targets in
the presence of the larger dominant scatterers. These problems
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will require further study in order to gain a full understanding
of the possibilities of diversity waveform processing.

V1. CONCLUSION

In this paper, we have proposed a new method for obtaining
enhanced discrimination delay-Doppler radar measurements
using multiple waveforms. In our model, we assume that a
radar can operate on several independent channels simultane-
ously, (i.e., it acts as if there are many radars observing the
same target environment without interfering with each other).
We then have the liberty of choosing the waveform for each
channel. The analysis of this model leads to the introduction of
the idea of composite ambiguity function of a signal set defined
as the summation of the ambiguity functions of the signals in
the set. By coherently combining the delay-Doppler images
obtained by all individual channels, the resulting image can be
considered as one obtained by using a point-spread function
which is the composite ambiguity function of the set of the
signals used by the different channels. Since the point-spread
function determines the discrimination of a radar image, our
attention is switched to the understanding of the composite
ambiguity function. _

A main theorem was then established to justify the superi-
ority of this new point-spread function over the conventional
point-spread function, which is the ambiguity function of the
single transmitted waveform. This theorem states that for a
set of signal with total energy Er, its ambiguity defined as
the volume under its associated composite ambiguity function
can never be more than that of a single signal of the same
energy. The same theorem also states that the minimum of
this amount is the total energy Er divided by the number of
the signals and is achieved when the signal set is orthogonal
and equal-energy.

With the main theorem serving as a general rule, we then
study the design of signal sets for this new radar imaging
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method. We are only interested in coded waveforms with
constant amplitude. The families of constant-amplitude coded
waveforms investigated in this paper include phase-coded
waveforms, frequency-coded waveforms, and the mix of both.
In phase-coded waveform design, we proposed a complemen-
tary code set that cancels all its sidelobes in both delay and
Doppler; unlike the conventional complementary sequences
that only cancel the sidelobes along zero-Doppler axis. In
the case of frequency-coded waveforms, we introduced the
notion of generalized Costas sequences, which contain the
Costas sequences as a special case. At the cost of slightly
increased signal bandwidth, the generalized Costas sequences
provide an increased number of available sequences with
distinct difference property over the Costas sequences alone.
This enables us to find larger sets of sequences that have
complementary sidelobe distributions, Also discovered in the
frequency-coded waveform design is a set of circular Costas
sequence with a sidelobe-distribution matrix that has a lin-
early decreasing peak-to-sidelobe ratio as = increases. Finally,
we took the advantage of both phase and frequency coding
simultaneously to create a waveform set that has superior
delay-Doppler discrimination characteristics to those of either
phase or frequency coding alone. A practical implementation
algorithm utilizing time-domain channel separation was also
proposed to approximate the assumption of ideal coherent
combining. For frequency-modulated codes, this time-division
multiplexing method maintains the sidelobe distribution of
the CAF. However, for phase-modulated codes, it requires
additional complexity and may have more limited application.
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