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Informa tion Theory and Radar Waveform  Design 
Mark R. Bell 

Abstract-The use of information theory to design waveforms 
for the measurement  of ex tended radar targets exhibiting reso- 
nance  phenomena  is investigated. The  target impulse response 
is introduced to model  target scattering behavior.  Two radar 
waveform design problems with constraints on  waveform energy 
and  durat ion are then solved. In the first, a  deterministic target 
impulse response is used  to design waveform/receiver-fi lter pairs 
for the opt ima1 detection of ex tended targets in additive noise. 
In the second,  a  random target impulse response is used  to 
design waveforms that maximize the mutual information between 
a  target ensemble and  the received signal in additive Gaussian 
noise. The  two solutions are contrasted to show the difference 
between the characteristics of waveforms for ex tended target de-  
tection and  information extraction. The  optimal target detection 
solution places as  much energy as  possible in the largest target 
scattering mode  under  the imposed constraints on  waveform 
durat ion and  energy.  The  optimal information extraction solution 
distributes the energy among  the target scattering modes  in order 
to maximize the mutual information between the target ensemble 
and  the received radar waveform. 

Index Terms-Mutual information, radar, matched filter, radar 
waveforms, target impulse response,  ex tended radar targets, 
target scattering resonance,  ul tra-wideband radar. 

I. INTRODUCTION 

S HORTLY after the publication of Shannon’s A Muthe- 
matical Theory of Communication [l] in 1948, Woodward 

and Davies began investigating the application of information 
theory to radar [2]-[5]. In 1953, Woodward published the 
book Probability and Information Theory with Applications to 
Radar [6], in which he presented both an introductory tutorial 
of information theory from the viewpoint of radar detection 
as well as a summary of results from his investigations 
with Davies. From these works, it is apparent that, at its 
inception, information theory was considered applicable to 
radar problems, particularly in the area of radar detection. The 
rationale behind these early investigations of the application 
of information theory to radar problems was summarized by 
Woodward [6, p. 621 as follows: 

The problem of reception is to gain information from a 
mixture of signal and unwanted noise, and a considerable 
literature exists on the subject. Much of it has been 
concerned with methods of obtaining as large a signal- 
to-noise ratio as possible on the grounds that noise 
ultimately limits sensitivity and the less there is of it 
the better. This is a valid attitude as far as it goes, 
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but it does not face up to the problem of extracting 
information. Sometimes it can be misleading, for there is 
no general theorem that maximum output signal-to-noise 
ratio insures maximum gain of information. 

In their work, Woodward and Davies use information-theoretic 
ideas to formulate the a posteriori radar receiver, which in 
the case of bandlimited additive white Gaussian noise results 
in the correlation receiver. They did not, however, extend the 
rationale noted above to the problem of radar waveform design 
for the purpose of extracting information about a target. 

Since the time of Woodward’s and Davies’ investigations, 
a  few researchers have considered the relationship between 
information theory and radar detection and estimation prob- 
lems, but none of them have considered the use of information 
theory in radar waveform design. Frost and Shanmugan [7] 
examined the use of information theory in order to calculate 
the information content of synthetic aperture radar images. 
They then used the information content of synthetic aperture 
radar images generated using noncoherent integration with a 
variable number of looks in order to determine a measure 
of radiometric resolution. W ilcox [8] considered the problem 
of designing waveforms from the radar ambiguity function 
for narrowband signals. Naparst [9] recently investigated the 
problem of wideband waveform design and processing to 
resolve targets in dense target environments. None of these 
investigations, nor any others that could be found, addressed 
the issue of using mutual information in the design of radar 
waveforms and processing. 

In this paper, we consider the problems of radar waveform 
design for optimal target detection (maximum output signal-to- 
noise ratio) and optimal target information extraction, when the 
radar targets are modeled as extended radar targets. Extended 
radar targets are targets of significant physical extent, so they 
no longer behave as simple point targets which scatter a  scaled 
and attenuated version of the transmitted waveform back to 
the radar receiver, but instead they exhibit interference and 
resonance effects in the scattered electric field as a result of 
the target’s physical extent. 

The first problem, that of waveform design for the optimal 
detection of radar targets that exhibit resonance phenomena, 
involves the design of radar waveforms and receiver-filters that 
maximize the output signal-to-noise ratio at the receiver-filter 
output under constraints on transmitted waveform energy and 
duration. The second problem deals with the design of radar 
waveforms which maximize the mutual information between 
an ensemble of extended targets and the receiver-filter output. 
The waveforms of this second problem will be shown to be 
optimal, in a certain sense, for characterizing or identifying the 
target under observation. As we will see, information theory 
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provides a unique insight into the relative characteristics of the 
two families of waveforms that arise in the solution of these 
two problems. 

The waveforms solved for by maximizing the mutual infor- 
mation between the random target ensemble and the received 
radar signal will be called information extraction waveforms 
or estimation waveforms. We  call these waveforms estimation 
waveforms because of the relationship between mutual infor- 
mation and the lower bound on parameter error as expressed 
through the rate distortion function. We  do not explicitly 
discuss parameter estimation with these waveforms using 
standard parameter estimation techniques. Rather, the sense in 
which these are good estimation (or classification) waveforms 
is discussed in Section II-C. 

In Section II, we formulate the problems of waveform 
design for target detection and target estimation. In formulating 
these waveform design problems, we will introduce the idea 
of target impulse response for both deterministic targets and 
random target ensembles. The target impulse response will 
allow us to represent the scattering characteristics of the radar 
target using an approach motivated by signal theory rather than 
electromagnetic scattering theory. We  then formulate the two 
waveform design problems, considering the models that give 
rise to them and the rationale behind the optimality criteria 
used in formulating the problems. 

In Section III, we summarize the major results obtained 
for both the detection waveform problem and the estimation 
waveform problem. In Theorem 1, we present an algorithm 
for the design of optimal waveform/receiver-filter pairs for 
detection of targets with known impulse response under con- 
straints on waveform duration and energy. We  also give 
the resulting signal-to-noise ratio obtained using the optimal 
waveform/receiver-filter pairs. In Theorem 2 we present the 
main result on estimation waveforms. Theorem 2 describes 
the spectral characteristics of waveforms that maximize the 
mutual information between a Gaussian target ensemble and 
the received radar waveform. 

In Section IV, we solve the problem of finding the 
waveform/receiver-filter pair for optimal extended target 
detection and prove Theorem 1. In Section V, we consider the 
problem of designing optimal estimation waveforms and prove 
Theorem 2. In Section VI, we present examples of the design 
and performance of waveforms for both the optimal detection 
and estimation problems. We  also compare the characteristics 
of the optimal detection and estimation waveforms. Finally, 
in Section VII, we summarize the results of our investigation. 

II. FORMULATION OF PROBLEMS 

A. Target Impulse Response 

Radar targets are commonly modeled as point tar- 
gets-targets of infinitesimal physical extent. The resulting 
simplification is that the reflected radar waveform observed at 
the receiver is an amplitude-scaled and time-delayed replica of 
the transmitted waveform. For narrow bandwidth waveforms, 
the point target model is often valid, but as the waveform 
bandwidth Af becomes comparable to c/2Az, where c is the 

speed of light and AZ is the spatial extent of the radar target 
in range, the point-target model does not accurately reflect 
the behavior of radar scatterers. As AZ becomes comparable 
to c/2Af, the return must instead be viewed as coming 
from several-or even a continuum-of points in an extended 
region of space. As a result, the received radar signal is the 
sum of multiple delayed versions of the transmitted waveform. 
Targets exhibiting such scattering behavior are called extended 
targets. 

The propagation and scattering of electromagnetic waves, 
as they typically occur in radar measurement, are linear 
processes, obeying the principles of superposition and homo- 
geneity. One common method of studying linear processes 
such as scattering is to view’ them as linear systems and 
to study the input/output relationships of their representative 
linear systems. In addition to being linear, the system may also 
be time-invariant, as would be true if the target was stationary 
with respect to the radar. The system impulse response is 
then a convenient tool for characterizing the input/output 
relationships of the system. 

To apply linear systems analysis to scattering problems, we 
will first define the input and output quantities to be the electric 
field present at a  pair of points in space. We  will assume a 
fixed, although not necessarily identical, polarization at each 
point. The input e(t) is the 3 polarized electric field at point 
Pr. We  assume that the plane wave is propagating along the 
line connecting Pr and the origin. If the plane wave is incident 
on the target located at the origin, a  scattered electric field 
will be present at an arbitrarily chosen observation point Pz. 
We  select an arbitrary polarization f’ at P2 and view as the 
output of our linear system the electric field v(t) at point 
P2 with polarization P’. Thus, restricting the direction and 
polarization of the incident plane wave and selecting a point P2 
for measurement of the scattered wave for a fixed polarization, 
we have that the relationship between e(t) and w(t) is that 
of a  linear system. We  will also assume that the scatterer is 
stationary during the period of observation, and that the system 
relating e(t) and w(t) is a  linear time-invariant system. 

We  will designate the impulse response of this system by 
h(t). For general e(t), the output w(t) of the linear system is 
given by the convolution integral 

w(t) = J O3 h(T)e(t - T) dr. 
-co 

Let the Fourier transforms of e(t), w(t), and h(t) be given by 
E(f), V(f), and H(f), respectively. Then 

V(f) = E(f)H(f). 
Although we have assumed that the target is stationary with 

respect to the radar, this approach can be generalized for a  wide 
class of targets in motion as well. For a wide class of target 
motions with respect to the radar (e.g., radial target motion in 
a monostatic radar system), the received waveform w(t) for the 
target in motion is the same as that for the stationary target, 
except with a contraction or dilation of the time-axis induced 
by the Doppler effect. Hence, the analysis can be generalized 
for target motion in much the same way that the matched filter 
is generalized for target motion in a standard radar processor. 
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While a deterministic target impulse response may be useful 
in the case where the target of interest is known a priori, 
there are many instances where such a priori knowledge is not 
available. In such cases, it may be possible to approximate the 
target impulse response from known physical characteristics 
of the target under consideration, or else treat the target 
impulse response as a finite-energy random process. The 
former approach may be useful in the design of waveforms for 
optimal target detection, whereas the latter approach will be 
used in the problem of waveform design for target information 
extraction. 

The random impulse response g(t) is a  finite-energy random 
process used to model the scattering characteristics of a  
random target. The random process g(t) can be thought of 
as an ensemble {g(t, w)} of functions, where w E fl and R 
is the underlying sample space. We  will now examine some 
properties of the random impulse response g(t). 

The first property which g(t) must possess is that all of the 
sample functions g(t, w) must satisfy 

r 
~m19(w)12 Lit 5  1. 

This follows from conservation of energy and the fact that 
electromagnetic scattering is a passive process. The next 
property of g(t) we will assume is that all of its sample 
functions are causal impulse responses; that is, g(t, w) = 
0, Vt < 0, VW E R. This is a property of all physical 
linear time-invariant systems. In addition, we will also assume 
that the Fourier transform {G(f, w)} of each sample function 
{g(t, w)} exists. A sufficient condition for this is that each 
sample function {g(t, w)} have only finite discontinuities, 
ilong with the first condition on the sample functions given 
above [12]. W ith thesk conditions, the Fourier transform G(f) 
of g(t) exists. 

Finally, we will assume that g(t) is a  Gaussian random 
process. This is a reasonable assumption for targets consisting 
of a  large number of scattering centers randomly distributed in 
space, since both the in-phase and quadrature components of 
the received signal in such cases are, at least approximately, 
Gaussian random processes. 

Throughout the remainder of this paper, a  deterministic 
target impulse response will be denoted h(t), while a 
random target impulse response will be denoted by the 
random process g(t). 

B. Optimal Detection ,Waveforms 

When detecting radar targets, the presence or absence of a  
target is generally determined by a threshold test on the energy 
in the received signal. When a target is present, we expect that 
there will be greater energy in the received signal than when 
no target is present. 

As is well known from standard detection theory results, 
in order to obtain the best target detection performance in a 
radar using either a Neyman-Pearson or Bayes decision rule, 
the signal-to-noise ratio at the output of the radar receiver 
should be made as large as possible [13], [14]. It follows then 
that for optimal detection, we should design our waveform and 

receiver to make the signal-to-noise ratio as large as possible 
under the physical constraints placed on the waveform and 
receiver. 

The problem of interest can be stated as follows. Given a 
target impulse response h(t) and stationary additive Gaussian 
noise n(t) with power spectral density S,,(f), find a transmit- 
ted waveform x(t) with total energy E, and a receiver-filter 
impulse response r(t) such that the signal-to-noise ratio of 
the receiver output y(t) is maximized at time to. In addition, 
because real radar waveforms are of finite duration, restrict 
the waveform z(t) such that it is zero outside the interval 
[-T /2, T /21. 

The primary difference between this problem and a standard 
matched filtering problem [II] is the effect of the target in 
changing the shape of the transmitted waveform in accordance 
with its scattering characteristics. The optimal receiver-filter 
itself should be matched to the waveform scattered by the 
target, not the transmitted waveform itself. But this alone is not 
sufficient in order to achieve the maximum attainable signal- 
to-noise ratio under the transmitted waveform constraints. We  
must find the waveforms meeting the constraints that, when 
filtered with the proper receiver-filter matched to the waveform 
scattered by the target, will yield the greatest signal-to-noise 
ratio. 

C. Optimal Estimation Waveforms 

A radar system may make measurements of a  target in 
order to determine unknown characteristics of the target. Stated 
differently, we can say that a  radar system may make measure- 
ments of a  target in order to decrease the a priori uncertainty 
about the target. In the analysis of communication channels, 
information theory provides a method of quantifying the 
decrease in the apriori message uncertainty of the transmitted 
message by observing the channel output. Such an approach 
has successfully allowed for the information transmission 
capabilities of a  communication channel to be determined. 
This being the case, let us examine the measurement process 
in general in light of information theory in order to determine 
the information transmitted to an observer by a measurement 
mechanism. These results then can be applied to the radar 
measurement problem. 

Consider a measurement system in which we have an 
object to be measured, a measurement mechanism, and an 
observer. We  assume that the random vector X consists 
of parameters characterizing the object we wish to measure 
and that a  probabilistic model of the unknown parameters is 
meaningful. The measurement mechanism maps X into the 
random vector Y, and the observer observers Y. From this 
observation, the observer determines the desired description of 
X. The measuretnent mechanism is assumed to have inherent 
inaccuracies, so its measurements contain errors. This can 
be modeled by assuming that the measurement mechanism 
stochastically maps the random vector X E Rx to the random 
vector Y E Ry . We  will denote the mutual information 
between X and Y to 1(X; Y). 

The mutual information 1(X; Y) between two random vec- 
tors X and Y tells ut the quantity of information observation 
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of measurements, it is common to talk about the accuracy 
in terms of some error criterion, for example, mean-squared 
error of relative mean squared error. It would be useful if we 
could relate the mutual information 1(X; Y) to the relevant 
measurement error criterion. Rate distortion theory provides a 
framework for doing this. 

In making a measurement, we are trying to obtain a descrip- 
tion of the object parameter vector X from the measurement 
vector Y. Because of inaccuracies in the measurement process, 
we cannot generally obtain X perfectly, so there is an error 
associated with a given parameter vector z and a given ’ 
measurement vector y. Let us designate this error or distortion 
as d(z, y). We  assume that this distortion is a nonnegative 
function defined for all pairs of x E Rx and y E Ry. The 
mean distortion S is the expectation of d(x, y). Thus, 

6 = E{d(x, Y)>. 

The rate distortion function R(D) for a  single measurement 
is defined as 

of Y provides about X; that is, 1(X; Y) is the amount 
of information that the measurement Y provides about the 
object parameter vector X. The greater this mutual information 
is, the greater the quantity of information describing the 
object we obtain from our measurement and the greater 
the reduction in the a priori uncertainty as a result of this 
measurement. Intuitively, we might expect that the greater the 
mutual information between a measurement and the quantity 
being measured, the more accurately we can classify or 
estimate the parameters characterizing the entity we are trying 
to measure. Berger alludes to this idea when he makes the 
statement: “Rate distortion theory provides knowledge about 
how the frequency of faulty categorization will vary with the 
number and quality of observations” [15, p. 91, since the rate 
distortion function relates the average distortion or error to the 
minimum mutual information required to achieve that error. 

We  shall justify the idea that the greater the mutual in- 
formation between the parameter we are measuring and the 
measurement, the better our ability to classify or estimate 
the parameters describing the object, in two ways. We  will 
determine the maximum number of equiprobable classes into 
which we can assign X by observation of Y; then we relate 
1(X; Y) to the average measurement error through use of 
the rate distortion function. This is done in the following 
two propositions. We  also cite a recent result relating to this 
problem [ 161. 

Consider the problem of putting X into one of N equiprob- 
able classes based on observation of Y. That is, assume that 
RX has been partitioned into N equiprobable subsets, and we 
wish to assign X to its proper subset based on observing the 
Y generated by the measurement process. 

Proposition 1: For any decision rule assigning X to a 
subset of a  partition based on observation of Y, and for all 
possible equiprobable partitions of Rx, the maximum number 
of partitions N for which this can be done with an arbitrarily 
small probability of error is 

(1) 
To see that this is true, we note that, given 1(X; Y) = 

10 nats, we can calculate the associated N, which we will 
designate No, as 

No = [e’“] . 

Then 

No@‘<No+l. 

Since the logarithm is a monotonically increasing function of 
its argument for all positive real numbers, 

In NO < Ia < In (NO + 1). 

By Shannon’s Theorem for the noisy channel, it is not possible 
to classify X into one of NO + 1 equiprobable classes. This 
cannot be done without the channel’s transferring In (No + 1) 
nats of information. But the measurement mechanism cannot 
possibly do so, because 10 < In (NO + 1). 

We  now consider the relationship between mutual informa- 
tion and measurement error. When examining the accuracy 

R(D) =. min {1(X, Y): S 5 D}. (2) 

The minimization is over all measurement mechanisms that 
satisfy the condition that the fidelity criterion S is less than 
or equal to D. The minimization may also be constrained 
to measurement mechanisms which satisfy a specified set of 
conditions (e.g., the condition that a  single measurement can 
use at most EO joules of energy). The rate distortion function 
R(D) gives the minimum possible rate at which information 
must be transferred by a measurement mechanism in order to 
have an average error or distortion S less than or equal to D. 

It is well known that R(D) is a nonincreasing function of D. 
So the smaller the average error D, the larger is the minimum 
required information rate R(D) required of the measurement 
mechanism in order to achieve this average error D. We  
summarize these ideas in the following proposition. 

Proposition 2: Let D be the largest allowable mean error 
between the object parameter vector X and the measurement 
vector Y. Then the minimum possible value of 1(X; Y) for 
which D can be achieved is a nonincreasing function of D. 

Intuitively, this makes sense. It says that if greater accuracy 
is required in the measurements, the measurement mecha- 
nism must provide more information about the object being 
measured. 

In general, the greater the mutual information between the 
parameters we wish to measure and the measurements them- 
selves, the more we can say about the object being measured. 
In the case where we examined the ‘number of equiprobable 
classes to which we could assign X based on observation of 
Y, we saw that the larger 1(X; Y), the larger the number of 
classes. In the case of the rate distortion function, we saw 
that the more precise we wanted our measurements to be, 
the greater the minimum rate of information transfer by the 
measurement mechanism. 

A recent result by Kanaya and Nakagawa [16] relates mutual 
information to Bayes risk in statistical decision problems in 
a mathematically rigorous manner. For a random parameter 
0 taking on values from a finite parameter set, they define 
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Fig. 1. Block diagram of the radar target channel. 

a function R(P, L) that determines the minimum required 
mutual information between 0 and a measurement such that 
the Bayes risk is less than or equal to a value L given that 

I the random parameter 0 has probability distribution P. This 
function is closely related to the rate distortion function. They 
then prove asymptotic results that show that for a  sufficiently 
large number of independent experiments, the probability that 
the average Bayes loss is greater than L goes to zero as 
the number of experiments grows large, if the measurements 
associated with each experiment exceed R(P, L). This result, 
perhaps of limited practical importance in the design of 
statistical decision procedures; does point directly to the fact 
that the greater the mutual information between the parameter 
and its measurement, the better the expected performance in 
the best Bayes risk decision procedure. 

In applying Propositions 1 and 2 to the measurement 
mechanism of radar, we see that if we design radar systems 
in such a way as to maximize the mutual information between 
the target parameters of interest and their measurements, then 
the better we can expect our system performance to be, at 
least if we measure system performance in terms of target 
classification ability or average measurement error. This being 
the case, we will consider optimal information extraction 
waveforms to be those waveforms that maximize the mutual 
information between the observed target ensemble and the 
output of the radar receiver. It is this class of waveforms, 
under the imposed duration and energy constraints, that ‘we 
are interested in finding. 

Consider the radar target channel model shown in Fig. 1. 
Here, z(t), a  finite-energy deterministic waveform with energy 
E, and of duration T  is transmitted by’the transmitter in order 
to make a measurement of the radar target. We  will assume that 
x(t) is confined to the symmetric time interval [-T/2, T/2]. 
Thus, 

I T/2 
E, = Ix(t)12 dt. 

-T/2 
(3) 

Since the energy constraint in most real radar systems is not 
on, the total energy in the transmitted waveform, but rather on 
the average power of the waveform, we will be interested in 
the average power P,, which satisfies the relation E, = P,T. 
We  also assume that x(t) is confined to a frequency interval 
W  = [fa, fa + IV]. While strictly speaking, we cannot have 
an x(t) with finite support whose Fourier transform has finite 
support, we assume that W  is selected so that only negligible 
energy resides outside the frequency interval W . 

After transmission, the radar waveform x(t) is scattered by 
the target, which has a scattering characteristic modeled by the 
random impulse response g(t). The resulting scattered signal 
z(t) received at the receiver is a finite-energy random process, 

and is given by the convolution integral 

Z(t) = 
r 

g(T)x(t - T) dr. 
-co 

The random process z(t) is received at the receiver in the pres- 
ence of the zero-mean additive Gaussian noise process n(t) . 
This noise process is assumed to be stationary and ergodic, and 
to have one-sided power spectral density P,,(f) = 2&,(f) 
for f > 0. In addition, n(t) is assumed to be statistically 
independent of both the transmitted waveform x(t) and the 
target impulse response g(t). 

The waveform received at the receiver is shown in Fig. 1  
to be z(t) + n(t) filtered by the ideal linear time-invariant 
bandpass filter B(f), passing only frequencies in the band W . 
The explicit inclusion of the filter B(f) is just a  statement of 
the fact that we assume that the transmitted signal has no 
significant energy outside the frequency interval W . Thus, 
neither does z(t), since it is the response of a  linear time- 
invariant system to the transmitted signal. 

For a given sample function g(t, wa) with the Fourier 
transform G(f, wa), the resulting spectrum of the scattered 
signal z(t) is given by Z(f, wu) = X(f)G(f, we). The 
magnitude squared of this spectrum is ]Z(f, wa) 1’ = 
IX(f)121G(f, we)]“. Taking the expectation with respect to 
G(f), the mean-square spectrum of z(t) is 

-WYf)12 = l~(f)12EW (f12~~ 
Now, 

EW(f)12) = bG(f)12 + ddf), 
where ,&(f) is the mean of G(f) and 02 (f) is the variance 
of G(f); that is, 

pG(f) = E{G(f)), 

and 

a&(f) = E-W (f) - pG(f)12). 

We are interested primarily in a&(f) for the Gaussian target 
model, as the signal component of z(t) corresponding to the 
mean &!(f) is known since x(t) is known. It thus tells us 
nothing about the target. In most cases, ,&(f) = 0, since there 
is a random delay d in g(t) because of the target’s random 
position in space. This corresponds to a random phase factor 
of exp { -i2rfd}, which has expectation zero for a  wide class 
of distributions on d. We  will thus assume that ,UG(f) = 0. 

Similarly, if we define 

~z(f) = E{Z(f)) 

and 

then 

d(f) = ww - PZ(f12~~ 

vxf)12 = IPZ(f)12 f&f). 
Referring again to Fig. 1, we will assume that the radar 

receiver observes y(t) for a  period T  in order to obtain 
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information about the target. The duration of observation 5? 
must be long enough to allow the receiver to capture all but a  
negligible portion of the energy in the sum of the scattered 
signal z(t). We  know that the duration of the transmitted 
waveform is T, and we known that z(t) must be at least this 
long, since the convolution of two waveforms of finite duration 
Tl and T2 produces a waveform of duration Tl + Tz. So if Tg  
is the duration of g(t) , then the duration of a(t) is T  + Tg. 

The received y(t) consists of the scattered signal z(t) and 
the additive Gaussian noise n(t) passed through the ideal 
bandpass filter B(f), p  assing the frequency interval W . The 
impulse response hw (t) of this filter is 

b(t) = w~cos (fo + W /2)k 

The duration of this pulse is infinite, but, as is well known, 
most of the energy is concentrated in an interval of duration 
l/W . Thus, it is reasonable to assume the impulse response 
duration Tw of the ideal passband filter at the receiver to be 
Tw M  l/W . 

It is reasonable to assume that the bandwidth over which 
most radar targets exhibit significant scattering of electromag- 
netic waves is much larger than the bandwidth of the radar 
system used in order to make the scattering measurements 
[27, Section 27.61. Hence it is reasonable to assume 

Tg < Tw. 

Also, for most radar signals, the duration of the transmitted 
signal is much larger than l/W . This is often necessary to 
provide enough signal energy for reliable target detection. An 
example of this is the lienar FM or “chirp” signal commonly 
encountered in radar systems. This allows a range resolu- 
tion equivalent to a much narrower pulse than that actually 
transmitted. Long transmission time, or “time-on-target” is 
also common in radar target recognition problems, where the 
longer observation time allows better frequency resolution 
in the measured Doppler spectrum. For such signals, the 
actual duration T  of transmission is much larger than the 
l/W . For such systems, T  > T W  E l/W . So in summary, 
5?’ = T  + Tg + Tw %  T  + T W  E T  + l/W , and for systems 
that satisfy the condition T  > l/W , 5? E T. 

The problem of interest can now be stated as follows. Given 
a Gaussian target ensemble with random impulse response 
g(t) having spectral variance o&(f), find the waveforms x(t) 
confined to the symmetric time interval [-T/2, T/2] and 
having all but a  negligible fraction of their energy confined in 
(one-sided) frequency to W  = [fa, fe + W ] that maximize the 
mutual information I(y(t); g(t) I x(t)) in additive Gaussian 
noise with one-sided power spectral density P,,(f). 

III. SUMMARY OF RESULTS 

We  now present the main results of our investigation as 
two theorems. Theorem 1 summarizes the main results on 
the design of waveform/receiver-filter pairs for optimal target 
detection. Theorem 2 summarizes the main results for the 
design of optimal estimation waveforms. 

1583 

A. Results on Detection Waveforms 

The main results arising. from the solution of the 
waveform/receiver-filter design problem for optimal 
detection can be summarized in the following design 
algorithm, which explicitly states how to calculate the optimal 
waveform/receiver-filter pair, and gives an expression for the 
resulting signal-to-noise ratio. 

Theorem 1: A waveform/receiver-filter pair maximizing the 
signal-to-noise ratio at the output of the receiver-filter can be 
designed using the following algorithm. 

a> Compute 

L(t) = 
s 

O3 
-cc 

b) 

Here 5&(f) is the two-sided power spectral density of 
the noise n(t), and h(t) is the impulse response of the 
target. 
Solve for an eigenfunction 2(t) corresponding to the 
maximum eigenvalue X,,, of the integral equation 

s T/2 x,,q t) = ?(T)L(t - T) dr. 
-T/2 

4 
Scale 2(t) so that it has. energy E,. 
Compute the spectrum X(f) corresponding to the opti- 
mal waveform Z(t): 

22(t) = 
r 

?(t)e --i‘hft dt. 
-cc 

4 Implement a receiver-filter of the form 

R(f) = Kri-(f)H(f)e-i2Tfto 
Snn(f) ’ 

e> 
where K is a complex constant. 
The resulting signal-to-noise ratio for this design, which 
is the maximum obtainable under the specified con- 
straints, is 

= kn,x~%. 

The proof of this result is given in Section IV. 

B. Results on Estimation Waveforms 

The main results arising from the solution of the optimal 
estimation waveform design problem can be summarized in 
the following theorem. 

Theorem 2: If x(t) is a  finite-energy waveform with energy 
E, confined to the symmetric time interval [-T/2, T/2], and 
having all but a  negligible fraction of its energy confined 
to the frequency interval W  = [fa, fe + W ], the mutual 
information I(y(t); g(t) I x(t)) between y(t) and g(t) in 
additive Gaussian noise with one-sided power spectral density 
P,,(f) is maximized by an x(t) with a magnitude-squared 
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spectrum 

lX(f)12 = max 0, A - Pm(f )F 
% (f 1  1 

= max [0, A - r(f)], 

where r(f) = P,,(f)?/2a&(f), and A is found 
the equation 

Lemma 1: A necessary condition for the maximization of 
the signal-to-noise ratio is 

R(f) = KX(f)H(f)e-i2”f”o 
&n(f) ’ 

(4) and with R(f) satisfying the relation of (lo), 
signal-to-noise ratio is 

by solving - 
($), = [~‘x~n~j;)‘2df. 

(5) 
Although (10) is a necessary and sufficient 

achieve the maximum signal-to-noise ratio for 

(11) 

condition to 
a fixed x(t), 

it is not sufficient to provide a waveform/receiver-filter pair 

(10) 
the resulting 

The resulting maximum value Imax(y(t);g(t) I x(t)) of (x(t), r(t)) that achieves the maximum possible signal-to- 

W t);dt) I xc(t)> is noise ratio for all waveforms satisfying the imposed con- 
straints. In order to do this, r(t) must satisfy (lo), but in 
addition, we must find a signal x(t) that maximizes (11) under 
the constraints 

I 
-~[x(f)12df=Ez, CT s max [0, In A - In r( f)] df. (6) 

W  
xc(t) = 0, for all t 6 [-T/2, T/2]. (12) 

The proof of this result is given in Section V. 

IV. WAVEFORMS FOR DETECTION OF EXTENDED TARGETS 

We now show that the design procedure of Theorem 1 
gives a waveform/receiver-filter pair that produces the largest 
possible signal-to-noise ratio for an extended target. The 
receiver output is given by 

y(t) = Ys(4 + y,(t). 

Here, ys(t) is the signal component in the receiver output, and 
yn (t) is the noise component in the receiver output. These two 
components are given by 

ys(t) = r(t) * x(t) * h(t) 
03 03 

= 
ss 

x(~)% - Tb-(t - P) &- dp, (7) 
-co -co 

and 

yn(t) = r(t) * 44 = 1”; +)r(t -P) dp. 
-cc 

(8) 

Here, E, is the total energy available for the transmitted 
waveform x(t) . 

Lemma 2: The function S(t) that maximizes the signal-to- 
noise ratio at the receiver-filter output is a  solution to the 
Fredholm equation 

hnax~(t) = 
s 

T/2 
g(T)L(t - T) d7, (13) 

-T/2 

where X,,, is the maximum eigenvalue of (13), it(t) is a  
corresponding eigenfunction scaled to have energy E,, and 
the kernel L(t) is given by 

L(t) = 
s 

m  IH(f) I2 ei2+ df 

-co Snn(f) . 

The resulting signal-to-noise ratio is 

= X,,E,. 

Proof: We  can rewrite (11) as 

(x>, = LJX(f)[ &] Ilg  ZZ  s O” lx(f)B(f)12 df, (14) -co 
We are interested in finding a waveform/receiver-filter pair where 

that will maximize the output signal-to-noise ratio at time to. qf) 
This signal-to-noise ratio is defined as B(f) = Jm’ 

S 

( > 
dgf IY&O)12 

Maximizing (14) is equivalent to maximizing an integral of 

77 to Ely&o)12 ’ 
(9) the form 

s O3  
Define the Fourier transforms X(f) , H(f), V(f), and 

JQ(f)12df 

R(f), of x(t), h(t), w(t), and r(t), respectively. We  then have = 
the following lemma, the proof of which is quite standard. J O” lX(f)B(f)12 4, (15) 

-cc 
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where q(t) can be viewed as the output of a  linear time- 
invariant system with input z(t) and impulse response b(t). 
Here, Q(f) and B(f) are the Fourier transforms of q(t) and 
b(t), respectively. 

We  must maximize (15) with respect to all X(f) that satisfy 
the constraints of (12). We  can rewrite (15) for the energy in 
q(t), noting that both x(t) and q(t) are real, as 00 

J [/ T/2 
q2(t) dt = x(r)e 

--i2rf7 d7  

-cc -T/2 1 
x(p)ei2”fP dp 1 IB(f)12 df. (16) 

Now define L(t) as the inverse Fourier transform of 
]B(f)12; that is, 

L(t) !Zf irn IB(f)12ei2”f”df. 
J-00 

Then from (16) and (17) we have, changing the order of 
integration, 

SW T/2 JJ T/2 
q2(t) dt = x(~)x(p)L(p - T) dT dp. (18) 

-co -T/2 -T/2 

We wish to find the function g(t) on [-T/2, T/2], which 
maximizes (18). It can be shown [14, p. 1251 that 2(t) satisfies 
the integral equation 

J T/2 xi!(t) = 2(T)L(t - T) dr, (19) 
-T/2 

where X is the maximum eigenvalue of (19). So I;(t) is an 
eigenfunction corresponding to X, the maximum eigenvalue 
of (19), and having energy E, . From (18) and (19), 

J -~q2(W  = ~z,W~~,~GW~ - T ) dpdT 
J T/2 

= t?(~)Xfi?(~) dr 
-T/2 

J T/2 
=A ?(T)?(T)dT 

-T/2 

= XE,. 

Substituting B(f) = H(f)/ ,/m and then defining 
L(t) as in (17) yields 

L(t) = J O” 

Then the waveform i(t) time limited to the interval 
[-T/2, T/2], h’ h w rc maximizes the signal-to-noise ratio at 
the receiver output, is given by the solution to 

J T/2 &&?(t) = i?(t)L(t - T) dr, (20) 
-T/2 

where X,,, is the maximum eigenvalue of (20) and 2(t) is 
a  corresponding eigenfunction scaled to have energy E,. It 

follows then from (11) that the resulting signal-to-noise ratio 
is 

= AmxEz. 0 

Since the waveform x(t) is designed to take on nonzero 
values only on, the interval [-T/2, T/2], it can take on 
nonzero values for t < 0, and so the waveform x(t) is not 
necessarily causal. However, since x(t) = 0 for all t < 
-T/2, we can obtain a causal waveform i(t) = Z(t - T/2), 
which will also yield the optimal response at the receiver 
output, except with delay T/2. To see that this waveform 
also maximizes the signal-to-noise ratio, we note that X(f) = 
X(f)eeirrfT. But from (ll), we see that the phase term 
e -+fT does not affect the resulting signal-to-noise ratio. We  
do, however, note from (10) that the response occurs at time 
to + T/2 instead of time to. So an optimal waveform z%(t) that 
is causal, and thus physically realizable, exists. In addition, the 
target impulse response is causal for all real physical targets. 
This being the case, the resulting receiver-filter also has causal 
impulse response r(t), and thus is also a realizable filter. So 
from the optimal waveform/receiver-filter solution, we can find 
a waveform/receiver-filter pair that is physically realizable. 

V. MUTUAL INFORMATION IN REFLECTED 
WAVEFORMS AND WAVEFORMS FOR ESTIMATION 

We now consider the problem of finding waveforms that 
maximize the mutual information between the target ensemble 
and the received radar waveform. We  will prove Theorem 
2 of Section III-B. We  are interested in finding waveforms 
x(t) that maximize the mutual information I(g(t); y(t) I x(t)) 
between the random target impulse response and the received 
radar waveform. The waveform x(t) is deterministic. It is 
explicitly denoted in I(g(t); y(t) 1  x(t)) because the mutual 
information is a function of x(t), and we are interested in 
finding those functions x(t) that maximize I(g(t); y(t) I x(t)) 
under constraints on their energy and bandwidth. In order to 
find the functions x(t) that maximize I(g(t); y(t) 1  x(t)), 
we will first find I(z(t); y(t) I x(t)) and those functions 
x(t) that maximize it. We  will then show that the func- 
tions x(t) that maximize I(z(t); y(t) I x(t)) also maximize 
Me Y(t) I x:(t)), and that for these x(t), T(g(t); y(t) 1  
x:(t)) = G(t); y(t) I x:(t)). 

Consider the small frequency interval 3k = ]fk, fk + A jl 
of bandwidth Af sufficiently small such that for all f E 3k, 
X(f) E x(.fk), z(f) 3  z(.fk), and  y(f) =  y(.fk). Let 
C?k(t) correspond to the component of x(t) with frequency 
components in 3k, .&(t) correspond to the component of z(t) 

with frequency components in 3,) and $k (t) correspond to the 
component of x(t) with frequency components in 3k. Then, 
over the time interval 7  = [to, to +?I, the mutual information 
between jjp(t) and .%ik(t), given that x(t) is transmitted, iS [17, 
pp. 192-1961 

1&k(t); akct) I x:(t)) 

=  ,j?Afln 1  +  21x(fd12a;(fd 1 ’ 

%n(fk)~ 
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If we consider two disjoint frequency intervals 3j and 
&, with j&(t), .;‘j(t), and iij(t) the components in 3j and 
jjk(t), 2k(t), and &(t) the components in 3k of y(t), z(t), 
and n(t), respectively, then s?(t) is statistically independent 
of e,(t), ij(t) is statistically independent of 2k(t), and iij(t) 
is statistically independent of fik(t). We  can see that this is 
true by noting that each of the pairs of independent processes 
is made up of two Gaussian random processes with disjoint 
power spectral densities, and such processes are known to 
be statistically independent [18, p. 3531. Since the processes 
are statistically independent, the mutual information between 
[Gj((t), &(t)] and [2j(t), zk(t)] given that x(t) is transmitted 
is equal to the sum of the mutual information between fjj(t) 
and $ (t) given that x(t) was transmitted and the mutual infor- 
mation between Gk (t) and ;k(t) given that x(t) is transmitted: 

I([&@)> ih(t)]; b%(t), ak(t>] Ibdt)) 

=  1(i&(t); ij(t> 1  x(t)) +  l($k(t); 2k(t) I dt>). 
If we now consider the frequency interval W  = [fa, fu + 

W ], partition it into a large number of disjoint intervals of 
bandwidth A f, and then let the number of intervals increase 
as Af + 0, in the limit we obtain an integral for the 
mutual information I(y(t); z(t) ] x(t)), where we assume that 
x(t), y(t), and z(t) are confined to the frequency interval W . 
This limit is 

qy(t); z(t) I x(t)) = F  Jwln [I + 21x;f );+&‘“) ] df. 
7111 

Lemma 3: The magnitude-squared spectrum IX(f) I2 that 
maximizes I(y(t); z(t) I x(t)) under the average power 
constraint 

J lX(f)12 df = E.z. (21) 
W  

is 

lX(f)12 = max 0, A - cm(f)~ 
24(f) 1 

= max [0, A - r(f)]. (22) 

Here, the value of the constant A is determined by solving the 
following equation for A: 

E, = J [ max 0, A - $$y df. 1 (23) 
W  G 

The resulting maximum value of I(y(t); z(t) I x(t)) is 

Llax(Y(t); z(t) I Z (t)) 
=pS,rnax 1, lnA-In (~~?$~)]df 

=ri; J max [0, In A - In r-( f)] df. 
W  

Here 

(24) 

Proof: Using the Lagrange multiplier technique [19, pp. 
357-3591, we form the objective function 

--A [I IX(f)12df --a . (25) 
W  1 

This is equivalent to maximizing $( ]X( f) 12) with respect to 
lX(f)12, for each f E W , where 

f$(lX(f)j2) = Tin 1 - +(f)12, (26) 

and X is the Lagrange multiplier, to be determined from the 
constraint of (21). So we obtain an ]X( f) I2 that maximizes 
(25) when we solve for an ]X( f) I2 that maximizes (26). Thus, 
the lX(f)12 that maximizes (a(lX(f)12) is 

lX(f)12 = A - ;$;F. 
G 

(27) 

Here, A = F/X = constant. 
Substituting the expression for lX(f)12 of (27) into the 

constraint of (21), we obtain 

JwIm2 d f = Jw b  - ;;;;;;]d f 
=WA- J Pnn(f )F 

w 24(f) df 
= E,. (28) 

Solving for the constant A, we have 

So the lX(f)12 that maximizes I(y(t); z(t) I z(t)) is given by 

If we define r(f) as 

then we can write jX(f)j2 as 

lWf12 = A-r(f). 
The maximum value of I(y(t);z(t) ] x(t)), which this 
IX(f )I” achieves, is 

Lnax(Y(t); z(t) I x(t)) 
= F  J [ In 1 + ‘lx(f )i2&(f) df 

W  Pnn(f )F 1 
=?WlnA-p J In r(f) df (nats). (30) 

W  
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Since 1X( f)j2 is the magnitude squared of the transmitted 
signal spectrum, it must be real and nonnegative for all f E W  
(we assume it to be zero for all f $! W). Yet from (27) 

lX(f)12 = A - $$;. 
G 

It may be possible that for a  given E,, &f), and W , one 
obtains a value of A such that for some f E W , A < 
Kn(f)p/2&f). Th’ IS would result in an invalid IX(f) 12, as 
1X( f )I2 would be negative for such f. In order to obtain the 
lX(f)12 that maximizes I(y(t); z(t) I x(t)), we must actually 
solve for the value of A that satisfies (23). In most cases, the 
solution of this equation will have to be done numerically. 
However, for any (positive) value of E,, A can be bounded 
as follows: 

Proof: We  choose as our reversible transform D the 
Fourier transform, and apply it to both a(t) and b(t), yielding 

D{a(t)} = J” a(t)eei2”ftdt = A(f), 
-cc 

and 

J O” D{b(t)} = b(t)e-i2mftdt = B(f). 
-cc 

Applying Lemma 4 first to the transformation D{a(t)} = 
A(f), we get 

&4(f); b(t)) = I(a(t); b(t)). 

Applying Lemma 4 again, this time to the transformation 
D{b(t)} = B(f), we have 

IV(f); B(f)) = IV(f); b(t)). 

So it follows that 

Once A has been solved for using (23), we have that 
Lx(Y(t); z(t) I z(t)) is given by (24). The magnitude- 
squared spectrum lX(f)12 that achieves I,,(y(t); z(t) I 
x(t)) is given by (22). 0  

The following two lemmas will be used in proving Theorem 
2. \ 

Lemma 4: Let a(t) and b(t) be finite-energy random pro- 
cesses and let D be a reversible transformation of a(t) 
to a finite-energy random process c(r) (where r is a  new 
independent variable, but T  could equal t). Then 

I(4t); b(t)) = I@(f); B(f)). 0  

W ith Lemmas 4 and 5, we now prove Theorem 2. 

Proof of Theorem 2: Define the two-sided set of frequen- 
cies 

fi2%f{f: If I E W , lWf)12 #  01. 
Recall that W  is a one-sided set of frequencies, containing 
only positive frequencies. If X(f) has frequencies limited to 
I&,, then so does Z(f), since 

I(4 t); b (t)) = qccr>; b (t)). (31) z(f) = X(f)G(f). 

Proof: If D is a reversible transformation between a(t) So for f E P&, we can determine G(f) from Z(f). For f $Z 
l/ii 

and C(T), that is, c(r) = D{a(t)}, then [l, pp. 90-911 

NC(~)) = h(a(t)) + K(D), 

and 

a, we cannot determine G(f) from Z(f), since X(f) = 0 
and thus l/X(f) is indeterminate. 

Define 

&(f) = for f E I&$; 
(33) elsewhere; 

h(c(r) I b(t)) = h(a(t) I b(t)) + K(D). 
Here, K(D) is a function only of the transformation D, not of 
the specific processes a(t) and b(t). Thus, 

I(c(r); b(t)) = W C (r)) - h(c(r) I b(t)) 
= h(a(t)) + K(D) - h(a(t) I b(t)) - K(D) 

= h(4Q) - h(a(t) I b(t)) 
= I(a(t); b(t)). 0  

Lemma 5: Let a(t) and b(t) be finite-energy random pro- 
cesses with Fourier transforms A(f) and B( f ), respectively. 
Then if I(a(t); b(t)) is th e mutual information between a(t) 
andb(t) andI(A(f); B(f)) h  is t e  mutual information between 
A(f) and B(f), we have 

I(4t); b(t)) = IV(f); B(f)). (32) 

S(f) = ,Z(f)> for f E Ii&; 
> elsewhere; (34) 

b(t) = Jm &(f)eiaxft dt; (35) 
-cc 

.2(t) = %f) ei2’d t dt. 

Then, from Lemma 5, we have 

Lnax(Y(t>; z(t) I x(t)) = Lnax(Y(f); Z(f) I dG>. (37) 

For f 6  $2, z(f) =A 0, since z(f) = X(f)G(f) and 
X(f) = 0 for f 6  W2. Thus, Z(f) = Z(f) from the 
definition of Z(f) in (34). So from Lemma 4, 

Lax(~(t); z(t) I d t>> = bnax(Y(f); k(f) I 44). (38) 
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Now for all f E I&, X(f) #  0, so 

,. W ) G(f) = x(f)’ 

Thus for all f E I&‘;, there is a reversible transformation D 
that maps 2:(f) to G(f), given by 

wml = 
&I 
;‘f’! for f E IA&; 

, elsewhere. 

But as we know from Lemma 4, mutual information is 
invariant under reversible transformations, so 

W(f); -m I z(t)) = WV); w I dG>. 

This result, along with (38), yields 

I(Y(C z(t) I z(t)> = @xf); @ f) I 4t>). (39) 

Note that G(f), defined by (33), is equal to G(f) for f E 
%& and is zero elsewhere. Thus the quantity of information 
obtained about G(f) by observation of Y(f) on fiz is equal 
to the quantity of information obtained about G(f) on I&$. It 
follows immediately then that for observation on the set of all 
frequencies observed, 

V(f); G(f) I 4t)) 2  WV); @ .f) I 44). (40) 

But for f $  fi2, Y(f) P rovides no additional information 
about G(f), because Y(f) is a  function only of the noise 
n(t). Since n(t) and g(t) are statistically independent, the 
mutual information between the components of these processes 
with frequency components f @  fia is zero, since the 
mutual information between statistically independent random 
processes is zero. So the inequality of (40) is actually an 
equality: 

T(f); G (f) I d t)) = G’(f); e :(f) I 4 t)). 
From Lemma 5 we have 

(41) 

V(f); G (f) I 4 t)) = Ib(t); g(t) I 4 t)). (42) 
Thus, from (39), (41), and (42), we have 

I(y(t); g(t) I x:(t)) = Lnzc&(~); z(t) I d t)). 
We have shown that for the class of functions x(t) that 

maximize I(y(t); z(t) ] x(t)), we have I(y(t); g(t) I z(t)) = 
W t); Z(t) I dt)). W  e h ave not yet shown that there is 
not some other waveform Z(t) confined to the time interval 
[-T/2, T/2] satisfying the energy constraint of (3) resulting 
in a larger mutual information between g(t) and y(t). 

In order to show that there exists no Z(t) resulting in a 
larger mutual information, we redraw the target channel model 
of Fig. 1  as shown in Fig. 2. Here we view both g(t) and 
z(t) as inputs. The target impulse response g(t) is observed 
by illuminating the target, resulting in the scattered waveform 
shown as the output of “Channel 1.” “Channel 2” then accounts 
for the additive noise process n(t) and the observation of the 
received waveform. From the Data Processing Theorem of 

Fig. 2. Another interpretation of the radar target channel. 

information theory [20, p. 311, we have that, for any x(t) 
transmitted, 

J(Y(% g(t) I 44) I I(y(t); 44 I d t)). (43) 

In order to show that there is no Z(t) for which 

I(Y(Q g(t) I 4 t)) > Lnax(Y(t>; z(t) I 4 t)L 
we will assume that such an Z(t) exists. Then, from (43), it 
must be that 

I(Y(Q 44 I q t)) > Lx(Y(t);4t) I 44). 
But this is a contradiction, since Imax(y(t); z(t) ) z(t)) is the 
maximum value that the mutual information between y(t) and 
z(t) can achieve for any valid x(t). Thus, for the class of 
x(t) with magnitude-squared spectrum ]X( f) I2 given by (23), 
I(Y(Q g(t) I 4 t1> is maximized, and the maximum value 
L&(t); g(t) I 44) is 

LELx(Y(t); g(t) I s(t);= Lnax(Y(t); z(t) I z(t)). q 

Note the behavior of the magnitude-square spectrum 

IX(f)l” = max 0, A - Pm(f )* 1 %w ’ 
which maximizes I(y(t); g(t) ] x(t)). If the variance g;(f) 
of G(f) is held constant for f E W , ]X( f) I2 gets larger as 
P,,(f) gets smaller, and IX(j) I2 gets smaller as P,,(f) gets 
larger, becoming zero for P,,(f) > 2Acr&(f)/p. Similarly, 
if P,,(f) is constant for all f E W , as would be the case 
for additive white Gaussian noise, IX(f) I2 gets larger as 
c;(f) gets larger and IX(f) I2 gets smaller as 0; (f) gets 
smaller, with ]X(f)12 
]X(f)12 = 0 for&(f) 

E A for a&(f) >> P,,.(f)T/2A and 
< P,,(f)T/2A. In order to interpret 

this behavior physically, recall that a;(f) is the variance of 
the frequency spectrum G(f). We  see that frequencies f E W  
with large 0; (f) provide greater information about the target 
than those with small g&(f). This is not surprising, since 
for frequencies with small c&(f), there is less uncertainty 
about the target response at that frequency in the first place. 
In fact, for those frequencies at which r&(f) = 0, there is no 
uncertainty at all in the outcome of o;(f), and thus, there is 
no point in making any measurement at these frequencies. 

Note that A = A(E,, g&(f), P,,(f)) is a  function of the 
transmitted energy E,, the target spectral variance a&(f), 
and of the noise power spectral density Pnn(f). The fact that 
]X(f)12 = 0 for all f such that a&(f) 5  P,,(f)p/2A can 
then be interpreted as saying that a  greater return in mutual 
information can be obtained by using the energy at another 
frequency or set of frequencies. 
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Fig. 3. (a) “Water-filling” interpretation of the magnitude-squared spectrum 
\X(f)[’ that maximizes the mutual information I(y(t); g(t) 1 z(t)). (b) 
Magnitude-squared spectrum IX(f)lz that maximizes I(y(t); g(t) 1 z(t)). 
Note the relationship to the shaded area in (a). 

An interesting interpretation of the relationship between 
IX(f)/“, A, P,,(f), and g:(f) is shown in Fig. 3. Compar- 
ing (5) and Fig. 3, we see that the total energy E, corresponds 
to the shaded area in Fig. 3(a). The difference between the line 
of value A forming the upper boundary of the shaded region 
and the curve forming the lower boundary of the shaded region 
is lX(f)12. This difference is displayed in Fig. 3(b). 

This interpretation of Fig. 3, called the “water-filling” in- 
terpretation, arises in many problems dealing with the spectral 
distribution of power and energy in information theory [21, 
p. 3891. 

To further illustrate the behavior of lX(f)12 as a function 
of the target spectral variance g:(f) and the noise power 
spectral density, consider the example of Fig. 4. In Fig. 4(a) 
we have the spectral variance 0; (f) In Fig. 4(b) we have the 
power spectral density P,,(f). In Fig. 4(c) we have r(f) = 
%0)v~::(f), f t’ a unc ion of both the power spectral den- 
sity P,,(f) of the noise and of the spectral variance g&(f). In 
Fig. 4(d) we have the resulting magnitude-squared spectrum 
lX(f)j2 for the waveforms z(t) that maximize I(y(t); g(t) I 
x(t)). Note that because of the assumed bandwidth constraint, 
W  = [fo, fo + W ], lX(f)12 = 0 for all f $  W . In the next 
section, we will examine a more realistic and detailed example 
numerically, in order to illustrate these results more clearly. 

We  have assumed that the random impulse response g(t) is 
a  Gaussian random process. As a result, the scattered signal 
z(t) is a  Gaussian random process. The received signal y(t) is 
also a Gaussian random process, since the noise in the channel 
is additive Gaussian noise. Thus, for a  given o&(f), we are 
solving for the mutual information in the case of an additive 
Gaussian noise channel with a Gaussian input. As is well’ 
known, in the case of the additive Gaussian noise channel, for a  
channel input with a given variance g2, the mutual information 
between the channel input and the channel output is maximized 
when the input is Gaussian. Then by assuming that g(t) is 
a  Gaussian random process, we have selected a Gaussian 
input process for an additive Gaussian noise channel in our 
problem. By solving for the maximum mutual information 

f 

/Fig. 4. Example illustrating the resulting lX(f)j’ for a given u&(f) 

:and Pnn(f). (a) Example o&(f). (b) Example P,,(f). (c) Resulting 

I(f) = Pnn(.f)?/20&(f). (d) Resulting lX(.f)12. 

Lnax(Y(t)~ g(t) I d t)L we have derived an upper bound on 
the maximum, achievable mutual information between y(t) 
and g(t) for any g(t) with spectral variance CJ& (f) under the 
imposed bandwidth and energy constraints, whether g(t) is 
Gaussian or not. In the case when g(t) is Gaussian, as we 
have assumed, this upper bound is achieved. 

VI. EXAMPLES AND COMPARISONS 

A. Detection Waveform Examples 

We  first consider an example that illustrates the use of the 
design procedure and shows the effect that the transmission 
of various waveforms with identical energy can have on 
the output signal-to-noise ratio. Assume that the stationary 
additive Gaussian noise is white, with power spectral density 
sm(f) = No/T and assume that the target impulse response 
h(t) has Fourier transform H(f) given by 

H(f) = 0”: L  
for If1  I W  
for If\ > W . 

Here 5 is a constant, which for convenience is taken to be 
m  so that 
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TABLE I 
SIGNAL-TO-NOISE RATIOFOR z,(t) =  ,/L5&(cuT/2, 2t/T) 

n 2WT = 2.55 2WT = 5.10 

0.9663, LOOOE, 
0.912Ez 0.9993, 
0.519E, 0.9973, 
O.llOE, 0.961%, 
O.O09E, 0.7483, 
O.O04E, 0.321E, 

- O.O61E, 
- O.O06E, 

This being the case, we have 

Here GE = 27rIV. So the optimal 2(t) is a  solution to the integral 
equation 

J T/2 &J:,(t) = GL(WW 
sin 27rW(t - 7) d7 

-T/2 27rW(t- T) ’ 

which is known [13] to have a countable number of solutions 
for n  = 0, 1, 2,.... The solutions to this equation are 
known as the angular prolate spheroidal functions, and are 
designated 5’0~ (cxT/2, 2t/T). The associated eigenvalues X, 
can be written in terms of the radial prolate spheroidal 
functions, which are designated as RF: (aT/2, 1). The eigen- 
values and their associated eigenfunctions are given by X, = 
2WTRg(cxT/2 l), and sn(t) = So,(aT/2, 2t/T), for 
n  = 0, 1, 2,. *.i 

The sequence of eigenvectors X0, Xi, X2,. . . , X,, . . . is a  
positive decreasing sequence in n. So the largest eigenvector 
occurs when n = 0. Thus, the solution 2(t) with energy E, is 

Z(t) = &%90&T/2, 2t/T), 
and its associated eigenvalue is 

x - 2WTRh;‘(aT/2 1) max - , . 

The signal-to-noise ratio in this case is 

= 2WTE,R$,&T/2 1) > . 

In order to demonstrate the effect of the wave shape of 
the transmitted waveform on the output signal-to-noise ratio, 
consider the effect of transmitting the waveforms x,(t) = 
GSo,(aT/2, 2t/T), for n  = 0, 1, 2, ... . All of these 
waveforms have transmitted energy E,, but the resulting 
signal-to-noise ratios are X,E,. As noted previously, {X,} is 
a  positive decreasing sequence of n, and thus XoE, > XlE, > 
X2Ez > . . . . So we see that the output signal-to-noise ratio 
is definitely a function of the transmitted waveform. In Table 
I, we show the resulting signal-to-noise ratio for the cases 
of 2WT = 2.55 and 2WT = 5.10. (The eigenvalues were 
obtained from [13, p. 1941.) As we can see, the signal-to-noise 
ratios drop off very quickly for n > 2WT. So we see that the 
wave-shape or spectral content of the transmitted waveform 
plays a significant role in the resulting signal-to-noise ratio. 

Physically, we can interpret these results by noting that 
the maximum signal-to-noise ratio occurs when the target 
mode with the largest eigenvalue is excited by the transmitted 
waveformIn order to obtain the largest response possible from 
the target, we put as much of the transmitted energy as is 
possible into exciting this mode. This maximizes the signal-to- 
noise ratio and thus provides the best possible target detection 
performance under the imposed constraints. 

Table I shows that it is possible to have more than one 
waveform with almost maximum response. For example, in 
the case where 2WT = 5.10, the waveforms corresponding to 
n = 1, 2, 3  give an output signal-to-noise ratio almost as large 
as the optimal waveform (n = 0). In fact, the n = 3 waveform 
produces a signal-to-noise ratio only 0.18 dB below that of 
the optimal waveform. Thus, not only can any one of these 
four waveforms be used with a resulting output signal-to-noise 
ratio comparable to the optimal, but any linear combination of 
these four waveforms can be used as well, yielding a family 
of waveforms with nearly optimal detection properties. 

We  now consider the problem of designing a waveformlre- 
ceiver-filter pair that is optimal for detecting a perfectly con- 
ducting metal sphere of radius a in the presence of stationary 
white noise. We  will compare the output signal-to-noise ratio 
of the resulting waveform to that of a  pulse-modulated sinusoid 
and compare their target detection capabilities. 

In order to apply the waveform/receiver-filter pair design 
procedure to a perfectly conducting sphere of radius a, we 
must find its impulse response h(t). We assume a monostatic 
radar system with identical linear transmit and receive antenna 
polarizations. Thus, we are interested in the backscatter im- 
pulse response. The backscatter impulse response of a  perfectly 
conducting sphere, when both transmit and receive antennas 
have identical linear polarization, has been calculated by Ken- 
naugh and Moffatt, using the physical optics approximation 
[22]. The physical optics approximation is used here in order 
to simplify the calculation of h(t) and provide an analytically 
tractable solution. The physical optics approximation to the 
impulse response accurately predicts high frequency scattering 
behavior and corresponds to the early-time component of the 
target impulse response, which for many real targets contains 
most of the total scattered energy [23]. For the mathematical 
basis of the more general treatment, see [24]. 

This impulse response can be written as 

h(t) = -:6(t) + i[u(t) - u(t - 2a/c)]. 

Here, a  is the radius of the sphere, c is the velocity of light, 6(t) 
is the Dirac delta function, and u(t) is the unit step function, 
defined as 

for t > 0; 
for t < 0. 

Applying the waveform/receiver-filter design procedure of 
Theorem 1, we must first calculate the Fourier transform of 
h(t). Doing so, we find that 

H(f) =  -& +  Ge--i27rfa si;;;;; ) [ 1  (44) 
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Fig. 5. Magnitude-squared spectrum jH(f)1’ versus f. 

where 6 = a/c. The magnitude-squared spectrum IH 
is thus 

f)12 

- 2(si;$p) cos2af8]. (45) 

A plot of IH( appears in Fig. 5. 
Next, we find the inverse Fourier transform of the function 

IH(f)12/%m(f)~ F  or white noise, S,,(f) = NO/~. Thus, we 
have 

- $  (“‘$3 cos 2nfh. (46) 

Calculating the inverse Fourier transform of (46), we obtain 
L(t) as specified in step 1 of our design procedure. Define the 
two functions 

and 

Va(t) = ; - Id/a, 
{ 

for ItI 5  a; 
> elsewhere 

for (tl 5  a; 
elsewhere. 

Then we have 

L(t) = 
L 

O” lfw12 g27r.ft & 
NoI2 

= g)(t) + TV& - $?“(“) 

* [cqt - 6) + qt + ti)] 

= g-)(t) + &v&(t) - -&B2& 

Next, we solve the integral equation 

s 

T/2 
x,,qt) = i+-)L(t - T) dr 

-T/2 

(47) 

for an eigenfunction g(t) corresponding to the maximum 
eigenvalue X,,, . For L(t) as given in (47), we must solve 

= + TV& - $3-&t) 1 g(t) dT  
262 T/2 ZZ- J No -T/2 

6(t - T)?(T) dr 

+ $--;,;[I&(t - T) - Bzs(t - T)]?(T) d,r. (48) 

From (48), we see that if i(t) is an eigenfunction correspond- 
ing to the maximum eigenvalue A,,,, it must also be an 
eigenvector of the integral equation 

n 
CLrn&qq = A No~~,~[v,i(t~)-n,,(t-,)].E(T)d~ (49) 

corresponding to the maximum eigenvalue pL,,,. Note that 
x max = 222/No + ~Umax. 

For convenience in our analysis, we will assume that 2(t) 
has unit energy (i.e., E, = 1). In addition, for computational 
convenience, we assume a normalized value of 6  = 1. 
Although such a value of 6  does not correspond to values 
typically encountered in practice, these results can be applied 
to more typical values by scaling both the amplitude of the 
received signal and the time axis linearly in the length unit. 

Solving the integral of equation (49) numerically for T  = 1, 
25, 50, 100, 250, and 500, we obtain the eigenvalues pmax of 
(49) and thus the eigenvalues X,,, of (48), allowing us to 
determine the resulting signal-to-noise ratio in each of these 
cases. 

For the purpose of comparison with more typical radar 
waveforms, we will consider the response of the target to 
a pulse modulated sinusoid of duration T  with unit energy. 
The receiver-filter will be a matched filter matched to the 
transmitted waveform-the form of receiver-filter normally 
used in radar detection problems. 

Such a waveform can be expressed as 

x(t) = P&,2(t) cos 2rf& (50) 

Here, for fixed T, p is a normalizing constant such that the 
waveform has unit energy. 

In order to obtain the most favorable result when transmit- 
ting a waveform as specified in (50), we must select the carrier 
frequency in order to take advantage of the resonance of the 
spherical scatterer as expressed by I H(f)j2. From Fig. 5, we 
see that IH( h as its peak value at a  frequency between 
0.25/G and 0.5/G. It was determined numerically that IH( 
takes on a maximum value of 1.5862h2 at a  frequency of 
f = 0.325116. 

Let X(f) be the Fourier transform of the transmitted 
waveform x(t) as given in (50). Then the matched filter 
matched to this waveform that gives the maximum signal- 
to-noise ratio at time to is specified by the transfer function 

-. 
R(f) = JGX(f)e--a2.rrfto 

Snn(f) ’ (51) 
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TABLE II 
SIGNAL-M-NOISE RATIOS MULTIPLIED BY No FOR PULSED SINUSOID 

AND OPTIMAL DETECTION WAVEFORMS FOR VARIOUS T 

T  Pulsed Optimal Improvement 
Sinmnid 

1 1.1454 2.1737 2.78 dB 
25 2.7917 3.9108 1.46 dB 
50 2.8183 3.8682 1.38 dB 
100 2.8354 3.7477 1.21 dB 
250 2.8615 3.7464 1.17 dB 
500 2.8645 3.4967 0.87 dB 

where k is any nonzero constant. The signal-to-noise ratio at 
time to is given by 

S ( > F to= 
= 

For white noise with power spectral density Snn(f) = No/2 
and R(f) as given in (51), noting that H(f) is a  conjugate- 
symmetric function of f, this simplifies to 

From (44), we have that when & = 1 as in our example, 

cos27rf - 1. (53) 

For x(t) as given in (50), X(f) is given by 

X(f) = ex 
2 

sin ~(f - fo)T + sin r(f + fo)T 
df - fo)T df+ fo)T 1 ’ 

and ]X(f)12 is given by 

Using (52), (53), and (54), we can solve for the signal-to- 
noise ratio that results when x(t) is the unit energy pulsed 
sinusoid given in (50). This is done for T  = 1, 25, 50, 100, 
250, and 500. The values of @  that provides a unit-energy 
waveform for each of these T  are calculated numerically. 
Table II shows the resulting signal-to-noise ratio for these 
unit-energy pulsed sinusoids with their associated matched 
filters as well as the signal-to-noise ratio that results when 
an optimal waveform/receiver-filter pair is matched to the 
sphere being detected. In addition, we note the improvement 
(in decibels) in the output signal-to-noise ratio for the optimal 
waveform/receiver-filter pair over the pulsed sinusoid and its 
associated matched filter. 

There is a significant improvement in the resulting signal- 
to-noise ratio when the optimal waveform/receiver-filter pair 
is used over that which occurs when a more typical ad hoc 
procedure is used. This is shown in Table II. For the range of T  
examined, the optimal waveform/receiver-filter pair provides 
approximately 1.2-2.8 dB of gain over the pulsed sinusoid 
with its associated matched filter. Considering that the received 
power is inversely proportional to the range to the fourth 
power, such gains would correspond to an increased detection 
range of 7-17%. In typical aircraft detection radar systems 
where the target is assumed to be a point target, the gain 
could be even greater, since the carrier frequency of the 
pulsed sinusoid would not be specifically selected to match 
the resonance of the sphere. Thus, in radar target detection 
problems where knowledge of the target impulse response is 
known a priori, a  significant gain in detection signal-to-noise 
ratio can be achieved using the waveform/receiver-filter design 
procedure described in Theorem 1. 

B. Estimation Waveform Examples 

We  now consider an example illustrating Theorem 2 and 
the results of Section V. In doing so, we will examine the 
characteristics of the optimal transmitted signal’s spectrum and 
the amount of information obtained. 

We  will assume that a radar system is observing a target at a  
range of 10 km. We  will assume that the radar is a monostatic 
radar with an antenna having an effective area A, = 3 m2, an 
RF bandwidth of 10 MHz, a transmitter frequency centered at 
1  GHz, and we will assume that the antenna is pointed directly 
at the target under observation. This gives us a frequency 
interval W  of 

W  = [fo, f. + W ] = [0.995 GHz, 1.005 GHz]. 

We  will consider this radar system with average power con- 
straints ranging from 1 W  to 1000 W  and observation times 
ranging from 10 ~LS to 100 ms. 

We  assume that the target under observation has a finite- 
energy, Gaussian impulse response g(t) with spectral variance 
u&(f) given by 

&f> = Bexp {-4f - .fpj21. 

Here, B and Q are constants that respectively characterize the 
magnitude of the spectral variance a&(f) and the rate at which 
it decreases as If - f, ] increases. 

We  will assume in our example that 

c&J = lo-13.g , 

a  value illustrating well the effect of the transmitted wave- 
form’s spectral characteristics for the 10 MHz system band- 
width being considered. We  will use a value of B which results 
in a spectral variance &(f,) that corresponds to a variation 
of 1  m2 in the target radar cross section at a  frequency of 
fP = 1 GHz. This value is 

B = 7.9577 x 10-16. 

We  will assume that the additive Gaussian noise present 
at the radar receiver is thermal noise that is white over the 
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LYflr 2  
T 2.0 x  IO-‘J-s 

aI 
T  

4.0 x  lo-‘J-s 
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Fig. 6. r(f) = Pnn(f)T/2a&(f) as a function of f. Fig. 8. jX(f)12 for T = 10 ms  and P, = 100 W. 

lxfjJ12 
12.0 x  1O-7 J-s 

, : ; : : :“::;I; : ii_  
0.996 0.998 1.ooo 1.002 1.004 ’ 

Fig. 7. /X(f)/’ for T = 10 ms  and P, = 1000 W. 

frequency interval W  and that its effective noise temperature 
is T, = 300 K. Hence, the resulting one-sided noise power 
spectral density is [26, p. 291 

Pnn(f) = No = ICT, = (1.381 x 10-23J/K)(300 K) 
- 4  1430 x 1O-21 J. - . 

Here, k = 1.381 x 1O-23 J/K is Boltzmann’s constant. 
By definition, r(f) is given by 

For ? = T  = 10 ms, this becomes 

r(f) = (2.7835 x lop85 - s) exp [a(f - f,)“]. 

A plot of this r(f) is shown in Fig. 6. 
For p = T  = 10 ms, we consider the two cases of 

P, = 1000 W  and P, = 100 W . In both cases we must solve 

E, = P,T = 
.I 

max P, A - df)ld 
W  

with respect to A and then find ]X(f)12 = max [0, A -<r(f)]. 
Recall that this formula gives ]X(f)12 for positive frequencies 
only, but that IX(f) ] 2  is an even function, so ]X(f)12 = 
]X(-f)12 for f < 0. Plots of ]X(f)12 for positive f in 
the cases of P, = 1000 W  and P, = 100 W  are given in 
Figs. 7  and 8, respectively. From (24), the mutual information 
I(y(t); g(t) ] z(t)) is given by the integral 

1(y(~); g(t) 1  x(t)) =.‘J’ max [0, In A - lnr(f)] df. 
W  

10 100 
Average Power Px , Watts 

I 
1000 

Fig. 9. I,,,(y(t); g(t) 1 s(t)) as a function of T and P,. 

For P, = 1000 W  and P, = 100 W , the resulting values of 
I(Y(Q g(t) I d t)) are 2.3815 x lo5 nats and 2.2152 x lo5 
nats, respectively. 

In the case of P, = 100 W , fi c W  is given by 

So, in this case, 

[0.995698 GHz, 1.004302 GHz]. (55) 

only 8.604 MHz of the available 10 MHz 
of RF bandwidth should be used by the radar system. This 
is because more information is obtained by concentrating 
the energy in 6 and providing a greater signal-to-noise 
ratio in W  than by distributing the energy across W . The 
latter would provide a greater number of degrees of freedom 
to be measured, but they would be measured less reliably. 
The ]X(f)12 of (55) optimizes this tradeoff between the 
measured number of degrees of freedom in the measurement 
and the reliability of the individual degrees of freedom in the 
measurement-the optimization being done so as to maximize 
the mutual information I(y(t); g(t) ] Z(t)). 

We  will now display the results of the numerical solution of 
(23) and (24) for the mutual information I(y(t); g(t) ( x(t)) 
as a function of both T  and the average available power 
P,. This numerical solution was carried out for values of 
T  equal to 10 ps, 100 ps, 1  ms, 10 ms, and 100 ms. For 
each of these values, the average power P, varies over 
the range of from 1 W  to 1000 W . All integrations were 
numerically carried out using the Gaussian Quadrature 
Method [25, pp. 322-3261. The resulting maximum values 
of I(y(t); g(t) ] x(t)) are plotted in Fig. 9. 
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Two interesting points are illustrated by Fig. 9. The first 
is that the mutual information lmax(y(t); g(t) 1  z(t)) is 
proportional to T. Actually, this proportionality is only ap- 
proximate, but the approximation is very good for T  > l/W , 
in which case it is reasonable to assume that ? = T. This is 
true for all T  considered in Fig. 9, since l/W  = 0.1 pus. 
This proportionality is reflected by noting that each time 
T  is increased by a factor of 10, the mutual information 
increases by a constant increment on the logarithmic scale 
of l;niLx(y(t); g(t) ] z(t)). Examining the expression for 
L&Y(~); g(t) I x:(t)) of (61, we have 

But for T  > l/W , it is reasonable to assume that p = T. 
This gives 

As (5) shows, A is proportional to T, and so assuming F  = T, 
A is proportional to T. If we define 

.=d.f$; 

then we can write Imax(y(t); g(t) I z(t)) as 

Lnax(Y(t); g(t) I dt>) 

We  can thus see analytically that ImiLx(y(t); g(t) 1  z(t)) is 
proportional to T. In fact, we can write the rate at which infor- 
mation is transferred to the receiver in the radar measurement 
process as 

anax(Y(t); g(t) I z(t)) 

which is not a  function of T. We  then have 

L&Y(~); g(t) I 441 = TKnax(~(t); g(t) I x:(t)). 
The fact that I max(y(t); g(t) 1  z(t)) is proportional to 

T  has an interesting interpretation in terms of radar target- 
recognition problems. Examining the relationship between 
mutual information and radar-measurement performance, we 
noted in (1) that, if 1(X; Y) is the mutual information between 
a set of parameters X to be measured and their measurement 
Y, the maximum number of equiprobable classes N into which 
X can be assigned with statistical reliability by observation of 
Y is 

Applying this result to our problem, we have that given an 
z(t) that achieves Imax(y(t); g(t) ( z(t)) is transmitted, the 
largest number of equiprobable classes into which g(t) can be 
assigned with statistical reliability by observation of y(t) is 

N = Lax ~(Yw/wl4tq 

= max ~~TR(Y(t);g(t)ll(t))]. (56) 

This number grows exponentially in T, the duration of the 
transmitted signal. T  is often referred to in radar target- 
recognition problems as the “time-on-target.” In radar target- 
recognition problems, it is well known that all other things 
being equal, the longer the “time-on-target,” the better the 
performance of the target recognition system. As a result, 
within constraints imposed by other system requirements such 
as searching for new targets and tracking targets that have 
already been detected, the “time-on-target” in radar systems 
that perform target recognition is generally made as large as 
possible. This is reflected quantitatively in (56), which shows 
that the maximum number of equiprobable classes into which 
g(t) can be reliably classified by observation of y(t) increases 
exponentially in T. 

Let us examine this result in terms of a  practical methodol- 
ogy often used in radar target-recognition problems. One com- 
mon method of classifying radar targets in target-recognition 
problems is by examining the characteristics of the Doppler 
spectrum of the target by performing spectral analysis on 
the signal reflected by the target. Such a technique is used, 
for example, in identifying jet aircraft on the basis of the 
jet engine modulation (JEM) phenomenon of the scattered 
signal ]27], [28]. Assume that the frequency interval over 
which this is done has bandwidth W . Then, ‘using classical 
methods of spectral analysis [29], the frequency resolution 
Af of the measured spectrum is inversely proportional to T. 
Thus, the number of frequency bins of bandwidth Af that 
span the interval of bandwidth W  is proportional to T. Call 
this number of frequency bins M. Assume that because of 
noise in the received signal, the energy in each frequency bin 
can be distinguished to only one of Q levels. Then the total 
number of distinguishable spectra fi is 

#=Q”. (57) 

If we now increase T, holding the power constant, the number 
of frequency bins M  increases proportional to T, since the 
frequency resolution Af is inversely proportional to T. We  
can thus write the number of bins M  as 

M(T) = mT, (58) 

where m  is a constant of proportionality. 
In increasing T, both the signal energy and the noise energy 

increase proportional to T, so the signal-to-noise ratio within 
a frequency bin remains constant. Thus, there are still Q  
distinguishable signal levels in each bin. This being the case, 
from (57) and (58), we have 

j(j = QM(T) = Q"T. (59) 

Hence, the number of discernible frequency spectra also in- 
creases exponentially with T. This is not to say that there is a 
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direct equivalence between the discernible frequency spectra 
and the equiprobable classes of g(t) to which (56) refers, 
but this heuristic example does show that the concept of the 
number of classes into which a target recognition system can 
classify targets increasing exponentially with “time-on-target” 
is not foreign to radar target-recognition problems. So the 
behavior of (56) is intuitively satisfying. 

It is important to note that when a waveform x(t) that 
achieves r,,,(y(t);g(t) 1  x(t)) is transmitted, the N 
equiprobable classes referred to in (56) are not under the 
control of the radar but are a function of the target ensemble. 
Actually, (56) states that the probability space R can be 
partitioned into N subsets Rr , 02, + . . , a~, where 

Pr{L&-&}=$ for Ic = l,..s,N, 

where N is given by (56). These N subsets 01, 02, . . . , QN, 
which form a partition of fi, correspond to a set of N classes 
into which g(t) can be reliably classified by observation of 
g(t). These N classes may not, however, correspond to classes 
that are of interest to the user of the radar system. Generally, 
the user will have knowledge of x(t) and will wish to classify 
the radar target into one of V classes d1, d2, . . . , dv based 
on observation of y(t). 

These classes may be linked to the physics of the problem, 
such as the case where the classes dk describe relative target 
size, or the classes may be less connected with the physics of 
the problem, such as in the case where only two target classes 
A1 and dz are of interest: whether the aircraft being observed 
is friendly or hostile. In general, the problem of assigning a 
target to one of the classes in A = {Al, Aa, . . . , dv} based 
on observation of y(t) can be viewed indirectly as finding a 
mapping from C: R --f d, such that for k = 1,. 1. , N, each 
Qk is mapped to one of the dj with a reasonable probability 
of error in determining the proper target class. As N becomes 
larger and the partition of R becomes finer, we would expect 
the performance of the best mapping C to improve for fixed 
V. Because N is an exponentially increasing function of 
I(y(t); g(t) I4t)L we would expect the probability of correct 
classification into one of the classes in A to improve as 
I(y(t); g(t) ( z(t)) becomes larger. 

Returning again to the results in Fig. 9, we note the second 
important point it conveys: in our example, a  very large 
amount of information is contained in the radar measurements. 
For example, for T  = 100 ps and P, = lOW, I(y(t); g(t) 1  
x(t)) is approximately 100 nats, which equals approximately 
144 bits. The corresponding N calculated from (56) to 2.69 x 

1043. Thus, we can conclude that a  significant amount of 
information can be obtained about the target in the radar 
measurement process. In order to put this information to use, 
signal processing algorithms must be developed. The form 
these take will generally be highly dependent on the specific 
purpose for which the radar measurements will be used. 

C. Comparison of Detection and Estimation Waveforms 

We  now compare the characteristics of the optimal detection 
and estimation waveforms. This will be done by considering 
their magnitude squared spectra lx(f)]‘. If we interpret 

/H(f) I2 as “target response” in the detection waveform design 
problem and g;(j) as “target response” in the estimation 
waveform design problem, we see that lX(f)12 tends to get 
larger at frequencies in which the “target response” gets larger, 
and smaller at those frequencies at which the power spectral 
density of the noise gets larger. As T  becomes large such that 
L(t) in Theorem 1 is approximately 0 for It 1  > T/2, we have 

for the optimal detection waveforms, where a is a constant. 
In the case of optimal estimation waveforms, from (4), using 
the two-sided power spectral density Snn(f) = Pnn( Ifl)/2, 
we have 

lX(f)12 = max 0, A - &m(f)+ 1 4$(f) . 

The power spectral density of the noise enters into the 
two solutions in two quite different ways. Hence the form 
of the magnitude-squared spectrum of the two waveforms is 
quite different. While the waveform design for optimal target 
detection put as much energy as possible into the mode of 
the target that gave the largest response when weighted with 
respect to the noise, the waveform design for optimal estima- 
tion distributes the available energy in order to maximize the 
information obtained about the target. This is in agreement 
with the intuitive idea that lead to the investigation of the 
information extraction capabilities of radar waveforms in the 
first place. Because the optimal detection waveforms given by 
Theorem 1 concentrate on placing as much energy as possible 
into the largest scattering mode under the imposed waveform 
duration constraints, they ignore the smaller scattering modes. 
It is possible that these smaller modes contain a significant 
quantity of information useful for describing the target, per- 
haps information useful in differentiating between two very 
similar targets w.hose largest scattering modes may be very 
similar. In Theorem 2, we have looked at how to distribute 
this energy to maximize the mutual information in the case 
where the target ensemble could be modeled as a finite-energy 
Gaussian target impulse response. However, even when this 
model does not directly apply, the results can serve as a 
qualitative guide to the proper distribution of energy among 
target scattering modes for target detection and information 
extraction radar waveforms. 

VII. SUMMARY 

We have shown that in the case of extended radar targets, the 
resonance phenomenon that occurs when the transmitted radar 
waveform is scattered by the target can be exploited to provide 
a larger signal-to-noise ratio at the output of the radar receiver 
than would result if we simply used an arbitrary waveform 
x(t) of energy E, with a receiver-filter matched to z(t) and 
the noise environment. 

Physically, we can interpret -this result by noting that the 
maximum signal-to-noise ratio occurs when the mode of the 
target with the largest eigenvalue is excited by the transmitted 
waveform. In order to obtain the largest response possible 



1596 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39, NO. 5, SEPTEMBER 1993 

from the target, we put as much of the transmitted energy 
as is possible into exciting this mode. This gives us the largest 
possible signal-to-noise ratio and thus the best possible target 
detection performance under the imposed constraints. We  note 
however that other scattering modes of the target may be useful 
for identifying or characterizing the target, so putting as much 
energy as possible into the mode with the largest eigenvalue 
will not generally be the best method of obtaining the max- 
imum amount of information useful in describing the target. 
When our task is target identification or information extraction, 
we may thus wish to distribute the transmitted energy among 
the different target modes in a different manner. Theorem 2 
describes how to distribute the energy in such a way that 
the mutual information between the target ensemble and the 
received waveform is maximized. As we saw in Section II-C, 
the greater this mutual information, the better we would expect 
the radar’s classification and estimation capabilities to be. 

The direct application of the results in Theorem 1 arise 
in radar problems where one is attempting to detect the 
presence of a  target when one has a priori knowledge of its 
scattering characteristics-that knowledge being represented 
by the target impulse response h(t). Such a situation might 
arise if we are trying to detect a  high priority target providing 
a very small radar return. In such a situation, the additional 
received energy obtained by taking advantage of the target’s 
resonant behavior may provide a significant improvement in 
detection performance. 

As a practical matter, the optimal waveform solutions may 
not be easy to implement in real radar systems, since for 
reasons of power efficiency, these systems often operate with 
transmitter amplifiers in saturation. Because saturated ampli- 
fiers typically require that the waveform have (approximately) 
constant envelope, many of the optimal solutions obtained 
using the waveform/receiver-filter pair design procedure of 
Section VI-A cannot be used in radar systems that operate 
with a saturated transmitter. Still, the basic idea of putting 
as much of the energy as possible into the target’s largest 
scattering mode under the design constraints on the waveform 
(which might be expanded to include a constant envelope 
constraint) is useful to keep in mind. In particular, the pulsed 
sinusoid used for comparison in Section III-A had its carrier 
frequency selected to give the largest possible response from 
the sphere. The selection of fu in this example is clearly better 
then ignoring the target resonance phenomenon and arbitrarily 
selecting the carrier frequency. 

Finally, note that the shape of a  radar signal, and not just 
its energy alone, can have a significant effect on extended 
target detection performance. This fact is often overlooked in 
the radar engineering community, largely as a result of the 
fact that when one uses a matched filter to detect a  waveform 
in stationary additive noise, detection performance does not 
depend on the shape of the waveform being detected-as long 
as the receiver-filter being used is matched to the waveform 
to be detected and the additive noise’s power spectral density. 
As a result, if we are considering a point target, then h(t) = 
&(t - to), and the shape of the transmitted waveform would 
have no effect on the output signal-to-noise ratio. However, as 
we have seen in Section IV, this is not true of extended targets, 

where h(t) #  aS(t - to). It is advantageous to keep this fact 
in mind when considering extended targets and not extrapolate 
the point-target results to the extended target case, as is often 
done. For a point target, the waveform/receiver-filter design 
procedure produces a solution where x(t) is any arbitrary 
waveform x(t) with energy E, and r(t) is its associated 
matched filter. 

In the case of the design of a  waveform z$t) that optimizes 
the detection of a  target of known impulse response h(t), 
we noted that the solution corresponds to an eigenfunction 
with energy E, corresponding to the largest eigenvalue of the 
integral equation of (22). We  noted that these results could 
be interpreted, in the case of additive white Gaussian noise, 
as putting as much of the transmitted energy as possible into 
the largest mode of the target under the time and bandwidth 
constraints on the transmitted waveform. The result was that 
we obtained the largest possible signal-to-noise ratio, and thus 
the optimal detection performance, under the constraints on the 
transmitted waveform. We  also noted, however, that the other 
eigenfunctions, corresponding to different modes of the target, 
could contain significant information about the target. So if 
we wished to extract information about the target, it might 
be advantageous to distribute the available energy among 
the various modes. This illustrates that optimal waveforms 
for detection and estimation of extended radar targets can 
be very different in nature. Viewing the characteristics of 
these waveforms in terms of the distribution of energy among 
target scatttering modes gives both physical and information- 
theoretic insights into the design and performance of these 
waveforms. As the technology for adaptive waveform radars 
becomes more widespread, these insights should be valuable 
in effectively utilizing this technology. 
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