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The probability of detecting 7 or more pulses
contiguously—that is, in a row—from a pulse train of » pulses is
determined when the detection of each pulse is an independent
Bernoulli trial with probability p. While a general closed-form
expression for this probability is not known, we present an
analytical procedure that gives the exact expression for the
probability of interest for any particular case. We also present
simple asympiotic expressions for these probabilities and develop
bounds on the probability that the number of pulses that must be
observed before m contiguous detections is greater than or less
than some particular number. We consider the implications for

binary integration in radar and electronic warfare problems.

Manuscript received June 29, 1993; revised Junc 6, 1994.
IEEE Log No. T-AES/32/3/05865.

This work was supported by NSF Research Initiation Award
MIP-9010834.

Author’s address: School of Electrical Engincering, Purdue
University, 1285 Electrical Engineering Bldg., W. Lafayette, IN
47907-1285.

0018-9251/96/35.00 © 1996 1IEEE

. INTRODUCTION

The problem of detecting the presence of a
number of successive or contiguous puises in a pulse
train is of general interest in a number of radar and
clectronic warfare problems. Levanon {1, pp. 58-60]
gives an example of a radar binary integration scheme
that is a special case of this problem. He considers
the calculation of the probability of detection of
two or more pulses in a row out of four pulses,
where the detection of each pulse is considered to
be an independent Bernoulli trial with probability
p of success. He does not, however, consider the
generalization of detecting m or more pulses in a row
from a pulse train of n pulses. Here we consider this
more general problem.

In contrast to requiring the contiguous detection
of m out of n pulses, there is the common binary
integration technique of requiring u out of » pulses
irrespective of order. The cumulative probability
of detection (and false alarm) in this case is easy
to calculate in terms of the binomial distribution.
Hence we refer to this scheme as the binomial binary
integration. In the situation where the individual pulse
detections are statistically independent, one would
not expect the cumulative pulse detection scheme
to be superior to a simple m out of » decision rule.
This is because if individual detections are Bernoulli
trials with probability p of success, it is well known
that the ratio of the number of successes to the total
number of trials is a sufficient statistic for (as well
as the minimum variance unbiased estimator of)
the probability of success on any single trial [2, 3].
Nevertheless, the comparative performance of the
contiguous detection scheme is of interest. This
is because there are some radar target detection
problems in which contiguous pulse detection is of
interest. For example, if measurements arec being made
with a high-resolution (in range, Doppler, azimuth,
or elevation) radar system in which a typical target
of interest spans several contiguous resolution cells,

a binary integration scheme requiring detections in
contiguous resolution cells is appropriate. Although in
such a situation detections in individual resolution cells
may not be well modeled as independent Bernoulli
trials, it is of interest to see the degradation in
performance of the contiguous resolution cell scheme
over that of binomial binary integration.

Another area where the problem of detecting
m or more contiguous pulses out of # pulses is of
interest is in the performance analysis of antiradiation
missiles.! These missiles search for a transmitting radar
by detecting its presence using an electronic warfare
recciver and then use this signal to guide it toward the

IThe problem in this context was brought lo the author's attention by
E. J. O'Bricn, manager of Hughes Aircraft Company’s Surveillance
and Sensor Systems Division.
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transmitting radar. Since in gencral the pulse repetition
frequency of the transmitting radar is unknown, one
method of target acquisition is for the receiver of the
missile to search for a periodic pulse train by locking
for a periodic sequence of m successive pulses. For

the purpose of antiradiation missile defense, it is of
interest to the radar designer to determine at what
range an antiradiation missile can first acquire the
transmitting radar. A radar will typically transmit a
waveform of n pulses in a particular direction while
performing its search function. An antiradiation missile
will gencrally be required to detect at least m of these
pulses in a row in order to acquire the transmitting
radar. For a fairly broad range of radar/missile
receiver scenarios, the probability that any single pulse
within the n-pulse waveform will be detected by the
antiradiation missile receiver will be a constant p, and
the event that any particular pulse within the waveform
will be detected is statistically independent of the
detection of any other pulse in the waveform. Hence
the probability of acquisition by the antiradiation
missile is equal to the probability of detecting

m or more contiguous pulses in a pulse train of

n pulses.

Finally, we note that there are situations in which
the occurrence of too many contiguous occurrences
of an event within some number of repeated trials
can result in an undesirable situation. For example,
in many digital communication systems, data
synchronization is compromised if there are too many
“0”s or too many “1”s in a row in a block of size n
[4, ch. 10]. These channels are often referred to as
runlength-constrained channels, and special codes have
been developed for these types of channels [5, ch. 8].
Examples of such a chann¢l include the magnetic
recording channel and certain on-off keying (OOK)
channels. In the case of the OOK channel, a block of
100 many consecutive Os may result in a loss of symbol
synchronization, assuming that O corresponds to the off
state, as a long string of Os appears to the receiver as a
noise-only observation, providing no information about
symbol stop and start times. The contiguous pulse
detection analysis provides a method of calculating the
probability of losing symbol synchronization in such
systems when the data source can be modeled as a
binary memoryless source.

The problem outlined above can be described
mathematically as follows. Consider the combined
experiment made up of »n independent Bernoulh trials
each having probability p of success. What is the
probability that the resulting sequence will contain a
sequence of m or more successes?

We would like to obtain a closed-form expression
for this probability, yet despite the simplicity of the
problem statement, a simple closed-form solution is
not known. Asymptotic approximations to the solution
of this problem have been developed [8], but in many
cases of interest their accuracy is insufficient, and the

State transition diagram of Markov chain describing
number of successive detected pulses.

Fig. 1.

only known way to analyze the problem is exhaustive
enumeration of all possible success—failure patterns.

In this work, we investigate two methods of solving

this problem, one based on the powerful approach

of generating functions, and the other based on a

more straightforward recursive formula approach. We
obtain closed-form solutions for the probability of the
event of interest, as well as expressions for the mean
and variance of the number of pulses n required for
detection of m successive pulses. We also investigate
the properties of statistical tests based on the detection
of m successive pulses out of n pulses and note their
properties with respect to related statistical tests.
Finally, we comment on the application of these test

to the antiradiation missile problem described above,
and the performance of burst error correcting codes on
memoryless channels.

While not the same as the problem we are
considering here, the related problem of calculating the
probability that the moving average of the outcome of
an independent sequence of Bernoulli trials exceeds
a given threshold was considered by Brookner [6]
and Dillard [7]. While both the problems of and the
analytical techniques used in these two investigations
differ from that of this work, the techniques of this
work may be useful in the statistical analysis of the
binary moving window detector considered in these
two investigations.

. PROBLEM FORMULATION

The problem being considered can be visualized
using the state-transition diagram shown in Fig. 1. The
state transition diagram consists of a directed graph
with nodes corresponding to the states 0,1,2,...,m,
representing the number of successive successful
Bernoulli trials. If we are in state k£ (k successive
detections), the probability we will be in state £ + 1
after the receiver observes the next pulse is p, and
the probability we will return to state O is g = 1 — p.
We note that this has the structure of a Markov
chain, where the state corresponds to the number of
successive successes. This Markov chain structure, as
shown in Fig. 1, leads immediately to a directed graph
which allows us to calculate generating functions for
probabilities of interest in the solution of our problem
using M‘a'son’s gain rule. Specifically, Fig. 1 as it is
drawn allows us to calculate the probability of getting
at least m successive successes for any number n trials
using generating functions derived from a directed
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graph derived from the state transition diagram of the
Markov chain. We now consider this approach.

Fig. 1 can be used to calculate the probability
that m successive pulses are detected in an » pulse
waveform. In order to see this, define

p,(c"') = Pr{state m is first reached on kth transition}.

)

Clearly p™ =0, for k =0,1,2,...,m — 1. It also
follows that if we define p,,(n) as the probability that
we reach state m at least once within n transitions,
that

pm(ny =" p{". )

k=m
Hence, solution of the problem requires a general

expression for p{™, m < k <n, and m > 1. We now
cxamine how to obtain such an expression.

i, PROBLEM SOLUTION
A. Generating Function Solution

A direct cambinatoric solution to this problem is
difficult, and a solution could not be found in the
literature. We solve the problem using generating
functions [8]. The generating function P, (s) of the

sequence of probabilities {p{™, p{™,..., p™,...} is

defined as
[e =]
Pu(s) =) P ®)
k=0
Given the generating function P, (s), we can
calculate the probabilitics p,(cm) using the following
relationship:
1 d*P,.(s)
(m)y _ 1 & FmlS) . 4
k Kt dsk |, “)

An expression for the generating function P,,(s)
can be found using the theory of path enumeration
in directed graphs, or equivalently, Mason’s gain rule
and the theory of signal-flow graphs {10, ch. 4]. We
may redraw the state transition diagram of Fig. 1 as
the directed graph of Fig. 2. Here the vertices are
labeled 1 through m corresponding to the number of
contiguous pulses detected, and the directed edges are
labeled either ps or ¢s, corresponding to whether or
not the next pulsc was detected. The indeterminate
s can be thought of as representing the unit delay
between pulses, and hence the z-transform notation
27! could have been used instead, but we chose to use
s because it is the standard notational convention for
generating functions {8, 9].

Let G = (V,E) be the directed graph shown in
Fig. 2, where V = {vo,v1,...,v,n} is the set of vertices
or nodes of the graph, and £ is a subset of ordered
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Fig. 2. Directed graph of Markov chain describing number of
successive detected pulses,

pairs from ¥, called edges. Here, the set
E= {(VO! vl)’ (vla \)2),. .- ,(Vm—l, Vm);
(VO) Vo), (vla VO), ey (Vm—ly V())}.

A path through the graph is a sequence of edges
through the graph. A path can be specified by listing
in order the vertices passed through while tracing the
path through the graph. For example, one possible
path from vg to vz is vov1vovov1v2; another is simply
voviv2. A path is said to be of length k if exactly &
edges are traversed in tracing out the path. An open
parh is a path along which no node is met twice. A
loop is a closed path involving a set of nodes forming
a complete circuit, for example vovivg Or vovivavp.

Now to each edge in G we assign a label, called
the transmittance of the edge. Note that in the graph
of Fig. 2, the label is ps if the edge leads from v;
to v;4y, or g¢s if the edge leads from v; to vy, for
j=0,1,...,m—1 We define the label or transmittance
of a path through the graph as the product of the
labels of the edged traversed in tracing out the path.

In order to determine P,,(s), we must calculate
the sum of the labels of all paths through the graph
starting at vg and ending at v,,. We note that there
arc an infinite number of paths joining vp and v,,.
There is one path of length m having label (ps)™,
one path of length m + 1 having label (gs)(ps)™, two
paths of length m + 2 having labels (gs)?(ps)™ aud
gs(ps)™*1, and so on. In order to compute P,,(s), we
must calculate the sum of all the labels of all paths
between vy and v,,. We will call this quantity the
transmittance between vg and v,, and designate it Ty,,.

An expression for the generating function P,,(s)
can be found by applying Mason’s gain rule [10, 11],
which states that the transmittance 7, xy between node x
and Node y is given by

T = Zk Ty A
xy A ‘
Herc T} is the transmittance of the Xth open path

between x and y, A is the graph determinate, given
by

A=1-3"Li+> LiLy =Y LILILY +--,
i i

ij.k

©)

L; is the loop transmittance of the ith loop, L;L is
the product of the transmittances of two nontouching
loops, with 3, ; E{L", representing the sum of products
of all pairs of loop transmittances of nontouching
loops. Similarly 37, ., Li'L L}/ represents the sum
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of the products of the loop transmittances of all
combinations of three nontouching loops, and so forth.
The quantity A is obtained by deleting from A any
terms involving loops that have a node in common with
a node in the kth path.

Applying Mason’s Gain Rule to the graph of Fig. 2,
we get

Po(s) = —— 2
1—gsy iy (psY
D
- (psy”
AT
ps™ (1~ ps)

= . 6
1_S+(1_p)PmSm+1 ()
Having an expression for the generating function,
we can now evaluate the desired quantity p,(n) as

_ a 1 d* P, (s)
e L) O

Note from (6) that for p € (0,1), P,(s) will always

be analytic in some neighborhood containing s = 0.
Hence derivatives of all orders exist at 5 =0, 50 p, (1)
as given in (7) is well defined.

For typical values of m and n, the expression
given by (7) is very cumbersome to evaluate by hand.
However, using a symbol manipulation program such
as Mathematica [13] or Maple [14], this expression
can be evaluated symbolically by machine. Its symbolic
computation can be made more efficient by noting that
if we define

1 d*P,,(s
Yin) = 7 g ®
then we have the recursion,
1d
Yrm (5) = Ezsj’:bk—l,m(s) ®)

and then (7) can be rewritten as

Dm (n) = Z wk,nt(s)|s=0—

k=m

(10)

Although the generator function approach leads to
large expressions which are algebraically cambersome
to work with, they provide the advantage of giving
expressions for other quantities of interest as well as
bounds on the probabilities of a number of events of
interest. For example, the mean number of pulses K
that need to be observed before m successive pulses
are detected for the first time is given by

dPp,(8)

K =
ds

(1D

s=1
and the associated variance is

d?P, (s) , 1dP,(s5)
2 __ m It m
Tk = [ ds? * s ds ]

- (K)~

s=1
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Fig. 3. Mean number of obscrvations X required before m
contiguous pulses are detected.

For P,,(s) as given in (6) above, we have

dP,.(s)
ds

S
s=1 Pm(l—P)

and

dsz(S)
ds?

s=1

_ 2(1 _zpm _ mpm +P2m +pm+l +mpm+1 _P2m+1).
(1-pyp™

Thus
1—pm

K=oi-p

(12)

and

1-2m+1)pm(1-p) —p™*!
(1— py?p*" )

Plots of X and the standard deviation og can be found
in Figs. 3 and 4. We note that K and ok are of interest
in the antiradiation missile analysis problem described
in Section I, and hence we see that these parameters
are easily derived using generating functions.

Because K and 0% appear somewhat cryptic
as given in (12) and (13), further insight into their
behavior is provided by looking at approximate
expressions for the cases p < 1and p~ 1. For p <1,
it is straightforward to show that

— 1\
K:(-—) , <1
7 p

o} =

(13)

(a4
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For the case when p =~ 1, we can obtain approximate
expressions for K and o% by expanding (12) and (13)
as power serics in p about p = 1. Doing so, we get

and
(15)

p>1 (16)

Kom+ ——————m(’Z-‘— D) 1-p),

and

o~ 17

m(m+1é(2m+1)(l_p)’ o1

For the case where p < 1, it is clear that 1/p >»

1, which implies that K = (1/p)™ will be very
large—growing exponentially in m. A similar statement
can be made about the variance 0% = (1/p)>". Note
that both X and 0% grow without bound as p — 0,

as would be expected. For the case where p~ 1, we
see from (16), that for p =1, K = m with variance
zero. This of course makes sense, because if a pulse

is detected on each observation with probability

one, then with probability one it will take exactly m
observations to observe m contiguous pulse detections.
As p becomes slightly less than one, K increases from
m as expected, and the cr}( becomes non-zero and
proportional to (1 — p) for p >~ 1.

Having the mean and variance of K, it is possible
to bound the probability that K deviates morc than
some specified distance from the mean using the
Chebyshev inequality. However, given the genecrating
function P,,(s), it is possible to generate a tighter
and, for our purposes, more uscful bound using the
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Chernoff bound. In order to do this, we define the
moment generating function gb(,?)(t) of the number of
trials K until m contiguous successes as

o0
(@) = E{e¥} = Zpl(("‘)e’k
k=0

where 7 is real and E is the expectation operator. Then
the Chernoff bound [15, 16, pp. 127-131], states that
for any real number 2,

Pr{K > a} < e~"¢{(r), v ote 0,71 (m,p))

(18)

and

Pr{K <a}<e ¥ (), Vv <.

Here, the interval (0,7%(m,p)) in (18) is the
intersection of the positive real numbers (0,00) and
the set {r : s = ¢’ is in the region of convergence the
region of convergence of P, (s) about the origin}.
Equation (19) involves a similar minimization over
(y~ (m, p),0), but it can be shown that y~ (m, p) =
—co. In addition, by a straightforward extension of the
argument of Section IIIC, where it is shown that the
root 51 of P, (s) with smallest modulus |s;| is real and
lies in the interval (0,1/q) (g = 1— p), it can be shown
that v*(m, p) € (0,—Ing).

These bounds hold for all ¢ in the specified ranges
(t € (0,7*(m, p)) or negative ¢, respectively), however
the tightest bounds are obtained by finding the ¢ over
the specified ranges that minimize the right-hand sides
of these expressions. The right-hand sides of (18) and
(19) are given by the expression

(19)

e 9 (1) = E{e"*~"))

which has a value of 1 at ¢ = 0, whose first derivative
has a value of K —a at r = 0, and whose second
derivative is positive for all ¢. So for a > K, the
right-hand side of (18) is greater than 1, and for a < K,
the right-hand side of (19) is greater than 1, neither
case providing a useful bound. Hence it follows that we
are only interested in (18) for the case where a < K
and (19) for the case where a > K.

Noting that

85 (1) = Pra(5)]s=e

we note that the tightest upper bounds of this form are
given by

Pr{K > a} <

min { et ) pm (1 pe') }
te 0yt (m,p)) 1—-¢€+ (1 — p)pme(m+1)t »

a>K (20

and

Pr{K <a} < min {

e(m—a)tpm(l _ Pel)
1€(—00,0) ’

1—e! + (1 _ p)Pme(mH):

a< kK. Q1)

927



These expressions are useful in providing upper
bounds on the probability that m contiguous successes
have not or have occurred in a trials, where a is a
positive integer such that a > m. In fact, these bounds
may in some cases be sufficiently tight that they relieve
the requirement for an exact solution of the problem.
However, in many instances, an exact solution is

still desired. The following example shows how the
Chernoff bound can be used to bound probabilities

of this kind.

EXAMPLE Using the Chernoff Bound, find an upper
bound on the probability that 10 successive “heads”
have not occurred within 10000 tosses of a fair coin.

In this case we use (20) to upper bound this
probability. Using (12) with m = 10 and p = 1/2, we
get K = 2043, which is less than a = 10000, so (20)
can provide a useful result. To determine v+ (m,p),
we note that the expression to be maximized in (20)
is monotonically decreasing in ¢ and equal to one
at 1 = (. Because (0,7 (m, p)) is the intersection
of the positive reals and the region of convergence,
we can find 47 {m, p) by solving for the positive real
root sg = €7 P) with smallest absolute value of the
denominator of P, (s). In this case, we solve

1-5+—=s1=0

for the root sy = 1.00049, from which it follows that
v*(m, p) = 0.00049. Hence because the expression in
brackets is monotonically decreasing in ¢, the minimum
oceurs at Iy = y* (m, p) = 0.00049. The minimum
value achieved by this 7, is 0.00579. Hence we have

Pr{K > 10000} < 0.00579.

B. Recursive Formula for Evaluating pi(n)

While a simple combinatoric argument could not
be found to give a closed-form solution for py(n),
it is possible to construct a recursive formula for
the computation of py(n). We can also calculate its
generating function

o0
Qm(s) =3 Pm(m)s”
n=0
based on the recursive formula. The development is as
follows.

If p(n) is the probability of detecting /m or more
successive pulses out of a total of n pulses, we see
that detecting m or more successive pulses in n+ 1
pulses can happen if and only if one of the following
two disjoint events occur:

1) if m successive pulses were detected in the first
n observations.

2) if the mth successive pulse detected occurred on
the n + 1 observation.

The probability of the first event is just p,,(rn). For
the second event to be true, all three of the following
events must be true.

1) In the first n — m pulse observations, # Or morc
successtve pulses were not detected.

2y The n — m + 1th pulse observation does not
result in a detected pulse.

3) Pulse detections occurred in cach of the last m
pulse observations.

These three events are statistically independent, and
have probabilities 1 — p,,(n —m), 1 — p, and p”,
respectively. Hence it follows that

Prn(n+1)=pu(n) + (1= pn(n—m)(1-p)p™.

Of course for n < m, p,(n) =0, and for n = m,
Dm(n) = p™. Hence

0, if n=012,...,m~-1
P, if n=m
Pm{n) = -
Pr(n—1)+ (1 = pn(n—m—~1)(1 = p)p”™,
if n>m

A straightforward computation yields

Qum(s) =D Pm(n)s”

n=m

-y Lipi’")} 5"

_ prs™(1—- ps)
(1-8)(1~s+ (- p)pmsm*ty

(22)

Unfortunately, this generating function is no simpler
to invert than P,,(s), so a closed-form solution could
not be obtained. The recursive formula itself is
cumbersome to work with for large »n and rn, however
using a symbol manipulation program, it is possible to
get analytical results for specific m and n just as we
can using P (s). In fact, the results to be presented in
Section IV were verified using both techniques.

C. An Asymptotic Expression for p{™

In principle, we can obtain an expression for
p&™ by inverting the generating function P,,(s). One
approach to doing this is through use of a partial
fraction expansion. We can write

N(s) _ (ps)”
D(s) 1-qsY oy (ps)

and then it follows that if sy,...,5,, are the m distinct
roots of D(s), then we can write P, (s) as the partial

, ' P(s) =
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fraction expansion

P (s)=ﬁ_el_+_p_2._+._.+_ﬂ*_
™ S1~5 S3—§

Here the coefficients pg are given by

_ -N(Sk) /i' ’
T DG

It then follows that upon inverting the partial fraction
expansion of P, (s) term by term, we get

(m) _ 01 p2 Prm
P =t k+1+"'+sk+1'
5 52 ”

So assuming we can calculate the roots sy,...,5,, of
D(s), and the corresponding coefficients py,...,p0m,
we have an exact expression for p,(""). Unfortunately,
calculation of all of these roots is difficult for large m

and n. Generally, however, one term in this expression
will dominate as # grows large. This is the term having

the root s, having the smallest modulus {s;|. Thus
if we label the roots sy,...,5, such that |s1]| < [sg],
for £ = 2,...,m, we have the following asymptotic

expression for p,(c”'),

21
pl(cm) ™R (23)
1

(The notation ~ indicates that the ratio of the
left-hand side to the righi-hand side approaches one
as k grows large.) Of course, to make use of this
result, we must solve for the single root §; of smallest
modulus and evaluate the constant py.

If we consider the denominator

D(S) =1 qs(l +ps+-.- +rpm—lsm_1),

we note that for positive, real s, D(s) is a strictly
decreasing function of 5 and that D(0) = 1 and
D(1/q) < 0. Thus there exists a unique pasitive root
s1 of D(s) on the real interval (0, 1/q). Furthermore,
for any real or complex s such that [s| < sq,

451+ ps + -+ pn i)
<gsi(l+ps;+--- +p""ls’1’"1)

with equality only when 5 = 51. Thus sq is a positive
real root of multiplicity one with s1 < |s;| for j =
2,...,m. This being the case, s; can easily be found
numerically using any of a number of polynomial
root-finding algorithms (17], and the asymptotic
expression for pi(m) in (23) can be rewritten as

(m) 51— —ps;) (24)

P T ATy

Although these asymptotic approximations can be
shown to be quite good for moderate to large k, we
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often need to evaluate pi™ for small k, especially

when we are dealing with small m. Hence, these

asymptotic expressions are not in general sufficient

for an accurate estimate of p,(n) = S2F_  pi™,

For those situations where the approximation is
sufficiently accurate, however, it can greatly simplify
the analysis. A detailed analysis for the accuracy of
the approximation in any particular case requires
knowledge of p, m, and n.

IV. CONTIGUOUS PULSE BINARY INTEGRATION
DETECTION PERFORMANCE

Because a general closed-form expression for the

coefficients pg") of Pp.(s) could not be found, we

consider the specific cases of Py(5), P2(s),..., Pio(s).
We can then find the p,(c"’) in these cases using (3)

and these P,.(s). We can then find the pi(n) using
(2). We consider the first ten terms in each case. This
allows us to calculate the probability of detecting m or
more contiguous pulses out of » total pulses for 1 <
k<nand n=1,...,10 under the assumption that the
detection of each individual pulse is an independent
Bernoulli trial with probability p of success. The ten
P, (s) are as follows:

Pi(s) = ps+ (1 - p)ps® + (1 — p)*ps*
+(1—pyps’ + (1= p)'ps® + (1 - p)’psS
+(1-p)*ps” +(1- p)ps® + (1 - p)°ps’
+ (1~ pY’ ps’ +O(s')

Py(s) = p’s* + (1~ p)p’s> + (1 - p)p*s*
+p*(L-p~p*+p)s’
+p* (1 - p-2p* +3p° - p*)s®
+(1- p)*p’(1 +2p)s’
+(1- pPpP(1 +2p— p*~ p)s®
+(1-p)'pP(1+3p + p* - )’

+ (1= p)p? +3p-3p%s" + O(s'Y

Py(s) = p*s® + (1~ p)p>s* + (1 - p)p°s°
+(1—p)p’s®+ p*(1- p— p> + p*)s’
+p(1—p—-2p° +3p*~ p°)s®
+pY(1—p—3p° +5p* ~2p)s°
+p*(1-p—4p® +7p* - 3p°)s1 + O™

Py(s) = p*s* + (1- p)p*s® + (1— p)p*s® + (1 — pyp*s’
+ (1= p)p*s* + p*(1 - p— p* + p°)°
+pi(l—p—2p* +3p° - p°)s’ + O(s')
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TABLE 1
Cocfficient Table for Polynomials p(n)

Power of p Power of p
ki nlj 1 2 3 4 5 B 7 8 9 (10 kinid4|5}|6; 7|8} 9]10
1 1 1 411
24 21 -1 52]-1
3 3] -3 1 6i3)-2]0
44| -6 4 1 7H41-3101]0
50 5 -10¢ 10 -3 1 glisy-4(010]|0
61 6 |-15] 20 -15 L} -1 gh6j-5(0107-11]1
T 7 {-211 35 235 | 21 -7 1 wl7vi-610[101]-3;4]-1
8 8 |-281 56 -70 | 56 | -28 8 -1 5 5 1
gll 9 [-36{ 8 |-126 126 -84 | 36 | -9 1 6 211
10|f 10 -45 | 120 |-210 | 252 { -210 | 120 | -45 [ 10 | -1 7 31-210
21 2 1 8 41-310¢}0
3 2 ;l 9 514{0§01]0
4 3|20 10 6|s{ojofo]o
5 4 -3 -1 1 6| 6 1
6 5 -4 -3 4 -1 7 21-1
7 6 -5 -8 9 -3 0 8 31210
8 7 -6 -10 16 -5 -2 1 9 41-3]10
b¢] 8 -7 -15 25 -6 -9 6 | -1 10 5|-4]010j0
10 9 -8 -21 36 -8 24| 18140 7 7 1
3]l 3 1 8 2 1-1
4 2 -1 9 31-2
5 3 -2 0 10 41-3|]04)0
6 4 -3 0 0 8] 8 1
7 5 -4 0 -8 1 9 2 1-1
8 6 -5 0 -3 4 1A 10 3f-210
9 7 -6 0 -6 9 310 9 g 1
10 8 -7 0 10| 16 | -6 0 10 211
10 | 10 1

Ps(s) = p°s® + (1 — p)p’s® + (1 - p)p’s” + (1- p)p’s®
+(1—p)p’s® + 1= p)p°s”® + O(s™)

Ps(s) = p%° + (1 - p)pss” + 1 - p)p®s® + (1 - p)p°s’
+ (1= p)pSs'® + o)

Pys)=p's" +(1—p)p's* + (1 - p)p’s°
+ (1= p)p’s' +o(s!)

Py(s) = ps* + (1 — p)p%s® + (1- p)p®s™® + O(s")
Py(s) = p°s® + (1 - p)ps'® + Ot
Pyo(s) = p%s° + O(s™).

930 -

From (2), we know that the probability p,,(m) of
detecting m contiguous pulses within n pulses total is
given by summing the generating function coefficients

p,(c"') over K for k = m,...,n. Hence, in general,
Pm(n) is an nth degree polynomial in p. Table I
displays the coefficients of these polynomials for py(n)
through pio(n), for n = 1,...,10. So, for example, the
probability ps(9) of detecting four or more contiguous
pulses out of six pulses total is given by (see Table I)

as
pa(9) =6p*—5p° —1p° +1p°.

In order to examine the behavior of the probability
of detecting m or more successive pulses out of n total
pulses, we examine the case of n = 10. Here we have
calculated all of the probabilities pz(10) using Table 1.
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The resulting polynomials are: : =T
Vi
p1(10) = 10p — 45p? + 120p® — 210p* +252p° - .
(=] d.4 = L
—210p° + 120p" — 45p% +10p° — p1° 5 : =gi ==§ '
3 pe 7
PZ(IO)=9P2—8P3—21P4+36P5-5P6 g 14 — 7 W/I
/ a9.01 4. 5
—24p" +18p® — 4p° H FE
g 7 T
p3(10) = 8p* — 7p* — 10p° + 16p” — 6p° ; g 7 il
0.001 S
10) = 7p* — 6p5 —3p8 + 4p° — p° 5 S
p4(10)=7p" —6p° —3p° +4p —p 5
— S 6 £ 7
ps(10) = 6p° —5p | Tl A 111 )4
— &6 7 5 f =
po(10) = 5p° —4p 7 mait Dama ) it
8 E
p7(10) = 4p7 - 3p E 0.00601 / = / ‘
—13p8 9 T
ps(10) =3p* —2p ; (/ i Im
9 .10 - /
po(10)=2p p 1. 10 0.001 .01 0.1 1
Pl()(lo) = P],O- - Pmbabi!iryochwcﬁon for a Single Obscr-vatiun,p
Fig. 5. Probability of detecting m or more contiguous pulses out
The reader may note that it is really unnecessary of 10 pulses versus single observation probability of detection p.
to calculate P;(s) in the list of generating functions
above or pi(n) in the list of probabilitics p;(n) given 1 e
above, as the probability of detecting one or more H o AT
i is j i ol 195 Aor 2 4 z B
successive P}llses out of n total pulses is just one minus H 1/-’/ /// w4 ﬁf’?
the probability of detecting none. Hence py(n) = rats ;,' // / // 7 /
1— (1~ p)*. We include these expressions in the above . oa Lt 72 / j ;/
lists for completeness. Note however that by use of the § D e 1 41
binomial theorem, it can be shown that 1 — (1 — p)" 8 A1 /;:'/'1 f
- . . . - 3 ” 7
is equal to the expression for p;(n) given in the list H A Vawavi {.//
above. ;;? oo d / /
Plots of p,(10) for k =1,...,10 as a function of p, = 2 = 7 i
the probability of detecting a single pulse, are sho.wp in § A7 f
Fig. 5. This plot, plotted on logarithmic axes, explicitly E AL Aery A
shows the asymptotic behavior of these probabilities as g Vel /4 /’ s
p grows small. Note that p is plotted as a function of oo zas 1,7' r" - l," ]," ]
itself as a dotted line to serve as a line of reference for O
the behavior of the p.(10). Y717 77
In considering the performance of contiguous pulse 14 / / / / / /
binary integration as a binary integration scheme for 0. 0001 0,15’ o2 o.a vs 0. T
radar detection, it is useful to compare its performance Probability of Detection for Single Qbservation,
with the more common binomial binary integration Fig. 6. Binary integrated probability of detection versus single
rule of “u or more detections out of n, regardless observation probability of detection p. Dashed lines with italicized
of order.” We note that in this comparison, we are labels give probability of u or more detections out of 10,
p
assuming that detection in each resolution cell is an regardless of order. Solid lines with bold labels give probability of

indcpcndent Bernoulli trial with probability p.In k or more contiguous detections out of 10 total.

situations where targets span many resclution cells,

the contiguous intcgration approach may be more Fig. 6 displays both pp(k;10) and pz(10) as a function
advantageous. of p in order to allow comparison of these two binary
Thus binomial binary integration rule is easy integration rules. ’
to analyze since it just corresponds t0 1 Or morc In general, we are interested in binary integration
successes in n Bernoulli trials and can be written as rules which increase overall detection probability
[12, ch. 3] over single observation detection probability p for
" /n . _ moderate to large values of p, while decreasing overall
pp(u;n) = Z ( ) p(l-p)y. detection probability below p for small values of p.
j=u The reason for this is that in most radar detection
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problems, there is a relatively small probability of
declaring a target present when one is not—the
probability of false alarm, Ppa—corresponding to a
small probability of success in the single Bernoulli
trial corresponding to the radar observation, while

the probability of declaring a target present when

one is in fact present—the probability of detection,
Pp—corresponds to the probability of success in a
Bernoulli trial with what is generally a much larger
probability of success. Generally, we want to make the
overall probability of false alarm as small as possible
while making the probability of detection as large as
possible, given the single observation probabilities of
declaring a target present when one is not present

or when one is not present, pg, and declaring a

target present when one is in fact present, p1. As

Fig. 6 indicates, at least for n = 10 pulses, pg(k;10)
exhibits better binary integration characteristics than
. (10), even when selecting differing optimal values
of k for the two quantities. Note that in general,
pa(1;n) = p1(n) and pg(n;n) = p.(n), as indicated for
n = 10 here. Again, we note that this is not surprising,
because the ratio of the number of detections to the
total number of pulses is a sufficient statistic for the
single pulse probability of detection, and in general
we can describe the composite hypotheses Hy that

no target is present and H; that a target is present in
terms of the single pulse probability of detection p.

V. SUMMARY AND CONCLUSIONS

We have considered the problem of analyzing the
probability of detecting m or more contiguous pulses
out of a total of n pulses when it is assumed that the
detection of each individual pulse is an independent
Bernoulli trial with probability p. While a general
closed-form expression would be ideal, one could not
be found. Instead, we have presented an algorithm
or procedure for constructing expressions for these
probabilities as a function of p, m, and n. We have
demonstrated the use of this procedure by explicitly
presented results for the cases m < n < 10. We have
also presented expressions and curves showing the
mean and variance of the total number of pulses that
need to be observed in order to get m contiguous
detections when the probability of detection for each
of the independent pulse detections is p. These results
were obtained using the method of generating function,
and the required generating functions were derived
using Mason’s Gain Rule. We then derived bounds
on the probability of the events that the number of
pulses K required for m successive successes of the
form {K > a} and {K < a}, where a is a positive
number (most often a positive integer). These bounds
were derived through use of the Chernoff bound, and
involve only knowledge of the moment generating

function ¢ (¢), which in turn can be determined from
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knowledge of the generating function P, (s). These
bounds demonstrate another benefit of the generator
function approach, and in many cases, these bounds
themselves may be sufficient to provide an approximate
solution to the problem of interest.

Next we considered a solution based on a recursive
formula for the probabilities pi(n). While this
approach also led to an analytical procedure for
finding the probabilities p,,(n), it did not provide a
simple way to calculate the statistics of the number of
observations required until occurrence of m contiguous
detections as the generating function approach did.
Since these statistics are of interest in the antiradiation
missile analysis described in Section I, it does not
completely replace the generating function solution.

We then considered the derivation of asymptotic
expressions for p,(c'") which can be used to calculate
approximations for py(n). This was donc using the
well-known technique of asymptotic expansions based
on generating functions. While these approximations
may be useful in some problems, they can be
inaccurate for small k.

We then looked at the performance of contiguous
pulse binary integration rules in detection problems,
comparing them with the results one obtains using
the simple unordered u out of n binary integration
rule. As a typical case to examine in detail, we choose
the case of n = 10 (10 successive observations) and
consider the probability of getting k or more successive
detections within the block as a function of the single
pulse detection probability p, for £ =1,...,10. In
order to do this, we calculated the generating functions
Py(s),...,P1o(s), expanded each of them into a power
series, and collected the first 10 (n) terms of cach
(note that the constant term of these polynomials
will always be zero). From these expansions, the

probabilities p,(:") are extracted, and the probabilities
Pm(n) are calculated using the sum in (2). We note
that while this was carried out for the case of n = 10,
the process is easily generalized and implemented on a
computer for other n. So in fact, analytical expressions
can be generated for arbitrary m and n.

The generating function approach outlined in
Section IIIA can be generalized to calculate the
probability that any particular pattern of Os and 1s
occurs in a pattern of n bits. We have considered
the contiguous pattern of m 1s in a Bernoulli trial
generated bit stream, but patterns such as 1010101
or 0010111 could be just as easily considered. We
note, however, that the resulting generating function
will not have all of the same properties as those
for the particular case of contiguous pulses that we
investigated. So, for example, the development of
asymptotic expressions for the probabilities of interest,
as was done in Section IIIC may be quite different.
Note, however, that once the generating functions are
found, bounds on the probability of the occurrence of
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a particular bit sequence in a block of n bits can be (8] Feller, W. (1968)

casily constructed using the Chernoff bound argument
of Section IIIA. Hence the technique outlined may be

Anr Introduction to Probability Theory and Its Applications,
Vol. 1 (3ed ed.).
New York: Wiley, 1968,

useful for the calculation of particular events occurring  [9j  Brémaud, P. (1988)

in repeated Bernoulli trials as they appear in a diverse

An Introduction to Probabilistic Modeling.

collection of detection and communication problems.
i
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