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Abstract. Detection and identification of objects in images formed by
coherent imaging systems are complicated by the presence of speckle.
Speckle not only complicates these problems for human observers, but
also for machine detection and identification algorithms. We investigate
optimal statistical tests for object discrimination and orientation deter-
mination in speckle and compare their performance to that of human
observers for the same problems. We formulate maximum likelihood
tests for determining the orientation of an object and for discriminating
among a set of known objects in a speckled image. We then analyze
the performance of these tests to study the system requirements for
reliable object discrimination and orientation determination. Next we gen-
eralize these tests and their corresponding performance analyses into
three broad classes of pattern recognition problems, corresponding to
orthogonal, antipodal, and biorthogonal signal problems in statistical
communications theory. These generalizations make the design and
analysis of a broad range of object discrimination and orientation deter-
mination straightforward. Finally we compare the performance of these
tests to the results of Korwar and Pierce for human interpretation of
objects in speckled images. We note that for fixed image contrast, num-
ber of looks, and image size in pixels, object shape has no effect on
machine detection performance. This is not true for the human observer.
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1 Introduction

Speckle noise, which is a form of object- or target-induced
random noise, is present whenever coherent radiation is em-
ployed to image an object, surface, or scene and can be ob-
served in coherent imaging systems such as synthetic aperture
radar (SAR), which employs coherent microwave illumina-
tion,' ultrasonic imaging systems that use coherent acoustic
illumination,>™ laser and sonar imaging systems, and inter-
ferometry and holography.’

Speckle arises from the interference of dephased coherent
wavefronts scattered from a diffusely reflecting surface that
is rough on the wavelength scale of the illuminating radiation.
This interference produces bright and dark areas that are
superimposed on the image as a random granular pattern
known as m_uooEn.m The speckle effect, however, masks small
to moderate differences in the average image reflectivity pre-
sented by gray levels, and so reduces the radiometric reso-
lution capabilities of the imaging systems and the amount of
information available in the speckled images.”® Speckle thus
complicates the detection and identification of objects in
speckled images for human observers and also for the related
machine detection problems.

In the literature, extensive work has been done on reducing
speckle to minimize its visual degradation of images through
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filtering techniques.”'" Relatively little work has been done
on the effects of speckle in detection and pattern recognition
problems (object discrimination and orientation determina-
tion) for speckled images. Notable exceptions include Ref.
12, in which the determination of object boundaries in speckle
is considered, and in which the segmentation of speckled
SAR images using a Markov random field model is consid-
ered.'3!* These problems are of special interest in terrain
mapping and analysis by SAR systems. They are also equally
important in image analysis problems in speckle as it arises
in other coherent imaging systems, such as acoustic speckle
in biomedical ultrasound imaging systems.

We are interested in studying the problems of detection
in images corrupted by speckle, with an emphasis on speckle
as it arises in SAR systems. We use SAR systems in our
analysis to establish results that will serve as a basis for
detection problems in other coherent imaging systems where
the speckle phenomenon is present, such as ultrasonic, sonar,
and laser imaging systems. For example, since acoustic
speckle can be treated in a similar way as laser speckle,” the
assumptions made about speckle in SAR images could also
be made about speckle in acoustic images obtained with ultra-
sonic medical imaging systems, such as ultrasound B-mode
scanners.>*

Synthetic aperture radar data is reviewed by geoscientists,
oceanographers, agronomists, and cartographers who want
to perform object detection, pattern recognition, and other
information extraction from SAR images. With the recent
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increase in the volume of SAR data collected and the resulting
complexity of data analysis by humans, the role of automated
SAR image analysis, by developing machine related detec-
tion techniques and implementing them on digital computers,
has become increasingly important. As a result, a better un-
derstanding of the optimal statistical tests for object detection
in SAR images is crucial. The detection problem for human
observers has been studied by Korwar and Pierce.'>'® Our
interest lies in the related machine detection problems.

In this paper, we formulate optimal statistical tests for the
pattern recognition problems of object orientation and dis-
crimination among a set of known object forms in SAR im-
ages, assuming a fully developed model. We then analyze
the performance of these tests. The system requirements for
reliable object discrimination and orientation determination
are studied by calculating the probability of error as a function
of the number of SAR looks, the image contrast ratio, and
the size (in pixels) of the object being considered. We then
generalize the form of the optimal tests and their correspond-
ing error analyses for pattern recognition problems into three
classes corresponding to orthogonal, antipodal, and bior-
thogonal signal detection problems in statistical communi-
cation theory. Finally, we compare the optimal statistical tests
performance for machine detection of SAR images to that of
the human visual system studied by Korwar and Pierce.'*!®

2 Speckle Model

2.1 Single-Look Mode!

Surfaces imaged by radar and other coherent imaging systems
have varying degrees of surface roughness with respect to
the wavelength of the illuminating radiation. This roughness
can be viewed in terms of the locations of the individual
scatterers or scattering centers that contribute to the radar
backscatter from the surface.!” When the number of scatterers
within a surface resolution cell is very large, and their dis-
tribution in height occurs on a scale of a wavelength or
greater, the speckle is referred to as fully developed.® For
fully developed speckle, the size of the individual speckle
granules is determined by the resolution cell size of the im-
aging system.

Fully developed speckle arises from the coherent sum of
the scattered electric fields from a large number N of ele-
mental scatterers making up a rough surface resolution cell,
according to

2

I= , (h

N
2 A; explidy)
j=1

where A; and ¢; are the reflectance strength (or size) and
phase of the j’th elementary scatterer. It is commonly as-
sumed that the elementary scatterer amplitudes are sStatisti-
cally independent, that the spatial location of a particular
scatterer (and hence its phase) is statistically independent of
the positions (phases) of all other individual scatterers, and
that elementary scatterers sizes are independent of scatterers
positions. It is also commonly assumed that the phases of the
fields scattered by the elemental scatterers are uniformly
distributed' over the interval [0, 27r). In the limit of a large
number of independent scattered contributions for fully de-
veloped speckle, it follows from the central limit theorem'®
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that the in-phase and quadrature components of the total re-
ceived electric field are zero mean, identically distributed,
and uncorrelated Gaussians. It follows then that the proba-
bility density function of the intensity /, defined as the sum
of the squares of these components, has an exponential dis-
tribution given by

1 I
pr=—exp| == ) Iom (D) - )
1 P

Here I,(-) is the indicator function, defined as

if xeA,

if x¢A4, ®

1
L(x)= 0

and p is the mean intensity (or reflectivity) of the field re-
flected from the observed resolution cell.

The conditions mentioned earlier under which the speckle
intensity is exponentially distributed are fairly weak. The in-
phase and quadrature phase components of the elementary
scatterers were assumed to be statistically independent for
the central limit theorem to apply. However, this need not
be the case, as it can be shown that the sum of a sequence
of dependent random variables can still be asymptotically
Gaussian under relatively weak conditions.'®

The statistics of fully developed speckle are studied in
detail by Goodman.® This speckle model is widely used in
radar imaging. An exponential model for radar reflectivity is
also widely used for modeling the scattering characteristics
of complex targets. For example, the Swerling I and Swerling
111 models commonly used in radar systems analysis assume
that the intensity of the total scattered field is exponentially
distributed.

2.2 Multilook Model

Many speckle reduction methods are presented in the liter-
ature using filtering techniques.”~'' One common speckle
reduction technique involves the noncoherent sum of L sta-
tistically independent looks at each intensity pixel as

L=, @

where i, is the k’th look measured intensity over a pixel. The
intensity /, in this case obeys a gamma distribution (Ref. 6,
pp. 21-24):

IF7 " exp(—1,/w)
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where I'(:) is the gamma function defined as

Envn%;y_ exp(—1) df, o>0. (6)
0

The argument for the speckle reduction by the noncoherent
averaging of intensities over a pixel is made by considering
the signal-to-noise ratio (SNR) of the image. The speckle
contrast for a fully developed speckle is defined by c=
a,,/n, where g, is the standard deviation of the intensity
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based on L looks. Goodman® suggests that a good measure
of the SNR is 1/c. For a single look, ¢ is unity because
o, = w for the exponential distribution. As we increase the
number of looks to L, the SNR 1/c increases by a factor of
A/L. Thus, the effect of image degradation resulting from
speckle is decreased by increasing L, as reflected by the in-
crease in SNR. Note also that for L independent looks, /, is
a complete sufficient statistic for ., and thus n=I,/Lis the
minimum variance unbiased estimator (MVUE) and the max-
imum likelihood (ML) estimate of the unknown parameter .

In practice, many techniques in SAR are employed to
obtain multilook images. Methods of obtaining multiple
looks include using multiple carrier frequencies, observing
the surface from different positions, and considering contin-
uous resolution cells in range or azimuth to come from a
homogeneous region of the surface and considering their
intensities to be independent measurements of the surface
reflectivity in that region.?’ Multilook images can be obtained
in other coherent imaging systems by simply varying the
proper control parameters of the scanning device from frame
to frame, and averaging the resulting L sequential uncorre-
lated frames of the same ::wma.w In SAR, a trade-off exists
between the number of looks L and the contrast ratio. In
reality, when SAR data are processed, the receiver performs
a 2-D match filtering of the signal returns, which causes an
increase in the integrated sidelobe ratio of the autocorrelation
function of the filter impulse response, and hence reduces
the contrast ratio of the image. In addition, spatial resolution
is also sacrificed with an increase of number of looks. Never-
theless, very little information is contained in a single-look
pixel,2" 22 and it is often beneficial to increase the number
of looks at the cost of sacrificing some resolution.”!>%*

3 Pattern Recognition Problems

3.1 The Image Model

We consider an object to be a binary image, that is, a 2-D
pattern of pixels, each pixel taking on one of two possible
average reflectivities o Or py (1 > o) with a contrast ratio
r=w,/io. While the assumption of a binary reflectivity-
image model introduces a significant simplification over what
may be encountered in real speckled images, it allows for
the analytical investigation of the effect of speckle in dis-
crimination problems. Furthermore, it has been shown that
even in speckled images where the underlying surface can
take on a continuum of reflectivity values, the mutual infor-
mation between the reflectivity and a single speckle intensity
measurement is approximately 1 bit per resolution cell 2
Hence, the maximum number of reflectance levels that a
single resolution cell could be assigned with statistical reli-
ability based on a single intensity observation is two. So in
terms of analyzing object discrimination in speckle, the bi-
nary reflectance-image model is not as great a simplification
as it may initially seem. It is not uncommon in SAR images
to assume that pixel boundaries are exactly aligned with ob-
ject boundaries, and hence focus on the structure of the object
(assumed to have been already located) by neglecting the
effect of the background. Also, if the image is sampled
coarsely enough so that the pixel spacing is approximately
equal to the resolution cell size to avoid the introduction of
small correlations between neighboring pixels, the speckle
intensity can be assumed to be conditionally independent

from pixel to pixel'22* conditioned on the reflectivity (av-
erage intensity) assumed constant within each pixel. The im-
age model also assumes that each intensity pixel has fully
developed speckle, and that L independent diversity mea-
surements (SAR looks) of each pixel are made.

We seek to develop optimal statistical tests based on these
measurements for the two problems: determination of the
orientation of a single object and object form discrimination
(discriminating among different patterns of an object). The
analysis is later extended to the problem of object orientation-
determination and form discrimination from a set of K object
patterns.

3.2 Grating Orientation
3.21

Consider a grating with lines one resolution cell wide and
having lines of alternating pixel intensities p.o (dark) and w,
(bright). The grating consists of a total of M XN resolution
cells (M rows, N columns) as shown in Fig. 1.

The problem is to detect two possible orientations of the
grating: vertical (hypothesis H,) versus horizontal (hypoth-
esis H,). The grating model is considered because of the
multiple frequency components in its pattern, which makes
it a good detection problem to study human interpretation of
objects in speckle as a result of the frequency response of
the human visual system. This model was considered by
Korwar and Pierce!>'® in the psychological detection ex-
periments they conducted on human observers. We consider
this model to compare the results of machine detection to
those obtained from human observers. In addition, as we
show later, the results obtained from this simple model can
be generalized to gratings with lines that are d pixels wide,
and more importantly, to more complex object orientation
problems.

Overview

3.2.2 Maximum likelihood decision rule

We consider an ML parametric detection test ¢(-) defined as

1 if LO>N (Hy)

*D=10 i Lay<x (Ho) ' M
where the likelihood ratio L(I) is given by
vA:mL
L(Dh=—1——", 8
@ vﬁ_mov ®

and the threshold \ is unity for both optimal ML detection

and Bayesian detection under the assumptions that the

a priori probability of each hypothesis is equal to Y2 and

that the cost C; of deciding H; when H; is true equals the
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Fig. 1 Orientation detection of a grating with M X N intensity pixels
and lines one resolution cell wide.
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Kronecker delta function? 3,. The image is described by a
lexicographic ordered vector of pixel intensities 1= (/,,1,,
«sIyn). Let p,, denote one of the two values p, and p, that
the reflectivity can take over the n’th column. Using the
probability density function (pdf) of a pixel intensity based
on L looks in Eq. (5) and assuming that the pixel intensities
are statistically independent conditioned on their average in-
tensities, the joint pdf of the intensities conditioned on Hy is

N M

po®=T11 I1

n=1m=1

=11 !

n add LA - DIM

Ly exp(= 1L,/ )

I.FANkl_v. NHO.XVANRSV

1 M
xexp| == 3 Iy
o m=1

M
[T
m=1

x 1 !

n even ?“Shzhl _v._?\

| M M
xexp{ —— X L J\ IT 25"

Byom=1 m=1
X Ijg oy (min{1,,.}) . )

For the case when N is even, there are N/2 vertical columns
with reflectivity pq and N/2 vertical columns with reflectivity
w,. When N is odd, there are (N + 1)/2 horizontal rows with
reflectivity pyand (N — 1)/2 horizontal rows with reflectivity
w;- Equation (9) simplifies to

1 1 M
po=7 exp| —— 2 3 L,

Hon odd m=1

1 M
xexp| =— 2 2 Iy

Wy neven m=1

N M
<(IT I 75
n=1 m=1

Tipy(min{Z,.,}) (10

where B is a constant taking on values of (p,po)¥V:/2
[(L—1D1™Y when N is even and wY(V-DL/2M@N+DL2
[(L— DY when N is odd. The joint pdf of the intensities
conditioned on H, has the same form as Eq. (10). From the
symmetry of the problem, by interchanging m and n and M
and N, we obtain the following expression for the joint pdf
of the intensities conditioned on H,:

1 N
p=pexpl == 3 X L,

1
Hom odd n=1

N

My m even n=1

M N
x( IT TT#5

m=1 n=1

Loz (min{Z,.}) an

with B having the values (p,p)”V2/2[(L—1)!]"" when
M is even and WM - DL/2uN(M+DLI2[(L — 1)!MY when M
is odd.

Applying the likelihood ratio test of Egs. (7) and (8) results
in the test

m_
pd >

poD) <
mo

1. 12)

Substituting Egs. (10) and (11) into Eq. (12) and taking the
logarithm of both sides, we obtain
H,
1 1 >
Cin(r)y——1I*+—1I* 0, (13)
o wo <
H,

where the statistic 7* is

F=3 S, -

m odd n even

> 2 s (14)

m even n odd

the contrast ratio r= /Ry, (R, > o), and C is a constant
given in Table 1.

Table 1 Values of the constants C, v,.and m.

N
even odd
M
C v 7 C v n
-ML M(N-1)L M(N+1)L
wen | o | Mg | owgo | oog | M0 0
NL M+1)NL M-1)NL N—M)L M+1)(N-1)L M—1)(N+1)L
odd NL + 1 ] ( vM —1)L ( VM nL
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Further simplification of Eq. (13) yields the decision rule
for the detection test as

1, (15)

where the decision threshold /, is given by

C In(r)

=
! (Vo) —(Hpy)

(16)

Even though this decision rule applies only to the two patterns
shown in Fig. 1, where column 1 (vertical grating) and row
1 (horizontal grating) are dark pixels, we will show later that
the same decision rule could be used regardless of the ar-
rangements of dark and bright pixels in the two patterns.

Examination of the statistic /* in Eq. (14) shows that the
pixels (m,n) with both m and n simultaneously even or si-
multaneously odd do not contribute to /* and hence are not
used in decision making. The fact that half of the data is not
used is justified intuitively by superimposing the grid under
H, on top of the grid under H; and noticing that only the
differing pixels will affect the decision rule. The greater the
number of differing pixels between the two grids, the more
easily they can be discriminated.

In Appendix A, we show that the conditional pdf of /* is
given by

-1
PoI)=p g | 2 ad ™ exp(—I*/u )i (1)
k=0

~1
+:M bo(— 1% exp(I* ) _wgy(I¥) | . (A7)
k=0
where
—n-v+k+l
=Mty k=2 LI , (18)
k! m—1 By o
vkt
=M (L L : 19

k! v—1 B Po

and the constants v} and v are given in Table 1. Note from
Table 1 that C=v—m. The expression for the conditional
pdf p,(I*) is obtained by interchanging p, and w, in Egs.
(17), (18), and (19).

We now consider the probability of decision error for this
problem. The probability of error for the test $(-) is?

1
an?wzxcu 1|Hyl + PridM) =0|H,]} , (20)
or, after using the decision rule in Eqs. (15) and (16),

1
w@um?«Q*Aitﬁ.:?Q*vb_m_: . @n

Using the expressions in Eqs. (17), (18), and (19) for the pdf
po(I*) under the hypothesis H, and the dual expression for
the pdf p,(/*) under the hypothesis H,, and applying Eq.
(21), we show in Appendix B that the final expression for
the probability of error is given by

1 v k=1
P=Ad+nS ("
N »nchH

2 In(r)jv—m| 2

X(1+r=Y=*Q, _10, —
1—-r

v—1

+k—1
w14y ST
k=o\ M—1

21 _ Y2
X:Jrs.ve\» —l@cl» O, E
r—

n—1
+k—1
+a+n o (Y

k=0

o (14r=tn* (22)

for v=1, and

1 vkl
P.=3 a+n— ("

o\ v—1

. 2 In(r)v—x| |
X(L+r= MR, g 0 =

vtk-1
s+

i—o\ v—I

2 In(r)lv—n| 1"

X1 +r)" " 1-0, .90, -
v—1
+k-1
+a+n 3 (1 (L7 ty=* 23)
k=o\ M1

for v<m). Here the function Q y(a,B) is the generalized Mar-
cum Q-function that is frequently used in signal detection
problems.?®2% The definition of Qy(c,B) can be found in
Appendix B.

For the case where v=m, the threshold intensity /,=0,
and the generalized Marcum Q-function is unity in Eq. (22),
as its argument is zero. Equation (22) then simplifies to

v—1 _ .
P=@trer-ny-v S [20TD

j=0

(1+r~ Y+t 24)
v—1

after making the change of variable j=v~ 1 —k in Eq. (22).
Equation (24) is consistent with an error probability formula
obtained by Bovik and Munson'? for the problem of detecting
object boundaries in speckle.
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Equations (22) and (23) relate the probability of error to
the number of looks L, the image contrast ratio r, and the
size in resolution cells (M and N) of the object being con-
sidered (v and m are functions of L, M, and N). These equa-
tions make the design of optimal detectors for object ori-
entation problems straightforward. For example, it is not
difficult to find the number of looks required to produce 95%
probability of correct detection for the orientation of an object
with a 3-dB contrast ratio and 10X 10 pixels in size.

As shown in Fig. 2, P, decreases with a higher contrast
ratio r for a fixed number of looks L and object size (M and
N). Note also from Fig. 2 that P, decreases with r at a faster
rate for a larger value of L. Figure 3 shows that an increase
in object size M and N decreases P, for fixed values of L and
r. The rate of decrease is greater for larger values of L. Thus,
it is not possible to characterize the detector performance by
a single parameter. For a fixed r, increasing the object size
and the number of looks will result in a lower probability of
error. Note that the probability of error decreases with an
increase in the parameters v and v, which are proportional
to the number of SAR looks L and to the number of differing
pixels between the two gratings under the hypotheses H and
H,. This is in agreement with the intuitive notion that the
object orientations become more easily discriminated as the
difference between the alternative orientation patterns be-
comes larger.

3.2.3 Grating orientation with lines d pixels wide

We now consider the more general case of a grating with
lines that are d resolution cells wide as shown in Fig. 4. The
grating still consists of a total of M X N resolution cells, with
M and N being integer multiples of d; that is, M=Id and
N=qd, where | and g are positive integers.

Following the same analytical approach as Sec. 3.2.2, we
obtain the same decision rule as in Egs. (15) and (16), where
the statistic /* is now

! kd q jd

r=3 2 2 2

k=1l,0dd m=(k—-1)d+1 j=leven n=(j—1)d+1

kd q jd

-3 3 8 5

even m=(k—1)d+1 j=lodd n=(j—d+1
(25)

and the constant C in Eq. (16) is given in Table 1 after
replacing M and N in the left upper corner by / and g, re-
spectively. Again, we note that, like the previous grating
orientation problem, only half of the data is used in decision
making, and that only the different pixels components be-
tween the two hypotheses contribute to /* and affect the
decision rule. The decision criteria is best illustrated in Fig. 5.

The same analysis of Section 3.2.2 yields the same expres-
sions for the probability of error P, as in Egs. (22) and (23),
with the constants v and m) having values as given in Table 1,
except that M and N in the left upper corner are replaced by
[ and g, respectively. In addition to the quantitative analysis
of the error probability equations that was provided in Sec.
3.2.2, we note that P, is independent of the grating line width
d. Thus, for a fixed object size M and N (in resolution cells),
a fixed contrast ratio r, and the same number of SAR looks
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Fig. 2 Probability of error for the optimal detection of grating orien-
tation versus the contrast ratio r, for M= N=5.
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Fig. 3 Probability of error for the optimal detection of grating orien-
tation versus the object size M(N). The contrast ratio r is fixed
at2.0.
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Fig. 4 Orientation detection of a grating with lines d pixels wide.
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Fig. 5 The decision rule for grating orientation detection.
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L, the detector has the same performance regardless of the
line thickness d. For example, the grating orientation prob-
lems of Fig. 4(d=2) and Fig. 1 (d=1) have the same prob-
ability of error. Intuitively, we can explain the fact that P,
does not decrease with wider grating lines by noting that an
increase in line thickness d reduces the number of grating
lines, and vice versa, keeping the total number of bright (p.,)
and dark () pixels fixed. This interesting result only applies
to machine detection. For the human visual system, grating
orientation in speckle is more easily discriminated when the
grating lines increase in width.'®

3.3 Pattern Discrimination

The detection problem under consideration is the discrimi-
nation between two alternative image forms (the term forms
refers to distinct binary image patterns). We consider the
forms of set 1 (shapes ‘‘E’” versus ‘‘F*’ in Fig. 6) in our
derivation, although the same analysis can be applied to other
forms (such as sets 2 and 3). Let ., denote one of the two
values p, and p.,; that the reflectivity can take over the (m,n)
pixel in the image.

Applying the likelihood ratio test of Eqs. (7) and (8) and
using the conditional independence of the intensity pixels
{I,,.}, we obtain

[T rUmlioy TT Ui
Pﬁvuﬁs.avmz_ (mn)eN{ > |
Po®  IT pUpln) TI Ul <

(m.nyeN (mmyeNt H,

(26)

where the set Ny, shown in Fig. 6 (the rightmost two pixels
in the last row), is the set of pixels that differ between the
two forms, and M is its complement. Using the pdf of an
intensity pixel /,,, based on L looks given in Eq. (5),

1

LEXPy T M Lon H,
E_Aﬂvl [ Ko gmmem > 1 @
o \bio | <
expl =— 2 L H,
1 mmem

where v=LXcard(N,), with card (N,) (cardinality of N)
being the number of pixel elements in the set N,. Taking the
logarithm of both sides of the inequalities yields the following
decision rule

1]
M

Set 1: "F" (H) vs. "E" (H;) Set2 Set3
Fig. 6 Discrimination between two alternative forms.

with the statistic

LD S (29)

(m,n)e Ny

and the decision threshold

1
PR R (30)
(o) = (1)
The conditional pdf p,(/*) of I* conditioned on Hj is
given by
1%~ exp(—I*/,)
PoI¥) ==l (I%) 3D

wT@)

and p, (I*) is given by the same expression with ., replaced
by p,. Note that the way in which H, and H| are defined in
Fig. 6 dictates the fact that the pixels in N| have average
intensity ., when Hj is true and p, when H, is true. This is
why po(1*) has parameter ., and p, (/*) has parameter p.,.
Substituting the conditional pdfs of /* into the probability
of error expression of Eq. (21), and using the definite integral
formula of Eq. (66) in Appendix B results in the final expres-
sion for P,:

1 2v In(r) |72

2
2v 1
P=={1-0,10, 2v In(r)

+0.,40,

r—1 1—r

(32

The probability of error P, in Eq. (32) is a decreasing function
of the image contrast ratio r, the number of looks L, and the
number of differing pixels card(N,) between the two alter-
native forms. The probability of error is independent of the
intensity pixels in the set N¢; therefore, for fixed L and r, the
probability of error for form discrimination is the same for
different sets of alternative forms having an equal number
of differing pixels [card(N, )]. For example, the detection test
has the same performance for sets 2 and 3 in Fig. 6, which
means that the shape of the object has no effect on machine
detection performance. This resultis not true for human visual
detection.!”

4 Classification of Pattern Recognition
Problems

Based on the analyses of the detection problems of grating
orientation and form discrimination, we classify a broad range
of general pattern recognition problems into three categories:
Type 1, I, and HI. We then show that these three classes of
problems correspond to orthogonal, antipodal, and biortho-
gonal signal detection problems in statistical communication
theory, respectively. This correspondence will be emphasized
in this section to establish results for general pattern recog-
nition problems by using the well-established theory of signal
detection at the receiver end of a communication channel.

4.1 Type | Problems

Type I problems correspond to orthogonal signaling prob-
lems in statistical communication theory. Both orientation-
determination [Fig. 7(a)] and pattern discrimination prob-
lems {Fig. 7(b)] can fall into the Type I problem category.
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Fig. 7 (a) Two aiternative orientations of a pattern and
(b) discrimination between two alternative shapes (“I” versus “C"”).

The grid orientation problem of Sec. 3.2 is considered to be
a Type I problem. In Type I problems, we consider an object
with individual pixels taking on two reflectivity levels p,
and (v, > W) under two hypotheses Hy and H,. We define
the sets N, and N, neither of which is empty, as follows:
N, ={(m,n) dark pixels (j1,) under H, that are different from
the dark pixels under H,}, and N, ={(m,n) dark pixels under
H, that are different from the dark pixels under H,}. Let
v=card(N|)X L and n=card(N,) X L, where L is the num-
ber of SAR looks. The number of pixels in the set N,;(card
(N;)) is equal to the area of the N, region divided by the
resolution limit area.

Based on the analysis of Sec. 3.2.2, we obtain a decision
rule for the maximum likelihood test as in Egs. (15) and (16),
where the statistic /* is now

r= 3 L= X . (33)

(m.,n)e N\ (m,n)e No

It follows that the probability of error P, is the same as in
Egs. (22) and (23).

4.1.1  Analogy to binary orthogonal signals

Consider the Type I detection problem in Fig. 7(a). There
are two different components C, and C, between the hy-
potheses Hy and H\, which we refer to as orthogonal com-
ponents. For the case when card (N, ) =card(N,) (or v=m),
we claim that the detection problem is equivalent to the op-
timal detection of equal-energy binary orthogonal signals at
the receiver end of a communication channel with additive
noise.

Given a set of K equally likely equal-energy binary or-
thogonal signals {C;, i =0, ..., K— 1}, the probability of cor-
rect detection given that C, is transmitted®®>? is given by

K-—1

oo o

Nun_ﬁc”R ﬁlsﬁﬂv ;‘y\ EE,AWV QW da , Aw&v

where H; denotes the received signal. The probability of cor-
rect detection is given by

1 K—-1
P==
K5,

i=

Peei s (35)

and since P, = P, |, from the symmetry of the problem, it
follows that P, = P,| ¢, Goodman® shows that the intensity
1 over a homogeneous region N with average reflectivity p,
defined as,
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=2 1. (36)

(mn)e N
is gamma distributed, with the density function

1
PrUnlw)=———1"" exp(~ I/ gy (Iy) (€R)]
wT)

where v=card(N) X L. Since the result will be the same for
any general set N with parameter v, and since both N, and
N, have the same parameter v, we will drop their subscripts
and use the notation N. By analogy to Eq. (34), the probability
of correct decision for the detection problem, taking K=2,
is given by

Fn% Proli) ;.Pz:_fu dr | do . (38
0 0

In Appendix C, we show that the analytical expansion of this
equation yields the same expression for P, (=1—PF.) as in
Eq. (24). Hence the Type I detection problem is analogous
to the detection of orthogonal signals in communication
systems.

4.1.2 Extension to K alternative pattern orientation
and discrimination

We now study the problem of object orientation and form
discrimination from a set of K object patterns as shown in
Fig. 8. We assume that card(C;) = card(C;), and we will sim-
ply use the notation N in the following analysis to represent
the differing pixel components.

By analogy to Eq. (34), the probability of correct detection
among the set of K patterns is given by

K—1

ﬁn"% QNZAQ_?_._V .‘Muﬁ?Aitév dr do ’ AWDV
0

where the pdf of I, was given in Eq. (37). As shown in
Appendix D, expanding Eq. (39) analytically results in the
following expression for P

(K-Dr&!
P2 3

nl
Y
D! {20 Uotnto-1resi

1)k — t
y (— D¥a,+v—1)! . (40)
(K—~k—~ DI +kr)(k+r "),

where

rEp/pg

v =card(N)XL ,

v—1

Q= M J
j=1

v—1
B=TT4150%,
j=0

and S, is the set of all v-tuples of nonnegative integers whose
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Fig. 8 (a) K alternative orientations of an object and (b) K alternative
forms of an object, (K=4).

sum is k. The expression for P, can be evaluated numerically.
We note from Figs. 10 and 11 (Type I curves) that for fixed
values of K and v, P,(= 1 — P,) gets smaller with increasing
values of the contrast ratio r. We also note that for fixed
values of r and v, P, increases with increasing values of X.
This is expected, because an increase in K causes the detector
decision to be made among a larger set of hypotheses. Thus,
the probability of correct decision is reduced when all other
factors are held constant.

4.1.3 Gaussian approximation

Consider the statistic /,, given by Eq. (36). Recall that each
pixel intensity /,,, based on L looks is gamma distributed
according to Eq. (5). Since the intensities {/,,,} are statistically
independent, it follows that the mean and variance of I, are
given by

E(ly)=(card(N)XL)X p=vp. , (41)
and
ol =card(N) X o} =vp? | (42)

respectively. It follows from the central limit theorem'® that
I,y converges in distribution to a Gaussian random variable
G ~N(vp,vp?) for large values of v. That is,

(I-vp)?
exp| — o , for large v .

1
P (Injm)~
w (vl N T

(43)

Substituting this equation into Eq. (39) results in the follow-
ing approximation for the probability of a correct decision
for large v:

wuﬁ L[y
<o W V2my P 2vp}
x| (= v3)— g E e T_h_m (a4)
- v)— ——— .
Ho\Vv

Here Q) is the Q-function defined as

e
o(x)= 5= ).

Equation (44) can be evaluated numerically and is accurate
to three decimal places for v=25.

exp(—£%2) dt . (45)

4.2 Type Il Problems

Type 11 problems correspond to antipodal signaling problems
in statistical communication theory. Only pattern discrimi-
nation problems fall into the Type II category. For example,
the discrimination of patterns in sets 1, 2, and 3 of Fig. 6 are
Type 11 problems. Here, we consider an object with two
reflectivity levels pg and ., (b, > pg) under two hypotheses
H, and H,. We define the set N, as follows: N, = {(m,n) dark
pixels () under H, that are different from the dark pixels
under H,}. In this problem, the set N, as defined in Sec. 4.1
is empty. Again, we have v=card(N, )X L.

Based on the analysis of Sec. 3.3, the decision rule for the
maximum likelihood test is the same as in Egs. (28), (29),
and (30). The probability of error P, is given by Eq. (32).

4.2.1 Analogy to binary antipodal signals

Consider the Type II problem in Fig. 6. Only pixels with
average reflectivities that differ in the two forms being tested
belong to the set N,. Hence, deciding which of the two hy-
potheses H,, or H| is true can be solely based on whether or
not the pixels in N, are bright (H) or dark (H,). Because
the problem reduces to determining if the pixels in N, are
bright or dark, it is analogous to the optimal detection of two
equal-energy antipodal signals at the receiver end of a com-
munication channel with additive noise. In fact, the error
probability in Eq. (32) for pattern discrimination has the same
form as the analogous problem in statistical communication
theory.2%-30

4.2.2 Gaussian approximation

Consider the statistic I (denoting N, by N) given by Eq.
(36). Using the central limit theorem, the gamma pdf of I
is approximated by a Gaussian pdf with mean v and variance
vu? for large values of v. Hence, we have

1 (I-vp)
pin(Iy|Hy)~——exp| —————| ., (46)
w(In|Ho V. o
and

1 I—vpy)?
PiUnlH ) =——— exp Ig , for large v

roV2my 2vpg
47

Applying Eq. (21)(I* is now replaced by I), direct inte-
gration of the conditional pdfs of I, yields the following
approximate expression for the probability of error:

In(r)
r—1

1
P~5l1-0 Vv

In (r)
—-1

1|t +01Vv

l—r~
48)

for large v, where Q(:) is the Q-function defined in Eq. (45).
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The simple expression for P, given by Eq. (48) closely ap-
proximates Eq. (32) for large v and is accurate to three dec-
imal places for v=25.

4.3 Type lll Problems

Type I1I problems correspond to biorthogonal signal detec-
tion problems in statistical communication theory. Recall that
only pattern discrimination could fall into the class of Type
II problems. We also noted that the problem of form dis-
crimination from a set of four known patterns as depicted in
Fig. 8(b) falls under a Type I problem. In general, form dis-
crimination from a set of K(=4) known patterns may not be
a Type 1 problem. We assume that K=4 and that it is even.
The detection problem is considered to be Type Il when

1. a set of K/2 patterns forms a Type I problem

2. the set of the remaining K/2 patterns also forms a Type
I problem

3. each pattern from the first set, together with a corre-
sponding pattern from the second set, forms a Type Il
problem.

As an example, the pattern discrimination problem of Fig. 9
is a Type Il problem. In fact, Hy and H, are Type I; H, and
H, are also Type I; H, and H, are Type II (detection based
on N, being bright or dark); and H, and H; are Type II
(detection based on N being bright or dark).

We assume that card(N,) =card (N;) = card(N}), and we
will simply use the notation N by the same argument used
for Type 1 problems. Since it was noted that Type I and Type
11 correspond to equal-energy orthogonal signals and equal-
energy antipodal signals, respectively, it follows that Type
111 problems are analogous to equal-energy biorthogonal sig-
nal detection problems in statistical communication theory.
The probability of correct detection?® is given by

. . (K12)—1
w_L Pl R Pr(Tlso) dr do. (49
0 0

where the pdf of I was given in Eq. (37). Expanding this
equation results in the same expression for P, as in Eq. (40),
except that K is replaced by K/2:

(KI2—1)1%251
p K0TSy
v-n! k=0 (lod1,.dv—1)€ Sk
- Doy +v—1)!
% (—D¥ey+v=1) , (50)
(KI2—k—= DY +kr)Y(k+r~1)4B,
where

ro= g
v = card(N)XL ,

v—1
Q = M\NK s
Jj=1

v—1
B, = TGy
j=0
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Fig. 9 K alternative form discrimination ( K=4).

and S, is the set of all v-tuples of nonnegative integers whose
sum is k. The Gaussian-based approximation of P. is also
given by Eq. (44) with K replaced by K/2:

ﬁ 1 (E—vn, )
mvnR WX@| u
e_:/\wﬂc meE

K12-1
£—vpy

HoVY

for large v, where Q(-) is the Q-function defined previously.

x| Q(=Vv)-Q dg (51)

5 Results and Comparison with Human
Visual Detection

5.1 Detector Performance for Type I, Il, and Ill
Problems

We have shown that many problems of pattern recognition
of binary images corrupted by speckle can be put into one
of three classes for which error probability analyses were
presented. This generalization makes the design of optimal
statistical tests for pattern recognition problems straight-
forward. The probability of error equations developed for the
various classes have been implemented as FORTRAN pro-
grams on a Sun workstation. A comparison between the de-
tectors performance in terms of P, for Type I and II problems
is illustrated in Fig. 10. For Type I, P, is lower than that of
Type I with the difference being more significant for low
values of the contrast ratio r. This can be justified by noting
that there are two sets N, and N, of differing pixels between
the two patterns for Type I problems, and only one set N of
differing pixels for Type 11 problems, which makes the prob-
ability of error higher for Type II problems for fixed object
size, contrast ratio, and number of SAR looks. Figure 11
shows that P, for Type III is lower than that of Type 1. This
is expected because, for fixed values of v and r, the probability
of error for Type 111 problems corresponds to that of Type I
problems with half the number of Type I hypotheses K being
used. Thus, Type II detection problems are the most de-
manding in terms of image size in pixels, contrast ratio, and
number of SAR looks for good detection performance, and
thus make good test problems for object detection in SAR
images.

5.2 Comparison with Human Visual
Detection Performance

Korwar and Pierce'*'® have developed a theoretical model
for human observer’s detection in images corrupted by
speckle. They noted from theoretical calculations and psy-
chological experiments that grating orientation for human
observers becomes more easily discriminated as the grating
lines become wider because the eye sums horizontally over
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Fig. 11 Probability of error comparison between Type | and HI
(»=9, K=4).

the width of each line.'® For machine detection, however,
we found that the optimal detector performance was inde-
pendent of the line thickness d. For example, an L-look grat-
ing with lines that are two pixels wide and size M XN (in
resolution cells) results in the same P, as a grating with Yines
one pixel wide and with the same number of looks L and size
MXN. Also, for the same r and v, the human observer’s
performance may be different when discriminating between
two forms from different sets as shown in Table 2. On the
other hand, when all other parameters are fixed, the shape of
the object has no effect on machine detection performance.
Machine detectors will have the same P, for form discrimi-
nation from various sets (for instance, sets 2 and 3 in Fig. 6),
provided that the two forms in each set have an equal number
of different intensity pixels card(/V, ). Finally, it is noted that
the overall performance of the machine optimal detection test
is better than that of the human observer based on Korwar
and Pierce estimates of human observers performance. Ta-
ble 3 shows that the probability of correct detection for ma-
chine detection is higher than the upper bounds on the human
visual detector’s P, obtained by Korwar and Pierce'*'6 from
psychological experiments. Hence, machine detection has a
better performance than human detection even when the dis-
crimination model for the human visual system is based on
the most favorable assumptions.'>

Table 2 Korwar and Pierce results for form discrimination by human
observers.

r(dB) | v | Pe(set2, Fig.1) | P (set 3, Fig. 1)
1 150 0.78 0.84
?mu 0.86 0.82
250 0.85 0.80
500 0.91 0.92

Table 3 Comparison between human and machine detection performance. We tabulate the upper
bound P, for human detection obtained by Korwar and Pierce.'>16

? (dB) | v | P.(set2Fig. 1) | P (orientation, Fig. 1(a)) | P. (orientation, Fig. 1)
Human | Machine | Human Machine Human Machine
1 150 0.86 0.919 0.91 0.977 — 0.941
153 | 0.90 0.922 0.90 0.978 0.79 0.942
208 | 0.88 0.954 0.92 0.992 0.87 0.968
250 | 0.92 0.971 0.99 0.995 0.89 0.991
500 ) 0.96 0.996 1.0 0.999 0.99 0.999
3 18 0.92 0.927
25 0.91 0.956 Human data
306 1.0 1.0 unavailable
5 1 0.74 0.701
4 0.84 0.868
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6 Summary and Conclusions

In this paper, we developed optimal statistical tests based on
intensity measurements from SAR systems for the pattern
recognition problems of object orientation-determination and
form discrimination. In particular, we examined the detection
problems of grating orientation for gratings with lines that
are one pixel wide and more generally d pixels wide and
discrimination between two alternative forms. We developed
decision rules and probability of error formulas for these
decision rules. Based on these analyses, we classified a broad
range of pattern recognition problems into three categories:

1. Type I, under which both object orientation-
determination and pattern discrimination problems
could fall. These problems correspond to orthogonal
signal detection problems.

2. Type II, under which only pattern discrimination prob-
lems could fall. These problems correspond to anti-
podal signal detection problems.

3. TypeIll, under which only pattern discrimination prob-
lems with K hypotheses (K=4 and even) could fall.
These problems correspond to biorthogonal signal de-
tection problems.

For each class, we derived a decision rule based solely on
intensity measurements of the returned signal. We found that
only the different pixel components between the object taking
on the reflectivities (i and ., ) under the various hypotheses
are used in decision making, and thus about half of the in-
tensity pixel measurements are discarded. We also derived
for each class mathematical relations between the probability
of error and the number of SAR looks L, the image contrast
ratio r, and the size (in resolution pixels) of the object being
considered. Using Gaussian approximation, we obtained sim-
pler and more computationally efficient formulas for P, that
are close to the exact ones up to three decimal places for v
=25. The classification of pattern recognition problems and
these probability of error equations make the design of object
detection procedures for SAR images straightforward.

We noted from the probability of error equations that it
is not possible to characterize the detector performance by a
single parameter. We found that the probability of error is
related only to the contrast ratio r and to two parameters v
and T that are proportional to the number of SAR looks L
and to the number of differing pixels between the patterns
to be distinguished. Consequently, for a fixed value of r, two
different detection problems with the same values of v and
7 have exactly the same probability of error. This leads to
the interesting results that grating orientation detection is
independent of the grating line thickness d, and that form
discrimination is independent of the shape of the object being
considered—a result that is not true for detection by a human
observer. It was also found that P, decreases with an increase
in r, v, and m, which means that pattern orientation-
determination and discrimination become easier as the con-
trast ratio and the number of differing pixels between the
patterns become higher.

We also showed that Type 1, 11, and I1I detection problems
are analogous to the problems of optimal detection of or-
thogonal, antipodal, and biorthogonal signals, respectively,
in statistical communications theory. Following this analogy
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to statistical communication theory, we developed formulas
for the probability of correctly determining the orientation
of K patterns and discriminating among K alternative forms.
After comparing the performance of the tests for Type I, II,
and III problems, we found that Type II problems are the
most demanding in terms of image size, contrast ratio, and
number of SAR looks for detection performance, and thus
make good test problems for object detection in SAR images.

We also provided a comparison between the results that
we obtained for machine detection and those obtained by
Korwar and Pierce!>'¢ for human observers. For machine
detection, grating orientation-determination was independent
of the grating line width d, whereas grating orientation for
human observers becomes more easily discriminated as d
gets larger. We also found that, unlike human visual detec-
tion, for fixed values of r, v, and m, the shape of the object
has no effect on machine detection performance. We also
noticed through numerical computations that the overall per-
formance of the machine optimal detection test is better than
that of the human observer.

Although the images treated in this paper were binary
images consisting of only two reflectivity levels, extensions
can be made to other forms of images. For images with mul-
tiple intensity levels, we obtain a problem analogous to that
of multilevel, as opposed to binary, quantization in statistical
communication theory.? However, due to the wide dynamic
range>! yet low information content per pixel in microwave
images,”!*?? the binary image model is reasonable in many
applications.

Finally, we mention that the assumptions made about
speckle in SAR images could also be made about speckle in
images generated by other coherent systems, and thus the
analysis and results of this paper could serve as a basis for
detection problems in other coherent imaging systems where
the speckle phenomenon is present, such as ultrasonic, laser,
and sonar imaging systems.

7 Appendix A: Derivation of the pdf of /*
Conditioned on H, [Eqgs. (17), (18), and (19)]

The gamma distribution of a pixel intensity based on L looks
has the following characteristic function':

&y (W) =Elexp(jwl®)]=(1—jpw) " . (52)

This expression is obtained by an inverse Fourier transfor-
mation of Eq. (5). The characteristic function of the statistic
I*is

Srape(W) = Eg [exp(jwI*)]

~efeo| (S, 5t £ 5 0)

m odd n even m even n odd
= [T II Eolexpiwl,)

m odd n even

x TT I1 Eolexp(—jwL,)) . (53)

m even n odd

using the fact that the intensities {1,,,} are conditionally in-
dependent. After substituting in Eq. (52), we obtain
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i) = —jwp) Vi1 +jwpe) ™", (54)

where v and 1 are the constants in Table 1. Taking the inverse
Fourier transform of Eq. (54) and using a partial fraction
expansion®? yields

v—1

poUIM)=pi" > @ exp(— ) g (1)
k=0
m—1
+ M b (— Ik exp(I*wo) _wpy(I%) | . (55)
k=0
where
—jw pg) M@ —%=D
n»n: J Bo) M . _ 56
(w—k—=1)k! jw=~1/m
and
VR Gw 1w, )TV R D
p= o W ) _ . . (57
Mm—k—1)k! jw=1/p0

with the superscripts in parentheses denoting derivative or-
ders. It follows from the direct evaluations of Egs. (56) and
(57) that

—m—vtk+1
G (VTR (L L : (58)
k! n-1 i Mo
and
—m—v+k+1
p=t (VYR (L L ) (59)

k! v—1 W Mo

8 Appendix B: Generalized Marcum Q-Function
and Error Probability for Grating Orientation
[Egs. (22) and (23)]

Let us first consider the definite integral

mz» ' exp(—£/p)

fay= W TN

dg , (60)

where 1,20 and I'(N) is the gamma function and is equal to
(N —1)! for integer arguments. Using successive integrations
by parts, the definite integral f(/,) has the evaluation®®

FAY=by_ (L) 6l
where, for positive integer M,
M x
Yy (x) =exp(—x) - (62)
m=0M:

Helstrom3* gives an approximation to s,,(x) as

>§+_

exp(—x)

.F:TS& M=) for x>M . (63)

We now relate the definite integral of Eq. (60) to the gen-

eralized Marcum Q-function Q,(a,B). Shnidman?®® gives a
power series expression for the generalized Marcum Q-
function as

On(@,B)=Py(0.50%/N,0.58?) , (64)
where
N-1
Py(xy)= M exp(— 5|+ M exp(— 5!
n—N 2
x| 1- M exp(— Z\SA kv . (65)

k=0
Examination of Egs. (61), (62), (64), and (65) shows that the

definite integral of Eq. (60) is related to the generalized Mar-
cum Q-function according to

x e N—1 — \
% E W e o0 . 120 . (66)
I

pMT(N)

Applying Eq.(21) and using the expression for the conditional
pdf po(I*) from Eq. (17) and the dual expression for p; (/*)
yields

1 v—1

I
Pt S [ £ exp(- Bl o ® dE
k=0

n-—1 I
+3 b, % (— &%) exp(E/ig) .0 (E) dE
k=0

v—1

+pg g ! M n»%m» exp(—&/iuo) o =) (E) dE
k=0
1
+ M iTm ) expE/) o ® dE [ . (67)

For the case when [,=0 (or v=m), Eq. (67) simplifies to

It

1 v—1

P=3 > im» exp(— /) dE
k=0 4

+Miﬁ £4) exp(—£/po) dE

v—1

NSIRLDS ST» exp(—£&/pg) dE ¢ . (68)
k=0
5L

Using Eq. (66), Eq. (68) simplifies further to
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P=

i —1
e M Bi ko MSFT:;—S@I.
1=0

n-1 .
X041 )+ X bud it

j=0

v~1

o B D ad T Q0.2 L1 )T | (69)
1=0

Similarly, for the case when /,<0 (or v<<m), P, is given
by

1 I A =
Po=g|wg ui ™ 2 bl " iH1-0,,
j=0

v—1

X0, |+ X auudt i
=0

j+i.

n—1
—- = !
e 2 b 10 (0.2 i) )
j=0

(70)

Using the expressions of a, and b, from Egs. (18) and (19)
and making the change of variables k=v—/—1 and
k=m—j— 1 yields the final expression for P, as in Egs. (22)
and (23).

9 Appendix C: Analytical Expansion of Eq. (38)
Substituting Eq. (37) into Eq. (38) results in

g q_
P oot [ v exp(—/ag) dr | do
0

o mTm"
(€2))]
or, using Eq. (66) from Appendix B,
P.= [ (ol 1 = 0,10.001p0) ) do 2
0
=1- % Pi(@l1) 2, (0.20710) " dor (13)
0
which implies that
P=1-R= [ puol) Q.00 M1 o ()
1)

or, after substituting in Eq. (37) and using the series expan-
sion of the generalized Marcum Q-function from Eq. (65) in
Appendix B,

1
P=]——0o
‘ h W@’

v—1

exp(—a/p,)

1300 / OPTICAL ENGINEERING / April 1994 / Vol. 33 No. 4

k
-1
Ly 4

x Ml_ 224&;318 33
k=ok! Ho
_ v—1 _ = -
= —— [+ Aduhai
::T:_Wlih

1

Xexp| —{—+— o | do (76)
Ro By
—v—k
1 S vk
- ke L, 1 an
piv=D1Z,  klpg Ko My
Setting r= ., /p, it follows that
V-1
+k—1
P=(1+n"> (" (A+r=H=* . (78
k=o\ vl

Making the change of variable j=v—k—1 yields the prob-
ability of error expression in Eq. (24).

10 Appendix D: Probability of Correct Detection
Among K Object Patterns [Eq. (40)]

Substituting Eq. (37) into Eq. (39) results in

K-1

x X

1
sn?zzfélt\_ exp(—yliuq) &v dx

w1
0 0
)
or, after using Eq. (66) from Appendix B,
p= \ Pl {1 =0, 10.Qx/pe) 2K dx . (80)
0

Using the binomial formula,®® and after interchanging sum-
mation and integration, we obtain

S I3 K—1 * Yok
P=3 (-1) b?:_}x@_paié B dx

k=0 k
(81)

or, after using the series expansion of the generalized Marcum
Q-function in Eq. (65) from Appendix B,

K—-1 3
JK~1
P=2 (=DM, % (¥l
k=0 0
vl 19k
1 x
X Mﬂ.ni»a__i =] dx, (82)
1=0"" Ro

which, after applying the multinomial formula,®® can be
written as
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*

! K-1
P.= M (= 1)* ‘.PzAk_F_vM
k=0 k ° Ik

_ il
- QGA x/pg)\ —
E * ko
X dx , (83)

where £, is taken over all nonnegative integers loylyseens
l,., for which

v—1

> L=k .

i=0

After using Eq. (37) for p,,(x|p,) and interchanging sum-
mation and integration, we obtain

%

Kt - DK -1 1
-3 (= D*( ) % ; -
=0 & v=1 wiv—1)!
(k—k=1[Tur|®
i=0
v=1 | et
Xexp(—x/p,) - exp(— \«\t‘ov dx .
J: Ko

j=0
(84)

This implies that

(=D K—1)! g

Fe= ?l:

3
k=0 vl

(K —k—Dty [T 6 tci vyt

i=0

¥

i=0

= |
X‘Tﬁ.x_ exp{ —x/p;) _I.— exp( —xl;/po)x™ | dx (85)
0

(= DXK—-1)!
M >

T:_ o
T k== D [Tyl

i=0

> v—1
X‘anxnﬁcl_trM:..v exp \RAP.TMV dx (86)
o i=1 B Po,

(= DXK=1)!
eIC_ M M |
k=0 I s
(K—k= Dty [T 100"
i=0

v—1

v—1+ > il |!
i=1
X 87
1 k :!_.
—+— | exp <+M;_.
K Mo i=1

v—1

(=D v=1+ D il

(K—11EG! i=1
Tw-! WfM o
(K—k—t I 61in*
i=0
X ! (88)
PO YA L
_:EA_-_ v —+= | —+—= A v

B o/ AR Po

K- 1!
n[MM

w=D! o %

v—1

(=D v-1+3 i,

(K —k—= DI +kr)*Ck+r"

where r=p, /pu. After setting

v—1

o= il;

i=1

v—1

g=I1uGy" .

i=0
we obtain the final expression for P, as given in Eq.(40).
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