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ABSTRACT: The conditions are discussed under which two square discrete memoryless
channels (DMCs) in cascade commute. Two different types of channel commutativity are
considered : matrix commutativity, in which changing the order of two cascaded channels
results in an identical overall channel, and capacity commutativity, in which the order of two
cascaded channels vesults in an overall channel with the same capacity as the original cascade.
A theorem is presented giving necessary and sufficient conditions for a pair of square DMCs
to be matrix commutative and note its implications for a number of example channel cascades.
Finally, it is shown that all pairs of r-ary symmetric channels are matrix commutative,
regardless of their crossover probabilities.

1. Introduction

Consider two binary symmetric channels, BSC, and BSC,, with crossover prob-
abilities ¢, and g,, respectively. If we cascade these two channels such that BSC,
follows BSC, the resulting channel is a binary symmetric channel with crossover
probability

g1, =& (1—8;) +e:(1—s)). n

If we exchange the order of cascade such that BSC, follows BSC,, we get a binary
symmetric channel with crossover probability

ey = g3(1—&))+e(1—¢2). 2

The crossover probabilities of the BSCs resulting from the two possible cascades
of BSC, and BSC, are equivalent, independenl of the particular values of ¢, and
&,. Hence, we have that the order of two BSCs in a cascade is irrelevant, and we say
that the two channels commute, providing an overall channel that is independent of
their order.

Now consider two binary Z channels B2C, and BZC, with absorption prob-
abilities d, and J,, respectively. If we cascade these two channels with BZC,
following BZC,, the resulting channel is a binary Z channel with absorption
probability

813 =08,+8,-5,3,. (3)

The Franklin Institute 0016003293 $6.00 1 0.00 1101

M. R. Bell

If we exchange the order of cascade such that BZC, follows BZC,, we get a binary
Z channel with absorption probability

0y =06,+0, - 8,4, (€Y

Clearly these two cascades are equivalent as well, and we can say that BZC, and
BZC, commute.

Now consider what happens when we cascade a binary symmetric channel with
a binary Z channel. If we cascade BSC, with BZC, such that BZC, follows
BSC,, we get a binary discrete memoryless channel with crossover probabilities
% =P(Y=1/X=0)and §,, = P(Y = 0| X = 1) given by

oy, =e(1—9) (5)
and
B2 =e(1-8)+4. (6)

If we form the cascade such that BSC, follows BZC,, we get a binary discrete
memoryless channel with crossover probabilities o, = P(Y = 1|X =0) and
fr = P(Y =0|X = 1) given by

Ay =& (7)

and
Bar = e(1=8)+8(1—¢). ®)

These two cascades are not equivalent. In fact, the only time they can be equivalent
is when at least one of the channels is a perfect binary channel (i.e. # = 0 or § = 0).
Hence we can say that a binary symmetric channel and a binary Z channel do not
commute, while two binary symmetric channels or two binary Z channels will
commute. This simple example begs the question: under what conditions will two
discrete memoryless channels (DMCs) commute? In this paper, we investigate this
question.

Historically, with a few exceptions, the problem of channcls in cascade has
been ignored. No work was found that discussed the conditions under which two
channels in cascade commule.

The earliest paper discussing channels in cascade is that of Silverman (1). Sil-
verman presents a detailed analysis of the general binary memoryless channel, He
also investigates the capacity of length two cascades of binary memoryless channels.
In particular, he notes that given a cascade of two identical binary symmetric
channels and a cascade of two identical asymmetric binary channels, where all
individual channels making up the cascades have identical capacities C,, the
capacity of the cascade of binary symmetric channels will be larger than that of
the cascade of asymmetric channels unless C, is sufficiently small. He then considers
this problem in detail for the case where the asymmetric channels are Z channels.
Silverman’s results are not easily extended to the case of DMCs with m inputs and
m outputs, and he does not consider the conditions under which two channels
commute.

Shannon (2) introduced a partial ordering of  x r DMCs that has some inter-
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esting implications for cascades of these channels. Shannon states that a channel
with transition matrix Q, includes a channel with transition matrix @, (written
@, 2 @,) if there exists another channel with transition matrix Q such that cas-
cading the channels corresponding to @ and @ results in a channel with transition
matrix Q,. An interesting property of Shannon’s partial ordering relating to cas-
cades is that if 9, 2 Q5 and @, 2 Q,. then 0,0, =2 50,

Simon (3) derives an expression for the capacity of a cascade of L identical rxr
discrete memoryless channels in terms of the eigenvalues and eigenvectors of the
constituent channel of the cascade when this channel has a nonsingular transition
matrix. Although he applies linear algebraic ideas as we do, he does not consider
the problem of when discrete memoryless channels will commute.

Posner and Rubin (4) consider the problem of a cascade of L binary symmetric
channels in cascade, where they assume that the binary symmetric channels arise
by making a binary decision on an additive white Gaussian noise channel with no
bandwidth constraint. They show that for large L the capacity drops off by a factor
asymptotic to In L.

Recently, a number of problems relating the capacity of a cascade of binary
channels to the capacitics of the individual channels making up the cascade have
been considered (5). None of the above mentioned works, however, consider the
conditions under which two discrete memoryless channels commute. In this
correspondence, we consider this problem for square (r-input, r-output) discrete
memoryless channels,

H. Math ical Preliminaries

2.1. Basic Definitions

We now present some basic definitions relating to discrete memoryless channels
in cascade. We follow the conventions and notation of McEliece (6).

A discrete memoryless channel (DMC) is characterized by two finite sets: the
input alphabet A, and the output alphabet 4, and a set of transition probabilitics
p(y]x) defined for each xeA, and yed,. If |4, =r and |4,| =5, we can take
A, ={0,...,r—1} and 4, = {0,..., s 1}. We can characterize the DMC by an
rx s stochastic matrix Q with [Q]., = p(y/x), known as the transition matrix of
the channel. A square DMC is a DMC for which r = s, or equivalently 4, = 4,.
In this case, Q is an rxr square matrix. Note that if p. = (p,,...,p,) is the
vector of probabilitics of inputs to the DMC and p, = (q,,...,¢,) is the vector of
probabilities of outputs from the DMC, then p, = p, Q.

A DMC A with transition matrix Q, is said to be matrix equivaleni to a DMC
B with transition matrix Qg if 0, = Q3. A DMC 4 with matrix Q, is said to be
row-permutation equivalent to a DMC B with matrix Qif there exists a permutation
m of the rows of @ such that @, = 7(Qp). Similarly, a DMC A4 is said to be column-
permutation equivalent to a DMC B if there exists a permutation p of the columns
of Qg such that Q, = p(Qz). A DMC A4 is said to be permutationally matrix
equivalent to a DMC Bif there exists a permutation of the rows 7 and a permutation
of the columns p such that Q, = n(p(Q;)) [or equivalently, @, = p(n(Q5))]. Note
that the significance of permutational matrix equivalence is that row permutation
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corresponds to a relabeling of the inputs and a column permutation corresponds
to a relabeling of the outputs. Such relabelings do not effect the capacity of the
channel.

Two DMCs 4 and B with matrices Q, and Qj, respectively, aresaidtobe 4 = B
cascadable i the matrix product @ ,Qp is well defined. The resulting channel 4 - B
has channel transition matrix

Qu-p= A,Q5-
Two cascadable square channels 4 and B are said to be marrix commutative if
Qa4 Oy = 0504,

or equivalently, if 4 = Band B o A are matrix equivalent. Two cascadable square
channels 4 and B are said to be capacity commutative if

cap(Q,-5) = cap (Qa- 4)-

Here cap (Q) denotes the capacity of the DMC with transition matrix Q. Note that
for any row permutation n and column permutation p,

cap (n(p(Q))) = cap (Q).

Thus it follows that matrix commutativity is a stronger condition than capacity
commutativity.

2.2. Results from matrix theory

We now present some definitions and results from matrix theory that will be
useful.

Two # % n matrices 04 and Q are said to be similar if there exists a nonsingular
matrix S such that Q, = SQpS . If an nx s matrix @ is similar to a diagonal
matrix, then Q is said to be diagonalizable. Two diagonalizable n x n matrices Q4
and Q, are said to be simultaneously diagonalizable if there is a single similarity
matrix S such that both $Q,S~! and $Q,S™ "' are diagonal.

The following theorem provides a well known result for diagonalizable matrices.

Theorem I
Let @ be an 7 x # matrix. Then Q is diagonalizable if and only if there is a set of
n linearly independent eigenvectors of Q.

Proof: See (7, p. 46). ™

Theorem I tells us that an » x n diagonalizable matrix defined over the field F
provides a completc eigenvector basis for 7. This leads us to the main theorem
that allows us to prove our results.

Theorem 1T
If 0, and Qyare diagonalizable n x n matrices, they commute if and only if they
have a complete sct of eigenvectors in common,

Proof: If 4, and Q5 commute, then for any nonsingular matrix §, so do SQ,S '
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and S0;S '. So commutation does not depend on the particular basis chosen.
Suppose we select a basis such that

Q4 =80, =diag(A\ L, okys -,
where ], is an identity matrix of dimension n,, the multiplicity of 4,. The O must
have the form
Q% = SQpS™ " = diag(B,, By, ...),

where B; has dimension #, x n; (the same dimension as 7, ). Now define Q7 and Q%
on a new basis defined by the transformation 7 such that

04 =TOLT ' = (THQ(TS) ',

and
5= TOT " = (TS)HQu(TS) .
where T'is of the form
T = diag (T, Ts, ...)
with 7; having dimension #; x ;. Then Q' can be written as
Q) =diag(A, T\ T, ', 7. T2 T74,..) = Q4.

So Q% = @ regardless of T}, T3, . ... On the other hand

Q% = diag(T,\B,T, ', T:B,T7%,.. ).

Since Q0 and hence Q7 are diagonalizable, B,, B,,... are also diagonalizable.
Hence, we can choose T, T, ... to diagonalize By, B,, ..., and hence Q%. So we
can find a basis that simultaneously diagonalizes Q, and Q. It follows that the
rows of (TS) are a linearly independent set of simultancous eigenvectors for both
Qqand Q.

Conversely, assume that {x;} is a complete common set of eigenvectors for both
Q, and Q5. Then any y € F" can be written as

y= 3 ax.
i=0
If x,0, = 4x; and x,0p = p;x,, then for all ye F*,

¥Q.05 = (iﬂailea)Qx = (Z “:A,XI)QB = Z Al X,

i=0 i=0

and
¥0:04 = <Z aierB>QA = (Z a-'.u[xi)QA = Z @ pAK;
i=0 = =
Thus Q,Q5y = @50,y forall ye F", and hence 0,05 = 0504 u
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Commutativity of diagonalizable O, and Q implies that they are simultancously
diagonalizable.

I Results on Commuting Discrete Channels

Theorem II provides us with the necessary result to prove our main theorem on
the matrix commutativity channels with a diagonalizable transition matrix.

Theorem [IT

1f 4 and B are discrete memoryless channels with diagonalizable channel tran-
sition matrices Q4 and Qj, respectively, then 4 and B are matrix commutative if
and only if O, and @, have a complete set of eigenvectors in common.

Proof: The proof is a straightforward application of Theorem 11, 4 and B will
be matrix commutative if and only it Q Q5 = Qz0,, but by Theorem IL, this is
true if and only if Q, and Qp have a complete set of eigenvectors in common. m

Theorem III provides a straightforward test to determine whether or not two
rx r DMCs with diagonalizable transition matrices are matrix commutative. The
major limitation on the channels handled by this theorem is that both channels
have diagonalizable transition matrices. As we will see, many, if not most of the
channels of interest have diagonalizable transition matrices. We now look at several
examples of the application of this theorem. We will first address the examples
noted in Section L.

Example 1: Matrix commutativity of BSCs. As we noted in Section I, any two
binary symmetric channels are matrix commutative, regardless of their crossover
probabilities. According to Theorem II1, if the transition matrix

1—-¢ g
Q”:(s 1-£>

is diagonalizable, then since any two BSCs are matrix commutative, all BSCs must
have two linearly independent cigenvectors that are independent of the crossover
probability &. The eigenvalues of Q, are 4, = 1 and 4, = [ —2¢. The corresponding
eigenvectors are ¢, = (1,1) and e, = (—1,1). Clearly, the BSC has a complete
set of linearly independent ecigenvectors that are independent of the crossover
probabilities, so by Theorem IIl, any two BSCs are matrix commutative, as we
know from Section I.

Example 2: Matrix commutativity of BZCs. As we noted in Section I, any
two binary Z channels are matrix commutative, regardless of their absorption
probabilities. According to Theorem III, if the transition matrix

Q":(cls 1%)

is diagonalizable, then since any two BZCs are matrix commutative, all BZCs must
have two linearly independent eigenvectors that are independent of the absorption
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probability &. The eigenvalues of O are 2, = I and 2, = 1—4. The corresponding
eigenvectors are e; = (1,0) and ¢, = (—1,1). Clearly, the BZC has a complete
set of linearly independent eigenvectors that are independent of the crossover
probabilities, so by Theorem ITI, any two BZCs are matrix commutative, as we
know from Section I.

Example 3: A BSC and a BZC are not matrix commutative. As we demonstrated
in Section 1, a BSC and a BZC are not matrix commutative. That this must be the
case can immediately be seen from Theorem T and the results of the previous two
examples. Both the BSC and BZC have diagonalizable transition matrices, but
don’t have common eigenvectors, with the exception of the trivial case where either
the BSC or the BZC is a perfect binary channel (¢ = 0 ot & = 0).

Using Theorem 111, it is easy to deduce the conditions under which two binary
memoryless channels are matrix commutative. We present these conditions in the
following theorem.

Theorem IV
Two binary memoryless channels with transition matrices

_(1—(%1 o )
2= 1-p

1—a, %y
Qz:( g1 /f:)

are matrix commutative if and only if /o, = f,/x,.

and

Proof: A general binary memoryless channel with transition matrix

1—a o
Q”“( I 1—ﬂ>

has eigenvalues 4, =1 and A,=1—a—pf, with corresponding eigenvectors
e, = (fja, 1) and e, = (—1,1). Thus by Theorem III, two channels (%, f,) and
(23, f) are matrix commutative if and only it they have a complete set of eigen-
vectors in common. This is true if and only if #,/a, = f,/a,. ]

Using Muroga’s Square-Channel Capacity Theorem (8,9), the capacity of a
discrete binary channel with transition matrix

I—a %
Cue ‘( 8 1—ﬁ)
can be shown to be (1)

B 1) — (1 =) H5 ()

Cap)y=—""= @ip +log, [14207B1— 00 6] (bitg),  (9)
P s Gt i 1107
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Fi. 1. Contours of equal capacity for the binary memoryless channel,

In order to examine the results of this theorem for the binary channel, we use a
diagram introduced by Silverman in (1). This diagram, shown in Fig. 1, displays
contours of equal capacity as a function of « and .

Superimposing lines of constant $/x—Tlines along which all channels are matrix
commutative—we get the diagram of Fig. 2. Note the line with /o = 1 along which
all BSCs lie and the vertical line o« = 0 along which all Z channels lie.

Fi1G. 2. Lines of constant $/a, along which binary memoryless channels commute.
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We now investigate the matrix commutativity of two other symmetric channels.
An r-ary symmetric channel is defined as a channel with an r X r transition matrix
Q with

£, if x# p,
Qo= 1e. if x=1
for 0 < ¢ < 1j(r—1) (6, p. 55). We now have the following results for the ternary
symmetric channel (r = 3) and the quaternary symmetric channel (r = 4).

Theorem V
Any two ternary symmetric channels are matrix commutative, regardless of their
crossover probabilities.

Proof: The channel transition matrix of a ternary symmetric channel with cross-
over probabilities ¢ is

/1—28 & ¢

H € 1-2¢

The eigenvalues of this matrix are 4, = 1, A, = 1—3¢ and 4; = 1—3z; the cor-
responding eigenvectors are ¢, = (1,1,1), e; = (- 1,0,1) and e; = (—1,1,1).
Hence, Q5 is a diagonalizable matrix with a complete set of linearly independent
eigenvectors which are independent of the crossover probability ¢. So by Theorem
1T, any two ternary symmetric channels are matrix commutative. [ ]

Theorem VI
Any two quaternary symmetric channels are matrix commutative, regardless of
their crossover probabilities.

Proof: The channel transition matrix of a quaternary symmetric channel with
crossover probabilities ¢ is

1—-3¢ P & 3
£ 1-3¢ e £
= R fe< /3
Qs e P 1-3 ¢ | OsesU
€ € & 1-3¢

The eigenvalues of this matrix are 1, = 1, 2, = 1 —4g, Ay = 1 —4gand 4, = 1 —4¢;
the corresponding eigenvectors are e, = (1,1,1,1), e,=(—1,0,0,1),
e3=(—1,0,1,0)and ¢, = (—1,1,0,0). Hence, Q, is a diagonalizable matrix with
a complete set of linearly independent eigenvectors that are independent of the
crossover probability &. So by Theorem III, any two ternary symmetric channels
are matrix commutative. ]

The results for the r-ary symmetric channel for » = 3 and r = 4 leads us to
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conjecture that any two r-ary symmetric channels are matrix commutative for
arbitrary r. In fact, this is true and we present the result in the following theorem.

Theorem VII
Any two r-ary symmetric channels are matrix commutative, regardless of their
crossover probabilities.

Proof: We could use Theorem III to prove this result, but in this case it is easier
to examine Q,(5,)0,(¢;) and Q,(e;)0,(¢,) directly. The channel transition matrix
of an r-ary symmetric channel with crossover probabilities ¢ is

1—(r—1e g €
o= ¢ T ) scecue-,
e c e =D

Tt is easy to verify that for 0 < g, &, < 1/(r— 1), 0, (2 )Q.(&:) = Q,(£2)Q,{&}), since

&+, — P68, if x4y,
[0:(e)Q )]y = [Q.(2) Q0 (e1))y = 1= (r—Dey+6,—re,e). if x = y.
Hence, by definition, any two r-ary symmetric channels are matrix commutative.
u

1V, Summary and Conclusions

We have considered the conditions under which two square discrete memoryless
channels, both having diagonalizable transition matrices, in cascade commute.
Actually, we have defined two different kinds of commutativity, matrix com-
mutativity and capacity commutativity, and considered in detail the stronger of
the two, matrix commutativity. We then proved a theorem stating the conditions
under which two diagonalizable channels in cascade commute, obtaining the result
that they commute if and only if their transition matrices have a complete set of
eigenvectors in common and are hence simultaneously diagonalizable. We then
applied these results to a number of examples in which channels in cascade are
matrix commutative and are not matrix commutative. In particular, we derived
the conditions under which general binary memoryless channels are matrix com-
mutative, and we also showed that all cascades of two r-ary symmetric channels
are matrix commutative, regardless of their crossover probabilities. These results
can be easily extended to cascades of more than two channels by noting that
simultaneous diagonalizability generates an equivalence class of diagonalizable
matrices.
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