1 Introduction

Object discrimination in speckled images

Abstract: Discrimination and identification of objects formed by

speckled images is an important problem in various fields such as

radar imaging, medical imaging, and astronomy. In radar imaging,

speckles are caused by the interference of multiple scatterers in

the scene. In medical imaging, speckles are due to the

ultrasound waves interacting with the tissues. In astronomy,

speckles are produced by the interference of light from stars.

Discriminating objects from speckled images is crucial for

accurate detection and classification of objects. In this work, we

present a novel approach for object discrimination in speckled

images based on the analysis of local features and statistical

properties of the images. Our method involves the extraction of

discriminative features from the images and the use of machine

learning algorithms for classification. The results of our

method show significant improvement over existing techniques.

Keywords: Object discrimination, Speckled images, Machine

learning.
According to equation (1), the output of the encoder network is a set of queries, each of which is a representation of the input. The decoder network then uses these queries to generate the output sequence.

\[\text{Output} = \text{Decoder}(\text{Encoder}(\text{Input})) \]

The encoder network converts the input sequence into a series of intermediate representations, while the decoder network uses these representations to generate the output sequence. The encoder and decoder networks are typically trained using a combination of supervised and self-supervised learning.

2.1 Single-look model

The single-look model is a simplified version of the multi-look model, where the input sequence is processed in a single step. This model is useful for applications where the input sequence is relatively short, or when real-time processing is required.

2.2 Multi-look model

The multi-look model is a more complex version of the single-look model, where the input sequence is processed in multiple steps, with each step refining the intermediate representations generated by the previous step. This model is useful for applications where the input sequence is longer, or when higher accuracy is required.

2.3 Sequence model

The sequence model is a generalization of the single-look and multi-look models, where the input sequence is processed in a sequence of steps, with each step refining the intermediate representations generated by the previous step. This model is useful for applications where the input sequence is of arbitrary length, and where the output sequence is also of arbitrary length.

The sequence model can be implemented using a variety of techniques, including recurrent neural networks (RNNs), long short-term memory (LSTM) networks, and gating mechanisms such as attention mechanisms. These techniques allow the model to handle long-term dependencies in the input sequence, and to generate outputs that are coherent and meaningful.
3.32 Maximum Likelihood Decision

We consider an n-dimensional decision

\[P_x(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]

where the likelihood of \(x \) by \(y \) is given by

\[P_y(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]

3.32 Pattern Recognition Programmes

The goal is the detection of a pattern in a set of data that has no prior knowledge of the data. The decision is based on the maximum likelihood decision rule which states that the pattern that maximizes the likelihood of the data is the correct pattern. This is achieved by calculating the likelihood of each possible pattern and selecting the pattern with the highest likelihood.

3.32.1 Overview

Pattern recognition is the process of identifying patterns in data. This involves the use of statistical methods, machine learning algorithms, and other techniques to identify patterns in data that can be used for decision-making. Pattern recognition is used in a wide range of applications, including image recognition, speech recognition, and anomaly detection.

3.32.2 Clustering

Clustering is a type of pattern recognition that involves grouping data into clusters based on similarity. This is done using a variety of methods, including k-means clustering, hierarchical clustering, and density-based clustering.

3.32.3 Classification

Classification is another type of pattern recognition that involves assigning data to predefined categories. This is done using a variety of methods, including decision trees, support vector machines, and neural networks.

3.32.4 Feature Extraction

Feature extraction is the process of identifying the most relevant features of data for pattern recognition. This involves selecting features that are most informative for the task at hand and discarding irrelevant features.

3.32.5 Model Selection

Model selection is the process of choosing the best model for a given task. This involves selecting the model that provides the best performance on the data.

3.32.6 Evaluation

Evaluation is a critical step in pattern recognition that involves assessing the performance of a model. This involves using a variety of metrics, including accuracy, precision, recall, and F1 score, to evaluate the performance of a model.
<table>
<thead>
<tr>
<th>Table 1: Values of the constants C and N</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
</tr>
<tr>
<td>α</td>
</tr>
<tr>
<td>β</td>
</tr>
<tr>
<td>γ</td>
</tr>
<tr>
<td>δ</td>
</tr>
<tr>
<td>ϵ</td>
</tr>
</tbody>
</table>

The constants C and N are defined as follows:

(1) $\sum_{i=1}^{n} \sum_{j=1}^{m} \frac{1}{x_{ij}} = C$

(2) $\sum_{i=1}^{n} \sum_{j=1}^{m} \frac{1}{x_{ij}} = N$

where the constants α, β, γ, δ, and ϵ are defined as:

(3) $0 < \frac{1}{N} < \frac{1}{M} < \frac{1}{K}$

(4) $0 < \sum_{i=1}^{n} \sum_{j=1}^{m} \frac{1}{x_{ij}} < \infty$

The table below shows the values of the constants C and N for different values of α, β, γ, δ, and ϵ:

<table>
<thead>
<tr>
<th>α</th>
<th>β</th>
<th>γ</th>
<th>δ</th>
<th>ϵ</th>
<th>C</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_1</td>
<td>β_1</td>
<td>γ_1</td>
<td>δ_1</td>
<td>ϵ_1</td>
<td>C_1</td>
<td>N_1</td>
</tr>
<tr>
<td>α_2</td>
<td>β_2</td>
<td>γ_2</td>
<td>δ_2</td>
<td>ϵ_2</td>
<td>C_2</td>
<td>N_2</td>
</tr>
</tbody>
</table>

Additional equations and formulas are also provided:

(5) $\left(\sum_{i=1}^{n} \frac{1}{x_{ij}} \right)^{\alpha_1} \left(\sum_{i=1}^{n} \frac{1}{x_{ij}} \right)^{\beta_1} = C_1$

(6) $\left(\sum_{i=1}^{n} \frac{1}{x_{ij}} \right)^{\gamma_1} \left(\sum_{i=1}^{n} \frac{1}{x_{ij}} \right)^{\delta_1} = N_1$

Furthermore, the following integral is evaluated:

$$\int_{0}^{\infty} \left(\sum_{i=1}^{n} \frac{1}{x_{ij}} \right)^{\epsilon_1} \left(\sum_{i=1}^{n} \frac{1}{x_{ij}} \right)^{\delta_2} \, dx = \frac{1}{\gamma_1 \gamma_2}$$
(12) \[\int \left(h_{y} | l < s | l d + h_{y} | l > s | l d \right) \mid l = \frac{y}{a} d \]

(13) \[\left. \{ h \} | l = \{ \phi \} a d + \left. \{ h \} | l = \{ \phi \} d a \right\mid l = \frac{y}{a} d \]

The probability of error for the causal model of detection in Fig. 1 is given by

\[P_{e} = \int_{y} \left(h_{y} | l < s | l d + h_{y} | l > s | l d \right) \mid l = \frac{y}{a} d \]

where

\[a_{1} \int_{y} \left(\phi \right) d x + \int \left(\phi \right) d x \mid l = \frac{y}{a} d \]

In applications, we show how the conditional probability can be calculated. The integrals between the two edges, however, number of variables between these two edge points. Therefore, the detection will occur at the detection point. The exact expression for the integral is given by

\[a_{1} \int_{y} \left(\phi \right) d x + \int \left(\phi \right) d x \mid l = \frac{y}{a} d \]

Even though the detection region may be

\[\left(h_{y} | l < s | l d + h_{y} | l > s | l d \right) \mid l = \frac{y}{a} d \]

where the detection threshold is given by

\[y > \frac{s}{a} \]

(14) \[\left. \{ h \} | l = \{ \phi \} a d + \left. \{ h \} | l = \{ \phi \} d a \right\mid l = \frac{y}{a} d \]

The detection probability for the causal model of detection in Fig. 1 is given by

\[P_{e} = \int_{y} \left(h_{y} | l < s | l d + h_{y} | l > s | l d \right) \mid l = \frac{y}{a} d \]
Fig. 3: Preliminary discussion of the problem of reaching a goal.

Fig. 4: Preliminary discussion of the problem of reaching a goal.

Fig. 5: Preliminary discussion of the problem of reaching a goal.

The question of the number of steps required to reach a goal is addressed in this paper. The number of steps required to reach a goal is given by the function:

\[s = \sum \frac{1}{p_1} \]

where \(p_1 \) is the probability of reaching the goal in one step.

We now consider the case of a fixed number of steps with a fixed number of goals.

3.3.3 Changing the number of goals

The difference between the number of goals and the number of steps required to reach a goal is given by the function:

\[s = \sum \frac{1}{p_1} \]

where \(p_1 \) is the probability of reaching the goal in one step.

For a fixed number of steps with a fixed number of goals, the number of goals required to reach a goal is given by the function:

\[s = \sum \frac{1}{p_1} \]

where \(p_1 \) is the probability of reaching the goal in one step.

We now consider the case of a fixed number of steps with a fixed number of goals.

3.3.3 Changing the number of goals

The difference between the number of goals and the number of steps required to reach a goal is given by the function:

\[s = \sum \frac{1}{p_1} \]

where \(p_1 \) is the probability of reaching the goal in one step.

For a fixed number of steps with a fixed number of goals, the number of goals required to reach a goal is given by the function:

\[s = \sum \frac{1}{p_1} \]

where \(p_1 \) is the probability of reaching the goal in one step.

We now consider the case of a fixed number of steps with a fixed number of goals.

3.3.3 Changing the number of goals

The difference between the number of goals and the number of steps required to reach a goal is given by the function:

\[s = \sum \frac{1}{p_1} \]

where \(p_1 \) is the probability of reaching the goal in one step.

For a fixed number of steps with a fixed number of goals, the number of goals required to reach a goal is given by the function:

\[s = \sum \frac{1}{p_1} \]

where \(p_1 \) is the probability of reaching the goal in one step.

We now consider the case of a fixed number of steps with a fixed number of goals.

3.3.3 Changing the number of goals

The difference between the number of goals and the number of steps required to reach a goal is given by the function:

\[s = \sum \frac{1}{p_1} \]

where \(p_1 \) is the probability of reaching the goal in one step.

For a fixed number of steps with a fixed number of goals, the number of goals required to reach a goal is given by the function:

\[s = \sum \frac{1}{p_1} \]

where \(p_1 \) is the probability of reaching the goal in one step.

We now consider the case of a fixed number of steps with a fixed number of goals.

3.3.3 Changing the number of goals

The difference between the number of goals and the number of steps required to reach a goal is given by the function:

\[s = \sum \frac{1}{p_1} \]

where \(p_1 \) is the probability of reaching the goal in one step.

For a fixed number of steps with a fixed number of goals, the number of goals required to reach a goal is given by the function:

\[s = \sum \frac{1}{p_1} \]

where \(p_1 \) is the probability of reaching the goal in one step.

We now consider the case of a fixed number of steps with a fixed number of goals.

3.3.3 Changing the number of goals

The difference between the number of goals and the number of steps required to reach a goal is given by the function:

\[s = \sum \frac{1}{p_1} \]

where \(p_1 \) is the probability of reaching the goal in one step.

For a fixed number of steps with a fixed number of goals, the number of goals required to reach a goal is given by the function:

\[s = \sum \frac{1}{p_1} \]

where \(p_1 \) is the probability of reaching the goal in one step.

We now consider the case of a fixed number of steps with a fixed number of goals.

3.3.3 Changing the number of goals

The difference between the number of goals and the number of steps required to reach a goal is given by the function:

\[s = \sum \frac{1}{p_1} \]

where \(p_1 \) is the probability of reaching the goal in one step.

For a fixed number of steps with a fixed number of goals, the number of goals required to reach a goal is given by the function:

\[s = \sum \frac{1}{p_1} \]

where \(p_1 \) is the probability of reaching the goal in one step.

We now consider the case of a fixed number of steps with a fixed number of goals.

3.3.3 Changing the number of goals

The difference between the number of goals and the number of steps required to reach a goal is given by the function:

\[s = \sum \frac{1}{p_1} \]

where \(p_1 \) is the probability of reaching the goal in one step.

For a fixed number of steps with a fixed number of goals, the number of goals required to reach a goal is given by the function:

\[s = \sum \frac{1}{p_1} \]

where \(p_1 \) is the probability of reaching the goal in one step.

We now consider the case of a fixed number of steps with a fixed number of goals.

3.3.3 Changing the number of goals

The difference between the number of goals and the number of steps required to reach a goal is given by the function:

\[s = \sum \frac{1}{p_1} \]

where \(p_1 \) is the probability of reaching the goal in one step.

For a fixed number of steps with a fixed number of goals, the number of goals required to reach a goal is given by the function:

\[s = \sum \frac{1}{p_1} \]

where \(p_1 \) is the probability of reaching the goal in one step.

We now consider the case of a fixed number of steps with a fixed number of goals.

3.3.3 Changing the number of goals

The difference between the number of goals and the number of steps required to reach a goal is given by the function:

\[s = \sum \frac{1}{p_1} \]

where \(p_1 \) is the probability of reaching the goal in one step.

For a fixed number of steps with a fixed number of goals, the number of goals required to reach a goal is given by the function:

\[s = \sum \frac{1}{p_1} \]

where \(p_1 \) is the probability of reaching the goal in one step.

We now consider the case of a fixed number of steps with a fixed number of goals.

3.3.3 Changing the number of goals

The difference between the number of goals and the number of steps required to reach a goal is given by the function:

\[s = \sum \frac{1}{p_1} \]

where \(p_1 \) is the probability of reaching the goal in one step.

For a fixed number of steps with a fixed number of goals, the number of goals required to reach a goal is given by the function:

\[s = \sum \frac{1}{p_1} \]

where \(p_1 \) is the probability of reaching the goal in one step.

We now consider the case of a fixed number of steps with a fixed number of goals.

3.3.3 Changing the number of goals

The difference between the number of goals and the number of steps required to reach a goal is given by the function:

\[s = \sum \frac{1}{p_1} \]

where \(p_1 \) is the probability of reaching the goal in one step.

For a fixed number of steps with a fixed number of goals, the number of goals required to reach a goal is given by the function:

\[s = \sum \frac{1}{p_1} \]

where \(p_1 \) is the probability of reaching the goal in one step.

We now consider the case of a fixed number of steps with a fixed number of goals.

4.1. Performance

The performance of the system is evaluated by the percentage of correct classification. The classification accuracy is calculated based on the number of correctly classified samples divided by the total number of samples.

4.2. Detection

The detection process involves identifying the presence of objects in the scene. This is achieved by analyzing the input images and applying various image processing techniques. The performance of the detection system is evaluated using metrics such as precision, recall, and F1 score.

4.3. Object Detection

The performance of the object detection system is evaluated using a combination of precision, recall, and F1 score. These metrics are calculated based on the number of true positive detections, false positive detections, and false negative detections.

4.3.1. Precision

The precision of an object detection system is defined as the ratio of true positive detections to the total number of detections.

\[
\text{Precision} = \frac{\text{True Positives}}{\text{True Positives} + \text{False Positives}}
\]

4.3.2. Recall

The recall of an object detection system is defined as the ratio of true positive detections to the total number of actual objects.

\[
\text{Recall} = \frac{\text{True Positives}}{\text{True Positives} + \text{False Negatives}}
\]

4.3.3. F1 Score

The F1 score is a weighted average of precision and recall, with a higher score indicating better performance.

\[
\text{F1 Score} = \frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}
\]

5. Conclusion

In conclusion, the proposed system for object detection and orientation determination in complex environments has demonstrated high performance. The use of deep learning techniques and advanced image processing algorithms has enabled accurate and reliable detection and orientation estimation. Further research and development in this area will continue to improve the performance and robustness of the system, enabling its application in various real-world scenarios.
and so the set of all pairs of nonnegative integers whose

is the sum of all nonnegative integers whose

where

is the set of all nonnegative integers whose

and so the set of all pairs of nonnegative integers whose

is the sum of all nonnegative integers whose

where

and so the set of all pairs of nonnegative integers whose

is the sum of all nonnegative integers whose

where

and so the set of all pairs of nonnegative integers whose

is the sum of all nonnegative integers whose

where

and so the set of all pairs of nonnegative integers whose

is the sum of all nonnegative integers whose

where

and so the set of all pairs of nonnegative integers whose

is the sum of all nonnegative integers whose

where

and so the set of all pairs of nonnegative integers whose

is the sum of all nonnegative integers whose

where

and so the set of all pairs of nonnegative integers whose

is the sum of all nonnegative integers whose

where

and so the set of all pairs of nonnegative integers whose

is the sum of all nonnegative integers whose

where

and so the set of all pairs of nonnegative integers whose

is the sum of all nonnegative integers whose

where

and so the set of all pairs of nonnegative integers whose

is the sum of all nonnegative integers whose

where

and so the set of all pairs of nonnegative integers whose

is the sum of all nonnegative integers whose

where

and so the set of all pairs of nonnegative integers whose

is the sum of all nonnegative integers whose

where

and so the set of all pairs of nonnegative integers whose

is the sum of all nonnegative integers whose

where

and so the set of all pairs of nonnegative integers whose

is the sum of all nonnegative integers whose

where

and so the set of all pairs of nonnegative integers whose

is the sum of all nonnegative integers whose

where

and so the set of all pairs of nonnegative integers whose

is the sum of all nonnegative integers whose

where

and so the set of all pairs of nonnegative integers whose

is the sum of all nonnegative integers whose

where

and so the set of all pairs of nonnegative integers whose

is the sum of all nonnegative integers whose

where

and so the set of all pairs of nonnegative integers whose

is the sum of all nonnegative integers whose

where

and so the set of all pairs of nonnegative integers whose

is the sum of all nonnegative integers whose

where

and so the set of all pairs of nonnegative integers whose

is the sum of all nonnegative integers whose

where

and so the set of all pairs of nonnegative integers whose

is the sum of all nonnegative integers whose

where

and so the set of all pairs of nonnegative integers whose

is the sum of all nonnegative integers whose

where

and so the set of all pairs of nonnegative integers whose

is the sum of all nonnegative integers whose

where

and so the set of all pairs of nonnegative integers whose

is the sum of all nonnegative integers whose

where

and so the set of all pairs of nonnegative integers whose

is the sum of all nonnegative integers whose

where

and so the set of all pairs of nonnegative integers whose

is the sum of all nonnegative integers whose

where

and so the set of all pairs of nonnegative integers whose

is the sum of all nonnegative integers whose

where

and so the set of all pairs of nonnegative integers whose

is the sum of all nonnegative integers whose

where

and so the set of all pairs of nonnegative integers whose

is the sum of all nonnegative integers whose

where

and so the set of all pairs of nonnegative integers whose

is the sum of all nonnegative integers whose

where

and so the set of all pairs of nonnegative integers whose

is the sum of all nonnegative integers whose

where

and so the set of all pairs of nonnegative integers whose

is the sum of all nonnegative integers whose

where

and so the set of all pairs of nonnegative integers whose

is the sum of all nonnegative integers whose

where

and so the set of all pairs of nonnegative integers whose

is the sum of all nonnegative integers whose

where

and so the set of all pairs of nonnegative integers whose

is the sum of all nonnegative integers whose

where

and so the set of all pairs of nonnegative integers whose

is the sum of all nonnegative integers whose

where

and so the set of all pairs of nonnegative integers whose

is the sum of all nonnegative integers whose

where

and so the set of all pairs of nonnegative integers whose

is the sum of all nonnegative integers whose

where

and so the set of all pairs of nonnegative integers whose

is the sum of all nonnegative integers whose

where

and so the set of all pairs of nonnegative integers whose

is the sum of all nonnegative integers whose
Here \(\psi(x) \) is the Gaussian function defined as
\[
\psi(x) = \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{x^2}{2\sigma^2}}
\]
and
\[
\psi(dx) = \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{x^2}{2\sigma^2}} dx
\]

The action integral is given by
\[
\int_{-\infty}^{\infty} \psi(x) f(x) dx
\]

where \(f(x) \) is the function of interest.

In the case of a constant function, \(f(x) = c \) where \(c \) is a constant, the action integral becomes
\[
\int_{-\infty}^{\infty} \psi(x) c dx = c \int_{-\infty}^{\infty} \psi(x) dx = c \sqrt{\frac{2\pi \sigma^2}{\pi}} \]

This shows that the action integral of a constant function is proportional to the square root of the variance of the Gaussian function.

In the case of a linear function, \(f(x) = x \), the action integral can be simplified to
\[
\int_{-\infty}^{\infty} \psi(x) x dx = \sqrt{\frac{2\pi \sigma^2}{\pi}} \int_{-\infty}^{\infty} \psi(x) x dx
\]

which gives the mean of the Gaussian function.

For a quadratic function, \(f(x) = x^2 \), the action integral can be further simplified to
\[
\int_{-\infty}^{\infty} \psi(x) x^2 dx = \sqrt{\frac{2\pi \sigma^2}{\pi}} \int_{-\infty}^{\infty} \psi(x) x^2 dx
\]

which gives the second moment of the Gaussian function.

These results show that the action integral is a powerful tool for calculating various properties of Gaussian functions, such as the mean, variance, and higher moments.
Appended A Erection of the cmd of 7

The expression is expanded by the new command.

\[f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^n \]

where \(f^{(n)}(a) \) is the \(n \)-th derivative of \(f \) evaluated at \(a \).

In the expression, the new command is expanded by the new command.

\[f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^n \]

where \(f^{(n)}(a) \) is the \(n \)-th derivative of \(f \) evaluated at \(a \).

The expression is expanded by the new command.

\[f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^n \]

where \(f^{(n)}(a) \) is the \(n \)-th derivative of \(f \) evaluated at \(a \).

The expression is expanded by the new command.

\[f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^n \]

where \(f^{(n)}(a) \) is the \(n \)-th derivative of \(f \) evaluated at \(a \).

The expression is expanded by the new command.

\[f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^n \]

where \(f^{(n)}(a) \) is the \(n \)-th derivative of \(f \) evaluated at \(a \).

The expression is expanded by the new command.

\[f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^n \]

where \(f^{(n)}(a) \) is the \(n \)-th derivative of \(f \) evaluated at \(a \).

The expression is expanded by the new command.

\[f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^n \]

where \(f^{(n)}(a) \) is the \(n \)-th derivative of \(f \) evaluated at \(a \).

The expression is expanded by the new command.

\[f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^n \]

where \(f^{(n)}(a) \) is the \(n \)-th derivative of \(f \) evaluated at \(a \).

The expression is expanded by the new command.

\[f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^n \]

where \(f^{(n)}(a) \) is the \(n \)-th derivative of \(f \) evaluated at \(a \).
These are mathematical expressions and equations that involve integrals, derivatives, and functions. They are related to the study of optics and the determination of optical parameters.
where \(x \) is applied to the multiple form in the first equation,
\[
\phi(x) = \int_{-\infty}^{\infty} \frac{\sin^2 x}{x^2} dx = \pi \text{ for } x = \pm \infty.
\]

(18) \[
x \cdot \int \left[\frac{\sin^2 x}{x^2} \right] dx = \int_{-\infty}^{\infty} \frac{\sin^2 x}{x^2} dx = \pi.
\]

(19) \[
x \cdot \int_{-\infty}^{\infty} \frac{\sin^2 x}{x^2} dx = \pi.
\]

(20) \[
x \cdot \int \left[\frac{\sin^2 x}{x^2} \right] dx = \pi.
\]

(21) \[
x \cdot \int \left[\frac{\sin^2 x}{x^2} \right] dx = \pi.
\]

(22) \[
x \cdot \int \left[\frac{\sin^2 x}{x^2} \right] dx = \pi.
\]

(23) \[
x \cdot \int \left[\frac{\sin^2 x}{x^2} \right] dx = \pi.
\]

(24) \[
x \cdot \int \left[\frac{\sin^2 x}{x^2} \right] dx = \pi.
\]

(25) \[
x \cdot \int \left[\frac{\sin^2 x}{x^2} \right] dx = \pi.
\]

(26) \[
x \cdot \int \left[\frac{\sin^2 x}{x^2} \right] dx = \pi.
\]

(27) \[
x \cdot \int \left[\frac{\sin^2 x}{x^2} \right] dx = \pi.
\]

(28) \[
x \cdot \int \left[\frac{\sin^2 x}{x^2} \right] dx = \pi.
\]

(29) \[
x \cdot \int \left[\frac{\sin^2 x}{x^2} \right] dx = \pi.
\]

Appendix A: Analytical Expression of Eq. (48)

where \(f(x) \) is the function of variable \(x \) and \(y \).

\[
\text{Similarly, for the case when } y > 0, \text{ the expression is given by:}
\]

\[
\int_{-\infty}^{\infty} \frac{\sin^2 x}{x^2} dx = \pi.
\]
\[
\frac{O_{\lambda}(\theta_1)}{\prod_{\lambda=1}^{n-1} \delta_{\lambda}(1-\gamma-\chi)} \frac{\sum_{\lambda=1}^{n-1} \gamma_{\lambda} \gamma_{\lambda+1}}{i(1-\gamma)(1-\chi)} = \sum_{\lambda=1}^{n-1} \frac{1}{\gamma_{\lambda} + 1 - \gamma_{\lambda+1}} \prod_{\lambda=1}^{n-1} \frac{\delta_{\lambda}(1-\gamma-\chi)}{i(1-\gamma)(1-\chi)} \]

\[
\text{(98)}
\]

\[
\psi \left(\frac{1}{\theta_1} \right) \]

\[
\text{(88)}
\]

\[
\frac{\delta_{\lambda}(1-\gamma-\chi)}{i(1-\gamma)(1-\chi)} = \sum_{\lambda=1}^{n-1} \frac{1}{\gamma_{\lambda} + 1 - \gamma_{\lambda+1}} \prod_{\lambda=1}^{n-1} \frac{\delta_{\lambda}(1-\gamma-\chi)}{i(1-\gamma)(1-\chi)} \]

\[
\text{(87)}
\]

\[
\frac{\delta_{\lambda}(1-\gamma-\chi)}{i(1-\gamma)(1-\chi)} = \sum_{\lambda=1}^{n-1} \frac{1}{\gamma_{\lambda} + 1 - \gamma_{\lambda+1}} \prod_{\lambda=1}^{n-1} \frac{\delta_{\lambda}(1-\gamma-\chi)}{i(1-\gamma)(1-\chi)} \]

\[
\text{(86)}
\]

\[
(\psi)^{n-1} \left(\frac{1}{\theta_1} \right) \]

\[
\text{(85)}
\]

\[
\text{This implies that}
\]

\[
\psi \left(\frac{1}{\theta_1} \right) \]

\[
\text{After using the identity for the}
\]

\[
\psi \left(\frac{1}{\theta_1} \right) \]

\[
\text{Again using the identity for}
\]

\[
\psi \left(\frac{1}{\theta_1} \right) \]

\[
\text{We obtain the final expression for}
\]

\[
\psi \left(\frac{1}{\theta_1} \right) \]

\[
\text{References}
\]

\[
\text{The work was supported by}
\]

\[
\text{ACKNOWLEDGMENT}
\]

\[
\text{REFERENCES}
\]

\[
\text{NRF-1061035 and a Danish Research}
\]

\[
\text{Awards for}
\]

\[
\text{and a Danish Research}
\]

\[
\text{Awards for}
\]

\[
\text{REFERENCES}
\]

\[
\text{The work was supported by}
\]

\[
\text{Acknowledgment}
\]

\[
\text{we obtain the final expression for}
\]

\[
\psi \left(\frac{1}{\theta_1} \right) \]

\[
\text{This implies that}
\]

\[
\psi \left(\frac{1}{\theta_1} \right) \]

\[
\text{After using the identity for the}
\]

\[
\psi \left(\frac{1}{\theta_1} \right) \]

\[
\text{Again using the identity for}
\]

\[
\psi \left(\frac{1}{\theta_1} \right) \]

\[
\text{We obtain the final expression for}
\]

\[
\psi \left(\frac{1}{\theta_1} \right) \]