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I. INTRODUCTION

Jet engine modulation (JEM) of radar returns is
a well-known phenomenon in the radar observation
of jet aircraft [1, 2, 3, ch. 28]. The phenomenon
occurs when a radar observes a jet airplane at an
aspect angle that allows electromagnetic radiation
to be backscattered from the moving parts of the
compressor and blade assembly of the jet engine. The
phenomenon has been observed at angles as great
as 60° from a nose-on aspect between the radar and
the observed aircraft [1]. Since the compressor and
blade assembly are in (rotational) periodic motion with
respect to the airframe of the observed aircraft, they
impart a periodic modulation on the signal scattered
from the engine structure in periodic motion. This
periodic modulation has been known to have two
significant consequences for the radar observation of
incoming aircraft: the generation of “noise” that can
sometimes impair the Doppler tracking of the observed
target, and the generation of a radar signature that
can be useful for target identification. Early studies
focused on JEM-induced Doppler tracking noise,
since the JEM-generated sidebands surrounding
the Doppler frequency of the target airframe could
confuse Doppler tracking algorithms attempting to
track the target Doppler, or at least contribute to noisy
estimates of the target Doppler [3, ch. 28]. This is not
a significant problem in most modern radar tracking
problems and is not considered further here.

We are concerned here with modeling the JEM
phenomenon in order to better understand and exploit
JEM target signatures. Investigations of the JEM
or JEM-like phenomena have been carried out by
Gardner [1], Hynes and Gardner [2], and Mensa [4].
There has been significant industrial effort in exploiting
JEM for radar target identification, but most of this
work has been proprietary.

Typically, JEM target identification processors are
spectral analyzers that estimate the periodogram of
the target aircraft return in order to extract Doppler
information imparted on the scattered electromagnetic
ficld by the rotational motion of the jet engine
components. They may employ additional processing
(e.g., cepstral processing, time or frequency scaling,
etc.) in order to extract information more easily
used in the classification algorithms, but spectral
analysis is the fundamental basis of their operation.
The estimated periodograms are then classified
into particular target classes using standard pattern
recognition techniques [9-11].

Most investigations of JEM have been experimental
in nature and have not placed great emphasis on the
modeling of the phenomenon. This is understandable,
since the goal of most studies has been to develop
radar target identification capabilities for a particular
radar system. As a result, the typical approach is an
empirical classification of JEM spectra using windowed
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periodogram estimates. Generally, this approach has
been quite successful, particularly if there were no
significant constraints on the allowed radar observation
time.

However, in many situations wherc JEM-based
target identification would be useful, it is not feasible
to allow long observation times. For example, in air
defense surveillance radar, JEM target identification
capabilities could be used to determine the type of
approaching aircraft. However, air defense radar
systems typically have stringent search schedule
requirements on their designated search volume.

The radar observation time required to identify
incoming jet aircraft by analyzing its JEM signature
can significantly detract from its surveillance time and
energy budget. The development of parametric models
accurately describing the JEM process could allow for
reliable target identification with a shortcr observation
time than is possible using periodogram estimates.
Such a model-based approach, for example, allows for
frequency resolution of autoregressive (AR) processes
that is greater than that provided by periodogram
methods [12]. Since JEM target identification is based
on estimates of the JEM spectrum, and since achieving
sufficient Doppler spectral resolution is a limiting
factor in the success of JEM target identification,
parametric modeling should make it possible to reduce
the required observation time.

Here we consider the problem of modeling
JEM returns and examine the characteristics of
measured JEM signals. In Section II, we consider
the problem of modeling JEM returns. We do this
first by considering the scattering properties of the
JEM-generating structure (JGS) when it is stationary
and modeling its scattering response to general
transmitted waveforms x(z), both for sinusoidal and
general transient x(¢). These results are useful for
understanding the continuity of scattering center
motion for sinusoidal radar illumination, which forms
the physical basis of our JEM model. It also provides
insight into the JGS scattering response for wideband
waveforms or narrowband waveforms at different
carrier frequencies. Next we consider the problem of
characterizing the scattering when the JGS is put into
rotational harmonic motion. We note the scattering
mechanism by which a periodic modulation is imparted
on the scattered waveform and propose a general
model for characterizing scattered JEM waveforms.

We then examine the problem of modeling
JEM in the more specialized case of making JEM
mecasurements with a radar operating at a single
transmitting frequency, corresponding to a pulse
Doppler radar system with (relatively) narrowband
pulse waveforms. This model is appropriate for the
radar measurements we present. In this case, we
note that the overall JEM can be decomposed into an
amplitude modulation (AM) component and an angle
(phase or frequency) modulation component, and that

these two components can be considered separately
without loss of generality.

In Section III, we present measurements of JEM
made using a modified Hughes pulse-Doppler radar
system. After discussing the characteristics of the radar
system relevant to JEM measurement, we cxamine
the characteristics of the measured JEM signatures,
compare them with the JEM model presented in
Section II, and present some of the difficulties involved
in measuring the phase-modulation model parameters
as a result of sample aliasing and phase ambiguities for
phase excursions outside of the interval [0,27). Then
we consider the characteristics of the measured JEM
signatures useful for radar target identification.

Finally, in Section IV, we summarize the results of
our study to this point and outline further problems
that need to be considered in JEM modeling.

. MODELING OF JEM SCATTERING STRUCTURE

A. General Considerations in Modeling JEM

We first examine the scattering characteristics
of the JGS when it is nor in motion. Assume that
the JGS is at a sufficient.distance R from the radar
illuminator that the magnitude of the illuminating field
is constant over the scattering body (i.e., 3v/Vigs < R,
where Vigs is the volume enclosing the JGS) and that
the transverse extent of the body is small compared
with the first Fresnel zone of the antenna aperture
(i.e., AX and AY <« VRM, where AX and AY are
the transverse dimensions of the JGS, and A is the
wavelength of illumination). This being the case, the
stationary JGS can be characterized by a scattering
distribution 7(r) [5, 6]. The distribution 7(r) has the
interpretation of being the intensity per unit volume of
the backscattered electric field at spatial position r. It
is thus proportional to the scattering density per unit
volume at the point r. Since 4(r) is a function defined
in three-dimensional (3-D) space, we can decompose
it into its Fourier components A(K), where K = 2k is
the wave vector difference between the scattered wave
and the incident wave, and k = (2w /A)F,,, where £,
is the unit vector pointing from the radar aperture to
the scatterer. The received electric field E(K) can be
written as

EK)x / y(r)e <> g,
Vigs

From this expression, we note that E(K) is
continuous in K for any v(r) confined to a finite
region of R as a consequence of fundamental
properties of, Fourier wave synthesis using a wavevector
region of finite support. Our goal in examining this
expression is to understand the frequency response
behavior of a complex stationary scattering structure.,
This allows characterization of the JGS scattering
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characteristics for a wide variety of illuminating radar
waveforms.

This problem can be moved strictly into the time
domain. Under the radar-target scenario outlined
above, the interference pattern received at the radar
antenna is strictly a function of the distance of the
clemental scatterers of the extended target from the
antenna. If an impulsive plane wave is transmitted
by the radar, the received signal h(z) received is
characterized by the round-trip time delay and
magnitude of the constituent clemental scatterers as
observed by the radar for fixed transmit and receive
antenna polarizations. So h(z) is effectively a rarget
impulse response [13]. Hence, if the transmitted
waveform is e(f) and the received waveform is v(r),
then

v(t) = /_: e(T)h(t — r)dr.

When the JGS is in motion, it can no longer be
described by a linear time-invariant system. The
scattering process is still linear, but now it is time
varying.

The physics of our particular problem allows for
some simplification over that of a general time-varying
lincar system. For a given illumination frequency and
fixed position of the JGS, the returned electric ficld
is equivalent to that of a point target of the proper
reflectivity and at the proper range. If the individual
elemental scatterers of the JGS are physically moved
in a continuous manner, both the phase and the
amplitude of the received field scattered from each
clement changes in a continuous manncr. Hence,
continuous motion of the JGS results in a continuous
change in the received electric field, since the sum
of a finite humber of continuous functions is itself a
continuous function. Here, by “continuous motion”
we mean that the motion is constrained such that
the component of the scattered ficld contributed by

“each individual scatterer changes both continuously in
amplitude and phase.

The significance of the continuity of the scattered
electric field with continuous motion of the JGS
is that the effective scattering center (the point
target which characterizes the return from the JGS)
changes continuously with the motion of the JGS.
This means that since in practice the motion of the
JGS is periodic, the motion and amplitude of the
effective scattering center of the JGS is also periodic.
So, we can characterize JEM as a general periodic
modulation, assuming we have compensated for the
Doppler shift resulting from radial aircraft motion.

Consider the JEM imparted on a sinusoidal
radar waveform of frequency fp. In general, the
received waveform x(r) can have both AM and angle
modulation due to JEM. Hence we can write x(r) as

x(t) = a(t)8i2"f°’+i¢(t). (1)

Here a(t) is the amplitude modulation (4M) function
and ¢(r) is the phase-modulation function for the
observed signal. In general, a(r) and ¢(r) are a
function of the transmitter frequency fo. We can
rewrite x(f) as

x(t) = a(t)e'¢Vei2fo!
= z(t)e! ™ fo! )

where z(r) = a(t) exp[i¢(r)] is the complex envelope
of x(¢). Since, as we can see from (2), the spectrum
of x(¢) is a frequency-shifted version of the spectrum
of z(z), it suffices to consider the spectrum of the
complex envelope 2(¢) in order to determine the
characteristics of the JEM spectrum.

The complex envelope z(f) is made up of the
product of the functions a(r) and w(r) = exp[i¢(¥)].
That is,

z(t) = a(t)e’?®)

= a(tyw(r). 3)

We can determine the spectrum Z(f) of 2(z) from
the spectrum A(f) of a(¢) and the spectrum W(f)
of w(r), since by the convolution theorem of Fourier
transforms,

_/ ” a(tyw®)e " dr = A(f)« W (f)

-0

and thus
Z(f) = A(f) « W (f)
-/ T AW - P}, @)

Since JEM is a periodic time-varying process,
the complex envelope z(¢) = a(t)exp[i¢(¢)] is a
time-varying function. If this periodic JEM process
has period T, then the functions a(¢) and ¢(¢) are also
periodic with period 7.

Since a(r) is periodic in ¢ with period T, we can
express a(t) with a complex-exponential Fourier series
of the form

a(t)= Z anei21rfpnt’ (5)

n=—oo

where f, = 1/T,. The Fourier coefficients {a,} are
given by '

1 (% .
a, = =— / a(t)e & ent g, ©)
TP Q

Taking the Fourier transform of a(r), assuming the
order of integration and summation can be exchanged,

BELL & GRUBBS: JEM MODELING AND MEASUREMENT FOR RADAR TARGET IDENTIFICATION 75



we have
A(f) = / a(t)e™ "2 f 14y
—00
oo 00
=f [ E a"eizxf,k:] o327t gy
—0 lk=-o0

o0 oo
- S [ e
-0

k=—co
oo

= Z an6(f — fpk)-

k=—~co

™

We note that since a(r) is a real function, the
coefficients {a,} are conjugate-symmetric in n. We
note as well that the resulting spectrum A(f) is a line
spectrum with spectral lines occurring at frequencies
that are integer multiples of f, = 1/T,.

We now turn our attention to the angle modulation
component w(r) and its spectrum W(f). Since ¢(r)
is periodic with period T, and hence its fundamental
frequency f, = 1/T,, we can express it as a Fourier
scries in real-polar form:

$(t) = Basin(mfpnt + 1Pn).

n=0

&)

Here 3, is the Fourier magnitude coefficient and 1, is
the phase angle of the nth harmonic. We approximate
¢(f) by the function dp(¢), the function made up of
the M th order partial sum of (8):

M
Pu @)= Pasinfpnt + Pn).

n=]

It can be shown [14, ch. 14] that e*#«() can be written
as the Fourier series expansion

oo ) M
oifu) = Z Z [ka,-(ﬁj)

ky=—00 ky=-co |j=1
M M
X exp [i > km ¢,,,] exp [i > on fpkmt] .
m=1 m=1
Hence the waveform w(t) is approximately

00 oo M
wyR Y e Y [HJ,‘,.(ﬂ,-)]

ky=—oco * kny=—co | j=t

M M
X €Xp [iz k,,,z/)m] exp [iZwapkmt} 9
m=1 m=1

Here Ji() is a kth order Bessel function of the first
kind.

Since by selecting M sufficiently large, the
mean-square error of this approximation can be made
arbitrarily small, we assume it is an equality. Then by

calculation of the Fourier transform of the right side of
(9), we have that the spectrum W (f) of w(r) is

W)=Y nus(f-1fp) (10)

I=—00

M M
Z { {:H‘Iki (ﬁ,)} €Xp [i ka ¢‘m] }
(r,ka)eS | =1 m=1
(11)

and S; is the set if all M -tuples of integers whose sum
18 1.

Our parametric model for the JEM spectrum,
is presented in (1) through (11). The model is an
idealization in the sense that the JEM return is
assumed to be perfectly periodic. In practice, we
expect that due to variations in target aspect as a
function of time, the modulation may not be perfectly
periodic over many periods. However, as the measured
data indicates, the return from the JGS appears
periodic over several rotation periods.

Note that both the AM and phase-modulation
factors in z(r) produce line spectra with frequency
lines which are integer multiples of the frequency
f» corresponding to the JEM phenomenon period
of T, (cf,, (7) and (10)). Note in particular that
the offset frequencies of the sidebands from the
carrier in the angle modulation are determined by
the JGS rotation frequency and are independent of
the radar transmission frequency fp. Changing the
frequency of transmission fj does, however, change the
magnitude of the phase-modulation indices 5..., 8y
(from the physics of the Doppler effect, the 3, are
proportional to fp) and this, in turn, changes the
Fourier coefficients {y;} as can be seen in (11).

Since Z(f) is the convolution of two line spectra with
frequency components at integer multiples of f,, Z(f)
is also a line spectrum with frequency components at
integer multiples of f,.

In order to gain intuitive insight into the nature
of angle modulation in JEM, we examine an example
with a simple sinusoidal ¢(z)

where

7=

@(t) = Bsin2w f 1.

This corresponds to the scattering center of the
JEM-producing mechanism varying its range in a
sinusoidal manner, that with respect to some reference
range Ry, the range from the target to the radar is
given by Ro + D/2sin2n fpt. Here D is the length of
the path over which the sinusoidally varying scattering
center movés in range, and corresponds to the total
range deviation or “range glint” duc to the harmonic
motion of the scattering center of the JEM-producing
scatterers. The modulation index § at a transmitter

(12)
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frequency of fp is
p="t = (13)

Hence, D
o) = —Zc—osinz':r Fot. |

Here c is the speed of light and A is the wavelength of
the transmitted waveform. It would be naive to assume
that the phase modulation present in JEM can be
realistically modeled as a sinusoidal motion of the JGS
scattering center in range. In general, we would expect
ér(t) 1o have many tcrms in order to be a reasonable
approximation of the ¢(¢) corresponding to a real
JEM signal. However, this single sinusoid example
does provide insight into the angle modulation
characteristics of JEM.

In this case, W(f) as given in (10) and (11)
simplifies to

W)= > LB —fp) (14)

k=—00

In order to determinc the characteristics of this line
spectrum, we consider some properties of Bessel
functions of the first kind [15, ch. 4].

The first point we note is that the Bessel functions
{7 ()} have the following symmetry/antisymmetry

property in k:

J_x(), for k odd;
x0={ 15)
—J_x (), for k even.
Next we note that for § <1,
h(P)~1,
NP ~ g (16)
(B)=0, fork>1

Finally, we note that asymptotically,

wo-(3) (). 4o

w3

(7
For a small modulation coefficient 8 < 0, we have
from (14), (15), and (16) that
W)~ + 26— - 5o+ 1) 19)

A plot of this line spectrum appears in Fig. 1(a).
Note that most of the energy is in the f = 0 spectral
line with a small portion of the energy distributed
asymmetrically in the spectrum between the spectral
lines at frequencies f = f, and f = —f.

For a modulation index 8> 1, we can see from
(17) that energy is distributed somewhat equally among
a large number of spectral lines. Using Carson’s

W(f)

H(f)

ERRRIRITY
RS

(a) Spectrum H(f) for 8 < 1. (b) Spectrum H(f) for
B>l

Fig. 1.

approximation for wideband FM, it can be shown
that the energy is distributed approximately over the
frequency band [—ff,5fp] [16]. A plot of such a
spectrum W (f) is shown in Fig. 1(b).

The spectrum Z(f) of the complex JEM envelope
z(t) is the convolution of W (f) with the AM spectrum
A(f). Thus for 8 < 1, we have that

Z(f) = A(f).

As [ becomes larger but is still substantially less than
one, we have that the JEM spectrum becomes slightly
asymmetric. This can be seen by convolving a typical
A(f) with the resulting W (f) in these circumstances.
This is shown in Fig. 2.

Some investigators of JEM have suggested that
JEM is primarily an AM phenomenon. Others have,
however, noted the presence of slight asymmetries in
some JEM spectra which would not be present in a
purely amplitude modulated signal. As was noted in
the example above, one possible and likely source of
this asymmetry is the presence of angle modulation
due to the periodic motion of the scattering center
of the JEM generating structure. As noted in the
above example, even low modulation index angle
modulation can generate significant asymmetries in
JEM spectra, In general, as the angle modulation
indices f; increase toward 1 and then become larger,
the angle modulation spectrum contains asymmetries
that produce an overall asymmetric JEM spectrum
Z(f). Unfortunately, the degree of symmetry is not
a reliable indicator of the modulation indices. The
reason for this is that for ¢(r) with even moderatc
harmonic content, the intermodulation products
generated by the nonlinear phase-modulation process
result in a large number of intermodulation-pair

(19)
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(©

Fig. 2 (a) Spectrum H(f) for @ < 1. (b) Spectrum A(f). (¢)
Spectrum Z(f) = A(Fy«W(f).

contributors to each spectral line in W(f), as can be
seen from (10) and (11).

In general, we do not expect ¢(z) to be sinusoidal
as in our example, but it is periodic in T, and can thus
be represented by a Fourier expansion of ¢(7). This
very simple example, however, does give insight into
how angle modulation can generatc asymmetries in
the JEM spectrum W (f). It also gives plausibility to
the notion that angle modulation plays an important
role in JEM, as it explains the asymmetries observed
in JEM spectra that cannot be attributed to AM alone.

Recall from (18) that the overall JEM specttum
Z(f) = A(f)=«W(f), where A(f) and W (f) arc the
AM and angle modulation spectra, respectively. Recall
as well that, from (7), (8), (10), and (11) that A(f) can
be completely characterized by the set of exponential
Fourier coefficients {a,} of a(t) and W (f) can be
completely characterized the sct of polar Fourier
coefficients {(8,,1,)} of the funciton ¢(¢). This means
that the JEM signal under considerations can be
completely characterized by the Fourier analysis of
the signals a(r) and ¢(r). So if we can estimate the
functions a(r) and ¢(¢) from our radar measurements,
we can characterize the observed JEM signal by the
Fourier coefficients {a;} and {(8,,%,)}. From these
sets of Fourier coefficients, a useful set of features for
target identification can, in principle, be derived, since
{4;} and {(Bn, %)} completely characterize the jet

Anti-aliasing A/D In-Phase
x Filter Convener Sanaple
y |
i
Receiver Coherent
Input Qsciliator i
| Sampling Rate T
-60° . |
Te Transmitter ]
Anti-aliasi ! A/D
nti-aliasing “'/\ Quadrature
’ - Filter Converter Sample

Fig. 3. Quadrature detector model for pulse-Doppler radar
receiver.

engine induced AM and angle modulation, respectively.
Unfortunately, the parameters {(8,%,)} cannot be
easily determined from the measured data as is seen
when we consider measured data. Thus, although our
parametric model provides a useful forward model

for describing the generation of JEM spectra, the
inverse problem associated with parameter estimation
in this model is difficult. The primary difficulty with
the inverse problem associated with this model is the
27 ambiguity of the phase function when determined
from the measured radar data. This, coupled with the
fact that aliasing can be present with the PRF-induced
(pulse repetition frequency) sampling rate, make the
removal of this phase ambiguity difficult. We discuss
these problems in Section III. Fortunately, these
problems do not destroy all useful data for target
identification in the measured data. Hence, target
identification based on JEM signatures is possible even
if inversion of the model 1o determine the complete set
of descriptive parameters {a,} and {(0u,%s)} is not
possible.

m. JEM MEASUREMENT WITH A PULSE-DOPPLER
RADAR

In our analysis, we are interested in characterizing
the AM a(r) and the phase modulation ¢(z) from
measurements made using a pulse-Doppler radar
with a quadrature detector. The bascband output
measurements consist of complex (in-phase and
quadrature) samples of the received signal at a
sampling ratc equivalent to the PRF of the radar
system. A block diagram of the quadrature detector
model we are considering is shown in Fig. 3.

The pulse-Doppler radar used to make the JEM
measurements was a Hughes experimental radar,
modified to enable the collection and recording
of radar data at a high PRF using long coherent
pulse trains. The system is a pulse-Doppler radar
system having a rotating phased-array antenna.

The phased-array antenna beam is phase-steered in
elevation and frequency-steered in azimuth. When

an aircraft 4s acquired and it is desired to make JEM
measurements, the radar goes into JEM measurement
mode, Here the phase shifters for elevation steering
are frozen and a frequency is selected to fix the
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TABLE I
JEM Measurement Radar System Parameters

Parameter Value
Frequency Band X-Band
JEM Mode PRF 25 KHz

Antenna Azimuth Beamwidth (3dB) | 2°

Antenna Elevation Beamwidth (3dB) ] 2°

Pulse Type Non-linear FM
Pulse Bandwidth 1MHz

No. Pulses in JEM-mode Pulse-Train | 1024 )

P

antenna beam in azimuth with respect to the antenna.
The antenna beam is thus frozen with respect to the
phase-array antenna aperture. The rotation of the
phased-array antenna, however, continues to sweep
the antenna beam in azimuth at a constant radial
frequency.

The requirement of high pulse repetition translates
into a high sampling rate and a resulting high Nyquist
frequency. This minimizes the cffects of aliasing.
However, as we will see, aliasing is still 2 problem for
the wideband angle modulation associated with JEM
returns. Table I gives key parameters of the modified
radar system. '

In order to directly reconstruct a(r) and ¢(¥),
we must obtain sampled versions a[n] and ¢[n],
respectively, at a sufficiently high sampling rate such
that aliasing is not a problem. We now investigate
this problem in some detail, focusing on a(r) and ¢(¢)
separately as allowed by the decomposition of (4).

In order to obtain a sampled version a[n] of the
envelope signal a(t), we need only take the modulus
of the complex sequence formed by the in-phase and
quadrature (I and Q) pair samples. That is, if 7[n)
and Q[n] are the I and Q samples corresponding to
the baseband signal z(¢), then the complex sample
sequence z[n] corresponding to z(z) is given by

z[n] = In]+iQ[n]

= a[n]exp{ig[n]} (20)
and hence
afn] = \/|I*[n] + Q?[n]. (21)

Measurements made on typical jet aircraft with the
pulse-Doppler measurement radar indicate that the
PRF used corresponds to a sampling rate which is
sufficient to represent the AM a(r) with negligible
degradation due to aliasing. So a[n] as computed in
(21) serves as a sample sequence representative of
the envelope a(r). Unfortunately, this is not true in the
case of the phase modulation ¢(r).

Examining (20) one might expect that ¢(z) could
be represented by the sample sequence ¢[n] =

arctan[Q([n]/I{n]]. As we will see, this is not generally
the case.

As previously noted, the baseband signal z(r) can
be written in the form

z(e) = a(t)exp{ip(r)}-

In order to obtain ¢(f), onc must take the complex
logarithm of the function w(t) = exp{i¢(¢)}. Thus

ip(t) = loglexp{id(?)}]-

The problem we encounter when attempting to
evaluate this logarithm is that the complex logarithm
is not a single-valued function.

For any non-zero number z = rexp{if}, the
function logz has infinitely many values. This can be
seen by noting the fact that incrementing ¢ by any
interger multiple of 27 does not change the value of
z, while it does change the value of logz. Thus

logz = logr +i(8 + 27k)

for any integer k, and logz is a multivalued function.
In order to determine ¢(¢) or its corresponding sample
sequence ¢[n] from (I[n],Q[n]), we must resolve this
multiple of 27 ambiguity.

Now suppose that, for the purposc of illustration,
our function ¢(z) is

#(t) = 37sinz.

Then a plot of ¢(¢) would appear as shown in Fig. 4(a).
This is a continuous function of r. However, if we take
¢(¢) to be the principle value of the complex logarithm
of log{i¢(t)}, we get the function shown in Fig. 4(b).
This is not a continuous function of 7. Let us define
this function, the principle value (PV) of ¢(¢), as &(¢):

&(7) = PV{4(r)} = ¢(t)mod 2.

From z(¢), we can find ®(r) given z(f). But we wish
to find ¢(¢). We simply calculate ®(¢) as the PV of the
argument of 2(¢) and add or subtract the appropriate
multiples of 27 in order to obtain a continuous
function. This function is ¢(¢). In order to determine
the proper multiple of 27 to be added to ®(¢) in order
to obtain ¢(f) we must be able to determine the value
of ®(¢) for all ¢ in some interval T defined as

T = {Vr:¢(r) € 2T —¢,21 +¢€)},

for any € > 0. We can then determine the proper
multiple of 27 to be added to ®(¢) at a given time ¢
in order to determine the value of ¢(r).

This process of adding the proper integer multiples
of 27 to ®(¢) in order to obtain ¢(r) is called phase
unwrapping. We can define the phase unwrapping
function X (t;®) such that

(1) = &(t) + 277 (1; ®),

where T(z; &) takes on the appropriate integer value to
make the above relation true.
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Our problem in determining the phase function
#(2) is complicated by the fact that we do not have
access to the function &®(z), but rather to ®{n], a
discretely sampled version of it, sampled at a rate
corresponding to the PRF of the radar, and given by

&[n] = arctan [%[ ]]]

Our goal of constructing ¢(¢) from &[n] =
arctan[Q[n]/I[n]] is complicated by two facts: 1)

The sampling rate may not be sufficient to represent
either ®(¢) and ¢(¢) without aliasing. 2) There is a 27
ambiguity in the value of ¢[n] if it is taken to be equal
to ®[r] as calculated from the measured data.

Note that as a result of the discontinuities in ®(z),
it generally has greater bandwidth than ¢(z). So even
if the PRF-imposed sampling rate is sufficient to
represent ¢(r) without aliasing, it may not be sufficient
to represent ®(r). For the PRF-imposed sampling rates
of the experimental measurement radar system, ®(z)
was found to have too large a bandwidth to apply
standard phase unwrapping techniques based on the
phase of successive samples. In spite of this, reliable
target identification can be performed using this data
since most of the information required for target
identification is present in the aliased modulo 27 phase
samples. Still, phase unwrapping would be useful to
better observe and understand the characteristics of
JEM from measured data.

We now investigate JEM characteristics using a
measurement from the experimental radar system. The
measurements were made in the JEM measurement
mode with the aircraft at a range of approximately
10 Km. The particular engine on the observed aircraft
was known to be a two-stage engine with the first stage
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Fig. 5. (a) Amplitude of measured JEM data sequence, (b) Phase
of measured JEM sequence.

having a 21-blade fan and the second stage having a
33.blade fan. The aircraft was at sufficient altitude such
that clutter returns were not significant problem and so
the radar was operated without moving target indicator
(MTI) cancellation. The data sequence is made up of
1024 I and Q samples from the quadrature detector.
Fig. 5(a) shows a plot of the amplitude sequence
a[n] = \/1?[n] + Q*[n] and Fig. 5(b) shows a plot of
the phase sequence ®[n] = arctan(Q[r]/I[n]). Note
the envelope of the sequence a[n]. The windowing
of the amplitude data is the result of the antenna
pattern being superimposed on the data as the antenna
sweeps past the target. In this data, the Doppler
offset resulting from the radial motion of the aircraft
with respect to the target has been estimated and
removed by rnulnplymg the complex data sequence by
exp(—i2w fDn), where fD is the estimated radial target
Doppler frequency normalized for the radar PRE

In order to analyze the characteristics of this JEM
data, we examine the periodograms and cepstra of the
amplitude afn), the angle modulation sequence wln] =
exp{i®[n]}, and the complex envelope sequence z[n] =
a[n]w([n]. In addition, we find the autocorrelation
sequence R, [n] a useful tool for observing the
periodicitics present in the complex envelope sequence
z[n].

In order to observe the correlation properties
of the complex envelope sequence z[n], we use the
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unbiased autocorrelation sequence estimate [12]

N-m-1

Z z[n)z*[n + m}

n=0

1

Rl = 5 pm)

and then calculate the normalized autocorrclauon
sequence magnitude given by

R.[m
Hl = | 7 o |
Let the discrete Fourier transform of an N-point

sequence be denoted using the operator Fy{-} such
that

;
s

N-1
X[k] = Fn{x[n]} = ) x[n]exp{—i2nkn/N},

n=0
k=0,..

The corresponding inverse transform can be written as

N-1
x[n) = FRUX[K]} = 1 ZX[k] exp{i2rnk/N},

m=0

n=0,...,.N-1L

The discrete windowed periodogram of the sequence
x[n] is often used as a crude estimate of its power
spectrum; it is defined as

N—1 2
Pl = & 1 > x[n)p[n]exp{—i2rkn/N}|
n=0

k=0,..,N-1

The window function p[n] is used to weight the signal
x[n] to minimize “lcakage” or end cffects that result
due to the fact that the sequence x[r] being analyzed
is not perfectly periodic in N [12]. Note that, as can be
seen from Fig. 5, some implicit windowing of the JEM
data occurs as a result of the radar antenna pattern
and the scanning motion of the antenna.

The real cepstrum of the sequence x[n] is used to
visualize the presence of periodic components in a
signal [17, 18]. It is particularly useful in examining
JEM signals. The real cepstrum for the windowed
sequence x{n] with window p[n] is

Cn[n] = Fy'{log|Fa{x[np{n]}},

n=40,..,N-1.

We now investigate the autocorrelation sequence,
spectra, and cepstra of the measured data to determine
if the JEM induced by the jet engine meets our
expectations in terms of the JEM model described in
@), (6), (7), (10), and (11).

We first examine the autocorrelation sequence
f,[m] of the signal z[n] shown in Fig. 5. This
autocorrrelation sequence is shown in Fig. 6. It
is plotted only for nonnegative m, since R,[m] is

LN-1.
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Fig. 6. Normalized autocorrelation sequence f;{m] corresponding
to complex envelope sequence z[n].

Hermitian-symmetric, and hence f;[m] is a symmetric
sequence in m. Note the strong periodic structure

in the signal as indicated by the strong lines in

the autocorrelation sequence. The lines indicated
with an 4(A4; and A7) correspond to full-rotation
increments of the JGS, whereas the lines indicated with
a B(B,...,Bg) correspond to 1/3-rotation increments
of the JGS. This form for the correlation sequence

is what would be expected from our model, as the
data sequence z[n] is assumed to be a finite segment
of the sample sequence of a periodic time function
z(t). In addition, it is known that for the engine under
observation there is a strong symmetry in the JGS at
1/3-rotation, since the number of blades in the two
compressor stages has a greatest common divisor
(GCD) of 3. The period of rotation corresponding

to the A-lines is approximately 9.099 ms whereas the
period corresponding to the B-lines is approximately
3.033 ms.

Looking at the next finest set of lines in the
correlation sequence, the lines indicated as C-lines,
we note that there are 21 C-lines for each A4-line, or
equivalently, 21 C-lines apparently correspond to the
periodic component corresponding to the first-stage
fan-blade return. The period of corresponding to the
C-lines is 0.433 ms.

The next obvious step would be to look for a finer
set of lines in the correlation sequence corresponding
to the second-stage compressor fan blades. There
should be 33 such lines for each A4-line, since there
are 33 second-stage compressor blades per revolution
of the JGS. The period corresponding to each
of these lines is 0.275 ms. These lines are much
more difficult to detect visually by observing the
autocorrelation function. We can, however, note their
presence indirectly through the presence of the strong
correlation peak occurring at the period of 1/3-rotation
(B-lines). The strong 1/3-rotation symmetry being due
to the fact that GCD(21,33) = 3.

We now cxamine both the spectrum and the
cepstrum of the various modulation mechanisms
associated with the JEM signature. In Fig. 7, the
magnitude of the spectrum and the cepstrum of the
complex signal sequence z[n] is displayed. In Fig, §,
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the magnitude of the spectrum and the cepstrum of
the signal envelope sequence a[r] is displayed. In

Fig. 9, the magnitude of the spectrum and the cepstrum
of the phase sequence ®[r] is displayed. In Fig. 10,
the magnitude of the spectrum and the cepstrum

of the complex phase-modulation sequence win] is
displayed. In observing the cepstra and spectra for
each of these signal sequences related to the JEM
signature, we gain insight into the role each plays in
conveying information about the observed aircraft
engine, providing insight into their relative importance
in the design of JEM-based aircraft identification
systems.

First we examine the spectrum and cepstrum
of the complex signal sequence z[n] as shown in
Fig. 7. The spectrum in Fig. 7(a) shows a number of
strong spectral lines. Looking at the strongest periodic
sequence of these lines, we note that they have a
spectral spacing of approximately 2.3 KHz. This is
approximately 21 times the fundamental rotation
frequency of 110 Hz (corresponding to the A-lines
in Fig. 5). The signal cepstrum in Fig. 7(b) shows
periodicities corresponding to the A-, B-, and C-lines
present in the autocorrelation sequence of Fig. 5.

Next we examine the spectrum and cepstrum of
the envelope sequence a[n]. These are given in Fig. 8.
Examining the amplitude of the envelope spectrum, we
once again note the presence of spectral peaks. There
are strong spectral peaks at multiples of approximately

82

Amplitude (dB)

Fig.

Amplitude (dB)

Amplitude (dB)

Amplitude (dB)

Envelope Spectrum

100,
o0}
80
70
J
it
| ]
460 [ 8 10 12
Frequency (KHz)
(a)
0 Envelope Cepsaum
Period {msec)
C)]
8. (a) Amplitude of envelope spectrum. (b) Envelope
cepstrum.
60 Phase Spectrum
50 =
40 W J
i
i ! i
30t ¥ I !j 1 W ’ i
20 E
10F E
o
0 ] 8 10 12
Frequency (KHz)
(a)
0 Phase Cepstrum
-10,
-20)
-30H8
u‘ i1, o s | ‘ H
it il il il :
40! LIt Iy i [l | &1
bt v ‘ ! i 1l 151
Wi K
-50 i
© | |
(1 10 15 20

Period {msec)

()

Fig. 9. (a) Amplitude of phase spectrum. (b) Phase cepstrum.
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2.3 KHz, the frequency corresponding to 21 times the
fundamental frequency of JGS rotation. Note also the
presence of harmonic lines at 1/7 this frequency. These
lines occur at frequency intervals of approximately
330 Hz, the frequency corresponding to 1/3 of a JGS
rotation. The presence of these components is to be
expected, considering the strong 1/3 rotation symmetry
in the JGS.

Examining the cepstrum of the envelope sequence
in Fig. 8(b), we note that it has lines corresponding to
the 1/3-rotation symmetry (B-line) and full-rotation
symmetry (A-line) periods just as the cepstrum of
the signal sequence of Fig. 7(b). Comparing both the
spectrum and the cepstrum of the signal sequence
(Fig. 7) and the envelope sequence (Fig. 8), it appears
that there is more information readily available
characterizing the jet engine under observation in

_the complete signal scquence than in the envelope
sequence alone. Thus it appears that there is useful
information in the phase scquence ®[n] and the
phase-modulation sequence w[n]. We now cxamine
the spectra and cepstra of these sequences.

The spectrum and the cepstrum of the phase
sequence ®[n] is shown in Fig. 9. Examination of
both the spectrum and cepstrum indicate little of
the periodic structure present in the signal sequence
z[n] or the envelope sequence a[n]. In the phase
spectrum of Fig. 9(a), we observe the strongest
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spectral peaks occurring at 680 Hz, 6.2 KHz, 8.5 KHz,
9.8 KHz, and 10.8 KHz. Looking back at the signal
spectrum, spectral peaks can be observed at all of
these frequencies except at 9.8 KHz. In no instance,
however, do these frequencies correspond to dominant
spectral peaks in the spectrum of the signal sequence
z[n]. Comparing the frequencies of these peaks in the
phase spectrum to those in the envelope spectrum, we
note that the only significant corresponding peaks in
the envelope spectrum are at 9.8 KHz and 10.8 KHz.
Examining the cepstrum of the phase signal @[n]
in Fig. 9, there are very few distinct cepstral lines that
stand out. The three cepstral lines corresponding to
1/3-rotation, 2/3-rotation, and one full rotation, which
were visible both in the cepstrum of z[n] and the
cepstrum of a[n], are clearly visible, but they do not
stand out distinctly as in these previous two cases. In
general, it appears that it is much more difficult to
pick useful information out of the phase’s spectrum
and cepstrum, but before making this conclusion, we
examine the phase-modulation spectrum and cepstrum.
The spectrum and the cepstrum of the
phase-modulation sequence w[n] = exp{i®[n]} is
shown in Fig. 10. Note that the spectrum and cepstrum
of w{n)], which is a function of ®[n], exhibit many of
the same characteristics as the spectrum and cepstrum
of the complete signal z[n]. Note in particular that the
spectrum of w[n] in Fig. 10(a) has dominant spectral
peaks at all of the frequencies at which dominant
spectral peaks occur in the spectrum of z[n] shown
in Fig. 7(a). A visual inspection of the spectrum
indicates that most all of the information available
in the spectrum of z[n] useful for characterizing the
JGS from which this signal arose is also available in
the spectrum of the phase-modulation sequence wn].
Examining the cepstrum of the phase-modulation
signal w[n] in Fig. 10(b), we note that the 1/3-rotation
period line and the full-rotation period line are clearly
visible, just as in the cepstrum of the signal z[n] shown
in Fig. 7. Note, however, that the cepstrum of w[n]
does not exhibit the 2/3-rotation linc as clearly as the
cepstrum of the cepstrum of 2[n] (Fig. 7(b)). In the
cepstrum-based JEM target identification algorithm
with which we've experimented, the phase-modulation
cepstrum alone was sufficient to accurately identify
the observed aircraft type. This was not true of either
the envelope cepstrum or the phase cepstrum. This
is not to say that the necessary information is not
present in the envelope a[n] and phase ®[n]—indeed
the information must be present in ®[n] if it is present
in w[n]—but just that for the particular cepstral-based
aircraft identification algorithm with which we
experimented, the information was not extractable on
a consistent basis from either the cepstrum of a[n] or
@[n].
The question arises as to how the JGS harmonic
information can be so readily observable in the
spectrum and cepstrum of wn] = exp{i®[n]} but not

83



in ®[n] itself. The answer is found in the fact that
®[n] is a phase ambiguous version of the true phase
sequence ¢[n]:

&(¢) = PV{4(1)} = ¢(t)mod 2.

Recall that this is the phenomena we saw in the
example of a simple sinusoidal phase excursion of

the JGS scattering center in Fig. 4 when the total
phase excursion is greater than 27, where a phase
change of 27 corresponds to a two-way range change
of )/2. The net result of this result in the example

of Fig. 4 is to take a single frequency sinusoidal
waveform ¢(f) and map it into a complex periodic
waveform &(t) of significantly wider bandwidth. This
same bandwidth expansion process occurs for more
complex waveforms ¢(¢) as well. Evidence provided by
measured waveforms as displayed in Figs. 9 and 10, as
well as physical arguments based on the range extent
of the JGS and the wavelength of the illuminating
radar lead us to believe that phase excursions of many
times the 27 phase ambiguity interval are present.
Note, however, that this does not change the behavior
of the spectrum and cepstrum of w[n] = exp{i®[n]}
as in all cases, exp{i®[r]} = exp{i¢[n]}, even though
®[n] # ¢[n]- This is why we still see the correct
components in the spectrum and cepstrum of w[n].

V. DISCUSSION AND CONCLUSIONS

Having proposed a model for JEM signatures,
discussed some of its properties, and examined the
characteristics of a measured JEM signature, we

_now present some observations we have made in our
modeling and measurement study of the JEM and note
their implications to the design and implementation
of JEM target identification algorithms in radar
systems. We divide this discussion into two major topic
areas: summary of modeling and measurements, and
implications for JEM target identification.

A. Summary of Modeling and Measurements

We have developed a parametric model for JEM
spectra. The model describes the periodic modulation
of the signal scattered from the JGS resulting from
the periodic motion of the JGS with respect to the
airframe being observed. The physical basis for this
modeling approach was considered through continuity
of motion of the effective scattering center of the JGS
with respect to the rotational motion of the JGS for
narrowband waveforms. The modulation imparted by
the periodic motion of effective scattering center of the
JGS with respect to the airframe results in a periodic
modulation in the return when we compensate for the
airframe radial Doppler component.

We then examined the specific case of JEM
signatures for single frequency illumination, noting
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that the results are applicable to the analysis of JEM
for radars employing narrowband waveforms. We
derived expressions for the form of the spectral
characteristics of JEM. This is done by noting that
the overall spectrum can be decomposed into the
envelope spectrum (corresponding to AM imposed
on the scattered sighal by JGS motion) and the
phase-modulation spectrum (corresponding to the
phase modulation imposed on the scattered signal

by JGS motion). The overall signal spectrum is the
convolution of these two spectral components. This
allows the spectral characteristics to be completely
specified in terms of the spectral characteristics

of these two components. We next considered the
spectral characteristics of the envelope modulation
and phase-modulation components of the JEM signal.
We noted that both components consisted of line
spectra with a fundamental frequency of 1/T,, where
T, is the period of JGS rotation. We derived formulas
for the spectral line strengths of the envelope and
phase-modulation spectra which corresponded to the
spectra amplitude and phase modulation for signals
made up of multiple sinusoidal tones. This provided us
with a model to study JEM sighatures measured with
the experimental radar stystem.

Next we examined the JEM signature
corresponding to an aircraft track for which the
characteristics of the JGS were known. For this track,
the autocorrelation sequence of the measured signal,
as well as the spectrum and cepstrum of the signal
sequence, envelope sequence, phase sequence, and
phase modulation sequence all exhibited properties
predicted by the JEM model developed here. It
was also noted that these features could not be
readily observed in the phase sequence, although the
information is obviously there because it is present in
the phase-modulation sequence, which is a function of
the phase sequence. The reason that the information
is not easily discernible is the mod 27 ambiguity
in the calculated phase sequence, as discussed in
Section 111. As we noted, this ambiguity is irrelevant
in the mapping from the phase sequence to the
phase-modulation sequence. The ambiguity does,
however, make it difficult to study the phase sequence
in terms of the measured I and Q values measured
at the output of the quadrature detector. In fact, this
appears to require sophisticated phase unwrapping
algorithms which we have not yet successfully
developed. Simple phase unwrapping algorithms [18,
sect. 10.4] have not been effective. This is most likely
due to the fact that it is possible for the scattering
center to move more than 27 in phase in a single
sampling instant. The development of more effective
model-based phase-unwrapping algorithms would allow
direct use of the parametric JEM model developed
in Section II. In addition, it would allow further
study of the phase-modulation characteristics of
JEM.
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B. Implications for JEM Target ldentification

Although the reason for studying JEM signatures
is to provide a method for radar target identification,
we have said little about the actual pattern recognition
techniques that might be used to classify or identify
aircraft from their JEM signatures. The details of
the various approaches that might be taken are not
considered here. References [9, 10, 11, 19] discuss
various pattern recognition techniques that may be
applied to this problem. A number of approaches,
either “low-level” techniques that attempt to identify
the target directly by operating directly on the
and Q data or spectral signature of the target,
or “high-level” techniques that attempt to extract
high-level information about the JGS such as number
of engine compressor stages, number of blades per
compressor stage fan, GCD between number of
blades in each compressor stage fan, engine rotation
rate range, etc., and use this information to parse a
classification tree [20] or look up the aircraft type in
a database, can be applied. A general overview of
pattern recognition techniques can be found in [21].

It is also possible that neural networks may provide a
possible method of performing the target identification
function [22].

When using low-level pattern recognition
techniques to identify aircraft, several factors must be
kept in mind. First of all, the JGS rotation ratc for a
given aircraft will vary, since engines are called upon
to provide different thrusts under diffcrent operating
conditions. Thus algorithms based on processing
low-leve] data must compensate for this. Fortunately,
the spectral characteristics of the JEM signal as a
function of JGS rotation rate are well understood
through the modeling presented in Section II. Based
on these results, preprocessing to normalize engine
rotation rate can be performed by time axis scaling
to provide a normalized fundamental frequency of JGS
rotation. This greatly simplifics the pattern recognition
task for target identification.

The effects of changes in frequency band of
operation on low-level JEM descriptions or signatures
may provide the single greatest difficulty in applying
these techniques to JEM target identification. The
ability to map reference signatures of specific aircraft
types collected on one radar system to another
radar system operating in a completely different
frequency band may be important for building a
comprehensive database of reference signatures for the
particular system on which JEM target identification
is to be implemented. Detailed frequency response
characteristics of the JGS structures encountered will
generally be unavailable (especially for hostile aircraft)
and this may present a significant problem for JEM
target identification system development.

High-level descriptions or signatures are more
robust to changes in operating frequency than low-level

descriptions. This is because we are generally dealing
with physical characteristics of the JGS that are not
a function of observation frequency. However, some
of these high-level descriptions may be more easily
determined at some observation frequencies than at
others, Even if only some of the high-level descriptors
can be reliably determined, it may still be possible
to reliably identify a target based on a partial list

of descriptors. This fact, coupled with the ease of
mapping high-level descriptions from one frequency
band to another make the high-level approach seem
very attractive. The question then becomes one of
what types of features should be included in the
high-level description. We have already mentioned
several and have actually gone through the process
of manually extracting them when we examined the
plots in Figs. 5-10. In particular, it appears that the
signal autocorrelation function and either the signal
cepstrum or phase-modulation cepstrum arc most
useful for this purpose. Still, robust algorithms for
extracting these descriptors must be developed if a
high-level JEM based target identification system

is to be reliable.

The primary reason for considering parametric
modeling of JEM signals relates to the fact that with
accurate parametric models of a signal being analyzed,
it is possible to obtain better estimates characterizing
the signal for a given signal sequence length than when
using a nonparametric technique. As an example of
this, consider the example of AR spectral estimation
[12]. It is well known that, for an observed signal
sequence of fixed length, if the observed signal
can be accurately modeled as an AR process, it is
possible to get much higher resolution power spectral
density (PSD) estimates of the signal using an AR
spectral estimation technique than when using a
nonparametric technique of power spectral estimation
such as a periodogram or Welch estimate of the
PSD. This fact is directly applicable to PSD-
based JEM target identification algorithms and
more generally applicable to all methods of target
identification.

Our investigation of JEM target identification
algorithms using periodogram spectra and cepstra have
indicated that spectral resolution and the abiltity to
resolve closely spaced spectral lines is essential for
reliable target identification. For the experimental
periodogram and cepstrum-based identification
algorithms with which we have worked, observation
times of 25 ms or more with the experimental radar
system allowed for reliable identification between five
different aircraft types. For observation times less than
this, identification performance deteriorated rapidly.
We believe that these failures can be attributed to
a loss in spectral resolution in the periodogram of
the JEM signal resulting from decreased cbservation
time, although a detailed analysis of these effects has
not been carried out. Note that in order to obtain a
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25 ms time-on-target for the experimental radar system
with a nominal azimuth antenna bandwidth of 2°
requires an antenna revolution period of approximately
4.5 s. In fact, one of the modifications made to the
experimental radar system was an antenna drive gear
ratio reduction to slow the antenna rotation rate to 1/3
its original rate so that sufficiently long observation
times could be achieved. This is too slow a scan

rate for most air defense applications. As a result

of the problems arising from the long observation
times required when using nonparametric spectral
estimates, it seems reasonable to attempt to reduce

the observation time using parametric models.

In examining parametric models for use in
modeling JEM for use in parametric estimation,
perhaps the most obvious model to use would be
the model developed in Section II, described by
4), (6), (7), (10), and (11). However, least-squares
estimation of the phase parameters {3,,1,} from
either win] or the ambiguous phase sequence ®[n] is a
difficult nonlinear least-squares problem, and finding
the solution {5 ..., Bas, P, ...,4m } achieving the
global minimum square error is not practical for even
moderate values of M. One solution to this problem
would be to develop an effective phase unwrapping
algorithm to obtain the unambiguous phase sequence
¢[n] from ®[n]. Such a phase unwrapping algorithm
that can reliably perform this task has not been found.
Instead of using the proposed parametric model for
estimation purposes, it may be possible to use others
which are more computationally manageable.

Since the JEM spectrum is a line spectrum with
strong harmonic lines, one possible parametric model
that may be useful is the AR random process model
[12]. The AR model is well suited to modeling the
sharp spectral peaks present in the JEM spectrum.

In addition, a number of computationally efficient
algorithms exist for calculating the AR model
parameters, These parameters could then possibly be
used as target identification features in a low-level
description using shorter observation times. Such
techniques may have the potential to make JEM target
identification a practical target identification technique
for air defense radar systems.

ACKNOWLEDGMENT

We wish to thank James Rakeman and Robert
Wanzong of the Tactical Radar Systems Department at
Hughes Aircraft Company for many useful discussions
with respect to JEM modeling and the experimental
radar system. We also wish to thank Doug Miknuk,
Phillip Ardron, and Todd McLaughlin for their
help in making tracking and processing software
modifications to the experimental radar operating
system, allowing the collection and recording of the
JEM data presented here.

86 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 29, NO.1 JANUARY 1993

REFERENCES

{1}

(2

)

14

(5]

(6]

(8]

191

(10]

(11]

12

[13)

f14]

[13)

[1g]

(7]

(18]

9

Gardner, R. E. (1961)
Report 5656, Naval Research Laboratory, Washington, DC,
Aug. 1961,

Hynes, R., and Gardner, R. E. (1967)

Doppler spectra of § band and X band signals.
EASTCON 1967, Supplement to IEEE Transactions on
Aerospace and Electronic Systems, AES-3, 6 (Nov. 1967),
356-365.

Skolnik, M. 1. (1970)

Radar Handbook.
New York: McGraw-Hill, 1970.

Fliss, G. GG., and Mensa, D. L. (1986)

Instrumentation for RCS measurements of modulation
spectra of aircraft blades.

In Proceedings of the IEEE 1986 National Radar
Conference, Los Angeles, Mar, 12-13, 1986.

Gjessing, D. T. (1986)

Target Adaptive Matched Illumination Radar: Principles
and Applications.
London, Peregrinus, Ltd., 1986.
Blackridge, J. M. (1989)
Quantitative Coherent Imaging.
New York: Academic Press, 1989,
Bell, M. R. (1988)

Information theory and radar: Mutual information and the

design and analysis of radar waveforms and systems.
Ph.D. dissertation, California Institute of Technology,
Pasadena, 1988,
Bell, M. R. (1993)
Information theory and radar waveform design.
To appear in JEEE Transactions on Information Theory.
Duda, R. O, and Han, P. E. (1973)
Pattern Classification and Scene Analysis.
New York: Wiley, 1973.
Simon, J. C. (1986)
Fatterns and Operators.
New York: McGraw-Hill, 1986.
Therrien, C. T. (1989)
Decision, Estimation, and Classification.
New York: Wiley, 1989.
Marple, 8. L. (1987)
Digital Spectral Analysis with Applications.
Englewood Cliffs, NJ: Prentice-Hall, 1987,
Ruck, G. T, Barrick, D. E., Stuart, W. D., and Krichbaum,
C. K. (1970)
Radar Cross Section Handbook.
New York: Plenum, 1970,
Middleton, D. (1960}
Introduction to Statistical Communication Theory.
New York: McGraw-Hill, 1960,
Hildebrand, F B. (1976)
Advanced Calculus for Applications (2nd ed.).
Englewood Cliffs, NI: Prentice-Hall, 1976.
Pierce, J. R, and Posner, E. C. (1980)
Introduction to Communication Science and Systems.
New York: Plenem, 1980.
Rabiner, L. R., and Gold, B. (1975)
Theory and Application of Digital Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, 1975.
Oppenheim, A. V., and Schafer, R. W. (1975)
. Digital Signal Processing.
‘Englewood Cliffs, NI: Prentice-Hall, 1975.
Fu, K.-8. (1982)
Syntactic Pattern Recogpition and Applications.
Englewood Cliffs, NJ: Prentice-Hall, 1982,



{20]

f21]

BELL & GRUBBS: JEM MODELING AND MEASUREMENT FOR RADAR TARGET IDENTIFICATION

Breiman, L., Friedman, J. H,, Olshen, R. A., and Stone, C. 1. [22] Lippmann, R. P. (1987)

(1984) An introduction to computing with ncural nets.
Classification and Regression Trees. IEEE Transactions on Acoustics, Speech, and Signal
Belmont, CA: Wadsworth International Group, 1984, Processing (Apr. 1987).

Young, T. Y., and Fu, K. S. (Eds.) (1986)
Handbook of Pattern Recognition and Image Processing.
New York: Academic Press, 1986.

Mark R. Bell was born in Long Beach, CA, in 1959. He received the B.S. degree
in electrical engineering from California State University Long Beach, in 1981 and
the M.S. and Ph.D. degrees in electrical engineering from California Institute of
Technology, Pasadena, in 1982 and 1988, respectively.

From 1979-1988, he was employed by Hughes Aircraft Company, Fullerton,
CA. From 19811988, he was affiliated with the Radar Systems Laboratory at
Hughes, where he held the positions of Member of the Technical Staff and
Staff Engineer, working in the areas of radar signal processing, electromagnetic
scattering, radar target identification, and radar systems analysis. While at Caltech,
he held a Hughes Masters Fellowship from 1981-1982 and a Hughes Doctoral
Fellowship from 1984-1988. Since August 1989, he has been on the faculty of
Purdue University, West Lafayette, IN, where he is an Assistant Professor in
the School of Electrical Engineering. His research interests are in the areas of
information theory, source coding, synthetic aperture radar, and radar and sonar
signal processing.

Dr. Bell is a member of Tau Beta Pi, Eta Kappa Nu, the American
Mathematical Society, and the Society of Photo-Optical Instrumentation Engineers.

Robert A. Grubbs received the A.S. degree in ground radar technology from

the Community College of the Air Force, the B.S. degree in engineering from
California State University Fullerton, and the M.S. degree in electrical engineering
from the University of Southern California, Los Angeles, in 1979, 1983, and 1986,
respectively.

From 1972-1979 he was an Air Traffic Control Radar Technician with the
United States Air Force. From 1979-1980 he was a radio technician with Travel
Electronics, Irvine, CA. From 1980-1989, he was employed by Hughes Aircraft
Company, Ground Systems Group, Fullerton, CA. From 1980-1983 he worked
as a student engineer and was a Hughes Bachelors Scholar. From 1983-1985
he was a member of the Technical Staff and a Hughes Masters Fellow at the
University of Southern California. From 1985-1989 he was a Group Head, Target
Identification Group in the Tactical Radar Systems Department. Since October
1989, he has been a Staff Engineer with Martin Marietta Advanced Development
and Technology Operations, San Diego, CA, where he has been involved in the
design, analysis, and testing of prototype radar, sonar, and infrared surveillance
systems.



