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During conceptual design, an entry con�guration is chosen to provide an envelope of
vehicle performance throughout the entry corridor that satis�es mission requirements. In
many applications, this process is performed using computationally intensive direct meth-
ods. In this investigation, an automated process has been developed to perform rapid
trajectory optimization using indirect methods. This process combines and advances dis-
parate trajectory optimization techniques developed over the previous century into a uni-
�ed framework that is capable of solving a wide range of design problems. Speci�cally, this
framework implements discrete dynamic programming, nonlinear inversion, pseudospectral
methods, indirect methods, and continuation. The results from pseudospectral methods
identify challenges in the formulation of corner conditions and switching structure associ-
ated with indirect methods. Examples demonstrate that families of optimal trajectories
can be quickly constructed for varying trajectory parameters, vehicle shape, atmospheric
properties, and gravity. These results validate the hypothesis that many entry trajectory
solutions are linked through indirect methods. This framework enables rapid trajectory
optimization and design space exploration, rapid sensitivity and robustness analysis, and
rapid vehicle requirements de�nition.

Nomenclature

BVP Boundary Value Problem
CBAERO Con�guration Based Aerodynamics
CMT Covector Mapping Theorem
FPA Flight Path Angle
GPOPS Gauss Pseudospectral Optimization Software
KKT Karush-Kuhn-Tucker
NLP Nonlinear Programming
TPS Thermal Protection System

A vehicle reference area, m2

CD drag coe�cient
CL lift coe�cient
D drag force magnitude, N
H scale height, m
I path cost
J cost function
L lift force magnitude, N
L=D lift to drag ratio
m vehicle mass, kg
_q heat rate, W/cm2
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r radial magnitude, m
re Earth radius, m
S path constraint
t time, s
t0 initial time, s
tf �nal time, s
u control vector
v relative velocity magnitude, m/s
x state vector

� angle of attack, deg
� ballistic coe�cient, kg/m2

� gravitational parameter, m3/s2

 relative ight path angle, rad
� downrange subtended angle, rad
� atmospheric density, kg/m3

�0 atmospheric density at the surface, kg/m3

� terminal cost
� bank angle, deg

I. Introduction

Current and historical trajectory optimization research has largely focused on the single design of in-
dependent optimal trajectories. However, the solution to many optimal trajectories is desired during

conceptual design to support design space exploration and trade studies. Designers are generally forced to
choose a single method that is used repeatedly to construct these families of optimal trajectories. In many
current design studies, direct methods are chosen due to their ease of implementation for a wide range of
design problems.1{3 Although these methods are robust to choice in initial guess, they are computationally
intensive relative to indirect methods and, as a result, only a limited number of trajectories are evaluated.
Additionally, local optimality is not guaranteed for a converged direct solution. Indirect methods improve
upon the computational requirements of direct methods through the use of necessary conditions of the opti-
mal control problem.4,5 Satisfaction of the necessary conditions implies local optimality, but a good initial
guess is often required to converge to a solution. Additionally, indirect methods increase the complexity of the
optimal control problem through the introduction of costates, corner conditions, and switching structure.6

Historically, trajectory designers were required to choose between a direct and indirect method. Prior
to the development of pseudospectral methods, designers were unable to map the results of one method
to the other. However, with the development of the Covector Mapping Theorem (CMT), the results of
speci�c direct methods can be mapped to the discrete results of indirect methods.7 This enables designers to
capitalize on the advantages of both methods in which a direct method can be used to obtain the costates of
an indirect method. For this reason, pseudospectral methods have been widely used for modern trajectory
optimization problems.8,9 Pseudospectral methods require an initial guess in states and control. In many
studies, this guess is provided using designer intuition. However, using discrete dynamic programming, the
construction of an initial guess can be automated for a wide range of entry design problems.

In current design studies, many initial guesses are provided to obtain a series of pseudospectral solutions
used during analysis. However, as a direct method, pseudospectral methods are computationally intensive
and limit the number of solutions analyzed. In this study, a rapid trajectory optimization framework is
presented that combines and advances disparate trajectory optimization techniques developed over the pre-
vious century into a uni�ed framework that is capable of solving a wide range of design problems. In this
framework, discrete dynamic programming, nonlinear inversion, and pseudospectral methods are used to
converge to an indirect solution. Once an indirect solution is found for a particular entry problem, design
studies can be rapidly performed using continuation.
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II. Trajectory Optimization Overview

In general, the trajectory optimization problem is expressed in the form of Eq. (1), where J is the
cost functional that is usually minimized, � is the terminal cost, and

R tf
t0
Idt is the path cost. Terminal

constraints are present for many entry missions and are expressed in the form of Eq. (2). Finally, the
equations of motion are given in the form of Eq. (3).

J = �[x(tf ); tf ] +
Z tf

t0

I(x(t);u(t); t)dt (1)

	[x(tf ); tf ] = 0 (2)

_x = f [x(t);u(t); t]; t0 given (3)

Designers are generally forced to choose between indirect and direct methods when solving this problem.
These methods will be described in greater detail, but the advantages and disadvantages of both approaches
are inverted as shown in Table 1. In summary, direct methods are desired when performing trajectory design
for a wide range of entry problems. However, the rapid convergence of indirect methods is desired during
conceptual design when attempting to construct numerous optimal trajectories.

Table 1. Comparison between direct and indirect methods.

Advantages Disadvantages
Direct Methods Large region of attraction Computationally intensive

Widespread NLP solvers exist Optimality not guaranteed
Indirect Methods Rapid convergence Small region of attraction

Necessary conditions satis�ed Costates introduced

II.A. Indirect Methods

Prior to modern computing, indirect methods were used to obtain analytic solutions to simple optimal control
problems. For certain problems, these solutions can be generalized as function of trajectory parameters.
Indirect methods are derived to identify an extremum of the functional J .4,5 This stationarization of the
functional requires solution to a multi-point boundary value problem that is formulated from the �rst order
necessary conditions of optimality.6 Indirect methods require the use of costates that increase the complexity
of the problem by e�ectively doubling the number of states. Additionally, if path constraints are introduced,
then corner conditions must be satis�ed at the entrance and exit of the constraint. For entry problems,
common constraints such as g-loading and heat rate can be expressed as inequality constraints as shown in
Eq. (4).

S(x; t) � 0 (4)

Indirect methods require the use of costates and, potentially, corner conditions that greatly increase
the complexity of optimal solutions. As a result, a good initial guess in states, costates, control, and corner
conditions is required to converge to an indirect solution. During conceptual design of various entry missions,
the designer may not be capable of providing a su�cient initial guess. Additionally, the complex optimization
of entry trajectories requires the use of computer-based boundary value problem methods, including shooting
methods and collocation. The solution to the boundary value problem (BVP) can be di�cult to obtain since
one solution, many solutions, in�nitely many solutions, or no solutions may exist. As a result, indirect
methods are di�cult to automate over a wide range of optimal control problems. This is problematic during
conceptual design in which the optimization of many trajectories throughout the entry corridor is required.
Consequently, direct methods have gained popularity for solving modern optimal control problems.
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II.B. Direct Methods

Modern trajectory optimization problems of increasing complexity are often solved using direct methods.
Instead of deriving the necessary conditions to stationarize the functional J , direct methods approximate
the continuous control history and/or states with a �nite set of discretized values. This allows various
optimization methods to be directly applied to the optimal control problem. The most straightforward
approach discretizes the control history, and an external optimizer is used to identify optimal solutions
based on simulation results.

A full factorial search of all possible discrete control history combinations is impractical. For example,
assuming a bank pro�le optimization in which the bank pro�le is discretized at ten bank points with �ve
degree separation, a full factorial search would require the evaluation of 3710 � 4:81�1015 candidate solutions.
Furthermore, the entry trajectory problem is highly multimodal, adding complexity to the optimization
process. Hence, intelligent global search methods such as genetic algorithms and particle swarm optimization
algorithms have been developed to automate the optimization process and intelligently explore the design
space for global optimal solutions.10,11 These methods eliminate the need for a good initial guess and
are bene�cial for conceptual design of various entry trajectories. These methods have also been used to
simultaneously solve for Pareto frontiers, or optimal families, of entry trajectories.10 This departure from
solving a single optimal trajectory to solving a family of optimal trajectories is desired in conceptual design.
However, no guarantee can be made about the global optimality of the �nal solution. Additionally, these
algorithms ine�ciently attempt to account for path constraints indirectly through manipulation of the control
history. While these algorithms automate the trajectory design process, computational requirements are
massive since many iterations, corresponding to many propagated trajectories, are required during the global
search of these population-based methods.

More elaborate direct methods have been developed that intelligently discretize the state and/or control
using an appropriate function approximation.12,13 Various forms of direct methods have been developed,
including collocation1{3 and di�erential inclusion.14{16 The application of these carefully selected quadrature
rules results in a discrete nonlinear optimization problem. The structure of these nonlinear optimization
problems is very sparse, and nonlinear programming (NLP) solvers, such as SNOPT17 and NPSOL,18 have
been greatly advanced over the decades to e�ciently solve this problem. Additionally, these methods do not
require the use of costates. As a result, indirect methods have largely been replaced with direct methods.

II.C. Pseudospectral Methods

Figure 1. Covector Mapping Theorem diagram.7

Prior to the development of pseudospectral meth-
ods, trajectory designers were forced to use either
a direct or indirect method. Direct methods have
been widely adopted due to ease of implementation
for a wide range of trajectory optimization prob-
lems. However, the rapid convergence of indirect
methods is desired for design studies. The recent
development of pseudospectral methods has enabled
the mapping of results between direct and indirect
methods. This allows designers to combine the ease
of implementation of direct methods and speed of
indirect methods into a single uni�ed rapid trajec-
tory optimization framework.

If the designer is presented with a general trajec-
tory optimization problem represented as Problem
B shown in Figure 1,7 the designer could choose to
apply an indirect method, arriving to problem B�N ,
or a direct method, arriving to problem BN�. Pre-
vious studies have shown that if an inappropriate
choice in discretization is made, then the Lagrange multipliers of direct methods are not consistent with the
discrete costates of indirect methods. This inability to commute the discretization and dualization was orig-
inally viewed as an unfortunate reality of trajectory optimization. Example problems have been developed
to demonstrate this inconsistency between the Karush-Kuhn-Tucker (KKT) multipliers and discrete costates
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even though convergence between the states and controls is observed.19 However, the recent development of
the Covector Mapping Theorem has enabled a mapping between the results of direct and indirect methods.
Through proper choice in discretization, the CMT provides a mapping between the discrete KKT multipliers
of direct methods and the discrete costates of indirect methods.20 In many pseudospectral applications, the
costates are used to validate the necessary conditions of optimality provided by indirect methods.21 More-
over, the designer is presented with the opportunity to use intuitive direct methods to arrive to a converged
indirect solution.

II.D. Dynamic Programming

Dynamic programming is an e�cient methodology when solving multistage optimization problems.6,22{25

Dynamic programming is based on Bellman’s Principle of Optimality that states an optimal policy has the
property that no matter what the previous decisions have been, the remaining decisions must constitute an
optimal policy with regard to the state resulting from those previous decisions.26,27 Using this approach, large
optimization problems are reduced to smaller subproblems. An example of discrete dynamic programming
is shown in Figure 2.6 Figure 2(a) depicts the cost associated with traveling between adjacent nodes, and
Figure 2(b) provides the optimal cost associated with traveling along the optimal path from each node to
the terminal point, B.

The tree of optimal paths is constructed in reverse from the terminal node, B. Optimal paths are
e�ciently constructed by only storing the optimal trajectory from each node to the terminal point. Thus,
the optimal paths to the terminal point from left-side nodes are comprised of optimal sub-paths from right-
side nodes to the terminal point. The tree of optimal paths is constructed until the initial point, A, is
reached. In this example, there is complete freedom to travel to any adjacent node. As such, the global
optimal path from A to B is e�ciently identi�ed without evaluating all possible paths, as shown in Table 2
where 15 computations were required with 20 possible paths in this example.6 As the mesh of the discrete
paths from A to B increases in size, the advantages of reducing the number of computations through dynamic
programming is evident.

(a) Discrete Step Cost. (b) Discrete Path Cost.

Figure 2. Dynamic programming example.6

Table 2. Dynamic programming computations compared to total possible routes.6

Segments on a Side 3 4 5 6 7 n
Possible Routes 20 70 252 724 2632 (2n)!=n!n!
Computations 15 24 35 48 63 (n+ 1)2 � 1
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III. A New Perspective on Trajectory Design

Both direct and indirect methods were developed to identify optimal trajectories and the corresponding
control histories without evaluating all possible solutions. However, the required control history to y optimal
trajectories is often of little interest to the designer, as long as it remains reasonably within control authority
limitations. Therefore, a shift in focus from manipulating control histories to manipulating trajectory pro�les
may provide useful insight into the trajectory design space.

For this study, a planar entry trajectory is assumed with equations of motion shown in Eq. (5)-(8),
where t is the time, r is the radial magnitude, � is the downrange subtended angle, v is the relative velocity
magnitude,  is the relative ight path angle, D is the drag force magnitude, m is the mass of the vehicle,
� is the gravitational parameter, L is the lift force magnitude, and � is the bank angle. Trajectories are
optimized to minimize total heat load. This objective was chosen to illustrate the optimality of results. To
minimize heat load, the heat rate must be maximized along every portion of the trajectory, and this result is
evident from the optimal solutions presented in this report. A high performance blunted biconic was chosen
with geometric and aerodynamic parameters shown in Table 3. An entry mass of 136 kg was assumed,
resulting in a ballistic coe�cient, �, of 4400 kg/m2.

dr

dt
= v sin  (5)

d�

dt
=
v cos 
r

(6)

dv

dt
= �D

m
� � sin 

r2
(7)

d

dt
=
L cos(�)
mv

+
�v
r
� �

vr2

�
cos  (8)

Table 3. Biconic parameters.

Geometric Parameter Value Aerodynamic Parameter Value
Length 1.22 m � 10 deg

Nose Radius 0.025 m CD 0.157
Base Radius 0.25 m CL 0.307

Forward Cone Half-Angle 17 deg L=D 1.96
Aft Cone Half-Angle 10 deg � 4400 kg/m2

Table 4. Constraint and environment parameters.

Parameter Value
Scale Height, H 7200 m

Surface Density, �o 1.217 kg/m3

Gravitational Parameter, � 3.986e14 m3/s2

Earth Radius, re 6378000 m
Maximum G-Loading 30

Maximum Heating 3000 W/cm2

This vehicle is assumed to have bank-only con-
trol with g-loading and heat rate constraints. The
g-loading constraint could be the result of pay-
load considerations or structural limitations, and
the heat rate constraint is determined by the choice
in thermal protection system (TPS) material. An
exponential atmosphere and a spherical mass distri-
bution of Earth is assumed. The initial parameters
used in this study are shown in Table 4.

This study presents a uni�ed framework to per-
form rapid trajectory optimization by advancing
and combining disparate optimal control techniques.
An outline of this framework is shown in Figure 3 and includes discrete dynamic programming, nonlinear
inversion, pseudospectral methods, indirect methods, and continuation. In this methodology, the entry
corridor is constructed in altitude-velocity space by eliminating regions that violate path constraints. Dis-
crete dynamic programming is used to construct an initial guess in the entry corridor that is used by a
pseudospectral method to converge to a solution. The costates provided by the pseudospectral method are
used to converge to an indirect solution. With this indirect solution, rapid trajectory optimization can be
performed for a wide range of entry problems using successive indirect solutions from continuation. The
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convergence of indirect solutions is rapid and forms the foundation to perform rapid trajectory optimization.
The necessary conditions of optimality associated with indirect methods can be mathematically complex. In
this framework, an automated process has been developed that uses symbolic manipulation tools to derive
these necessary conditions.

Figure 3. Flowchart of the trajectory optimization framework.

III.A. Rapid Trajectory Optimization

Step 1: Entry Corridor Identi�cation

Figure 4. Entry corridor.

Ultimately, trajectory designers are interested in
constructing optimal trajectories that the vehicle
should y. While many trajectory analyses are per-
formed with respect to time, construction of tra-
jectories is most naturally accomplished in altitude-
velocity space. Common constraints, including max-
imum heat rate and g-loading, can be constructed
to remove trajectory options in the lower portion of
this space as shown in Figure 4. The upper portion
of this space is traditionally bounded by a maxi-
mum altitude of approximately 120 km. This alti-
tude represents the limit in atmospheric data from
high-altitude weather balloons and, consequently, is
chosen as the entry interface where entry simulations
begin. Trajectory optimization near this entry in-
terface is ine�cient since the vehicle lacks su�cient
aerodynamic control authority to meaningfully alter
its trajectory. Instead, an entry interface should be
chosen at altitudes where the vehicle has su�cient
control authority. For this example, a new entry in-
terface, or control authority boundary, is chosen where the magnitude of drag is equivalent to the magnitude
of gravity as shown in Figure 4. Unlike the traditional entry interface of constant altitude, the altitude of
the control authority boundary is a function of velocity, vehicle, and celestial body. After eliminating the
region of low control authority, trajectory optimization can be performed throughout the remaining feasible
space de�ned as the entry corridor.
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Step 2: Entry Corridor Discretization and Initial Guess Construction

In many optimal control algorithms, the addition of path constraints increases complexity of the problem.
However, as shown in Figure 4, constraints reduce the feasible space and, consequently, the number of
trajectories that can be constructed. The construction of trajectories in the entry corridor is most naturally
performed using discrete dynamic programming. In this approach, the entry corridor is discretized using
a mesh as shown in Figure 5. This mesh represents a set of potential waypoints that can be used to
construct optimal trajectories. If vehicle control authority is neglected, then the entry trajectory optimization
process resembles the path�nding problem discussed in Section II.D. With this assumption, a set of global
optimal discrete paths can be e�ciently constructed throughout the entry corridor using discrete dynamic
programming. These paths correspond to trajectories the designer would like the vehicle to y. Since control
authority is neglected, the vehicle may or may not be capable of following this set of optimal waypoints.

Slender entry vehicles with substantial aerodynamic control authority will likely be able to follow the
majority of the waypoints, whereas blunt entry vehicles with little control authority will likely not be able
to follow the discrete optimal paths. Therefore, the discrete dynamic programming solutions that represent
global optimal, unlimited control authority solutions would likely serve as a good initial trajectory guess
for slender entry vehicles. Several example discrete dynamic programming solutions are shown in Figure
5. For this study, the discrete dynamic programming solution shown in Figure 6 was chosen as an initial
guess. This initial guess will enable a pseudospectral method to converge to a nearby optimal solution that
can be own. The discrete dynamic programming solution only provides a good initial guess in altitude and
velocity. The remaining states and control required to construct an initial guess for pseudospectral methods
are computed using nonlinear inversion.
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Figure 5. Potential initial guesses from various discrete
dynamic programming solutions.
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Figure 6. Dynamic programming solution selected for
initial guess.

After the trajectory is constructed in altitude-velocity space from discrete dynamic programming, the
ight-path angle (FPA) can be obtained from Eq. (9) through inversion of the nonlinear equations of motion.
As shown, the FPA is a function of the slope and location of the trajectory in altitude-velocity space. Note
that as dh

dv becomes large, the right-hand side of Eq. (9) may be larger than 1, signifying an infeasible path
in altitude-velocity space based on entry dynamics. Furthermore, as dh

dv ! 1, sin  ! �D=m�=r2 . This ratio
between drag and gravitational acceleration presents a useful constraint that reduces the number of feasible
path options that must be evaluated during the discrete dynamic programming process. If the vehicle is
below the control authority boundary, then drag dominates gravity. Thus, all trajectories throughout the
entry corridor in altitude-velocity space must have a �nite, negative slope since the vehicle is not capable of
reducing its altitude without reducing its velocity. Note that this constraint is due to entry dynamics and is
independent of vehicle control authority. The remaining quantities of interest (time, downrange angle, and
bank angle) can also be computed using nonlinear inversion.

sin  =
dh
dv

�
� 1

2m�V CDA
�

1 + dh
dv

�
r2V

(9)
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Step 3: Pseudospectral Method Execution

The Gauss Pseudospectral Optimization Software (GPOPS)28 was selected to converge to a nearby solution
using the initial guess from dynamic programming and nonlinear inversion. Like other direct methods, the
pseudospectral method is used to converge to a minimum heat load solution that also satis�es the equations
of motion. Additionally, in-ight constraints such as heat rate and g-loading limitations are satis�ed and the
corresponding KKT multipliers are computed. However, unlike other direct methods, the KKT multipliers
from pseudospectral methods can be accurately mapped to discrete costates associated with indirect methods
using the CMT.7 Thus, the pseudospectral method serves as a bridge between the intuitive direct methods
and the fast indirect methods. The pseudospectral method is executed to obtain a single solution that is
consistent in states, costates, control, and corner conditions.
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Figure 7. Converged pseudospectral solution.

An example converged solution is shown in Fig-
ure 7 using the dynamic programming initial guess
from Figure 6. There are two regions where the
pseudospectral solution does not follow the dynamic
programming initial guess. First, the vehicle is not
capable of following the dynamic programming so-
lution in the early part of the trajectory as shown in
Figure 8. This is an example where the vehicle with
limited control authority is not capable of following
the dynamic programming solution. Hence, the ve-
hicle does not have su�cient lift to enter as steep
as the dynamic programming solution and execute
the turn in trajectory necessary to satisfy the heat
rate constraint. As a result, the pseudospectral so-
lution converges to a more shallow entry ight path
angle. Additionally, the vehicle appears to not be
capable of following the dynamic programming so-
lution along a portion of the g-loading constraint as
shown in Figure 9. This particular vehicle has su�cient control authority to follow the g-loading constraint,
and the departure from the constraint is an artifact of a low convergence tolerance used by the pseudospectral
method.
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Figure 8. Beginning of converged pseudospectral solu-
tion.
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Figure 9. Converged pseudospectral solution along g-
loading constraint.

As a direct method, execution of the pseudospectral method can be computationally intensive. Many
current design studies, including those for the conventional prompt global strike mission, use pseudospectral
methods repeatedly to obtain the many optimal trajectories required for design space exploration and trade
studies. If the pseudospectral solution is used as the �nal result for design studies, then improved convergence
would be required along the g-loading constraint. This pseudospectral solution was obtained in 45 minutes,
however the rate of convergence and accuracy of the solution can be further improved through scaling
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techniques and use of analytic derivatives. Although GPOPS implements an automatic scaling feature,
convergence performance can vary widely. Hence, the computational requirements to convergence to a single
pseudospectral solution is highly dependent on designer interaction, and the time required for convergence
can range from several minutes to hours. In this trajectory optimization framework, the pseudospectral
solution need not be fully converged. Instead, the solution is obtained for the sole purpose of providing
a consistent set of states, costates, control, and corner conditions that serve as a good initial guess for
convergence of indirect methods.

Figure 10. Nonuniqueness of costates.29

Initially, the solution obtained from GPOPS
would not converge when using Matlab’s multi-point
boundary value problem solver, BVP4C. This in-
ability to converge to a solution can be attributed
to the nonuniqueness of costates along constraints
and varying forms of corner conditions. First, the
costates do not have unique values along path con-
straints, such as g-loading or heat rate constraints,
as illustrated in Figure 10.29 The particular values
in costates along the constraint are determined by
the corner conditions. For this study, the costates
were chosen to be continuous at the exit of the con-
straint. This assumption eliminates the nonunique-
ness of costates along the constraint, and the dis-
continuity at the entrance of the constraint must
provide continuous costates at the exit. However,
the corner conditions provided by the pseudospec-
tral method are not consistent with this assumption.
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Figure 11. � of pseudospectral solution.

Corner conditions can be classi�ed as a direct
form (D-form) or Pontryagin form (P-form).30 The
KKT multipliers of GPOPS model the D-form cor-
ner conditions in which the multipliers are inu-
enced directly by the path constraints. In this form,
discontinuities can only occur in costates associ-
ated with states that explicitly appear in path con-
straints. In this study, the g-loading and heat rate
path constraints are only a function of altitude and
velocity. Consequently, no discontinuity will appear
in the costate associated with ight path angle as
shown in Figure 11. Alternatively, indirect meth-
ods implement P-form corner conditions in which
path constraints and their derivatives inuence the
discontinuities in costates, and, consequently, dis-
continuities can occur in all costates. Both forms
of corner conditions are equivalent, and the corner
conditions obtained from GPOPS can converge to
the corner conditions of the indirect method. How-
ever, the D-form corner conditions result in a singularity of the control switching structure used by indirect
methods.
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Figure 12. Bank angle of pseudospectral solution.

When deriving the necessary conditions of op-
timality, Pontryagin’s Minimum Principle requires
the Hamiltonian be minimized with respect to con-
trol for all time.31 This results in a switching struc-
ture shown in Table 5 that governs the bank an-
gle when the vehicle is not following a path con-
straint. Pseudospectral methods do not require use
of a switching structure, and the D-form corner con-
ditions are not inuenced by the structure. How-
ever, as shown in Figure 11, the bank angle is in-
determinant along the majority of the latter part
of the trajectory. Consequently, perturbations used
by boundary value problem solvers about this in-
determinant solution results in numerical instability
and prevents convergence of indirect methods. Al-
though GPOPS lacks switching structure informa-
tion, the pseudospectral method does provide the
optimal control history along the converged solu-
tion. Information from the bank pro�le can be used to replace the switching structure to eliminate numerical
di�culties. The bank pro�le history shown in Figure 12 is used to identify a bank angle of 0 deg at times
along unconstrained trajectory arcs (t < 15s and t � 67s). With this choice in bank angle along uncon-
strained arcs, the indirect method is able to converge to a solution. The oscillatory bank pro�le illustrates
the challenge of direct methods to follow path constraints.

Table 5. Control switching structure.

� < 0 Bank = 0 deg
� > 0 Bank = 180 deg
� = 0 Bank is indeterminate

Step 4: Indirect Method Convergence

The pseudospectral solution obtained in the previous step is used as an initial guess for the indirect method.
As shown in Figure 13, the pseudospectral solution is within the region of attraction, allowing convergence of
the indirect method within seconds. Convergence of the indirect method is performed using Matlab’s multi-
point boundary value problem solver, BVP4C. As expected for slender entry vehicles, the indirect solution
eliminates the temporary departure from the g-loading constraint. Additionally, the indirect solution further
reduces heat load by traveling closer to the heat rate constraint in the beginning part of the trajectory as
shown in Figure 14.

1000 2000 3000 4000 5000 6000 7000 8000
5

10

15

20

25

30

35

40

45

50

Velocity, m/s

A
lti

tu
de

, k
m

 

 

Heat Rate Constraint
G−Loading Constraint
Control Boundary
GPOPS Solution
Indirect Solution

Figure 13. Fully converged indirect solution.
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Figure 14. Beginning of converged indirect solution.
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These steps provide an automated means to obtain a fully converged indirect solution in state, costate,
control, initial conditions, terminal conditions, and corner conditions. This solution serves as a reference
when performing trajectory design studies. The convergence of indirect methods is approximately two orders
of magnitude faster than direct methods. Nearby optimal trajectories can be obtained by substituting the
pseudospectral solution with the reference solution as an initial guess. This process can be repeated in
succession using nearby indirect solutions to rapidly obtain a family of indirect solutions using continuation.

Step 5: Design Using Continuation

Starting with the reference solution obtained from the previous step, trajectory parameters can be incremen-
tally varied to rapidly obtain a family of optimal trajectories using indirect methods and continuation. As
an example, the initial velocity was reduced, and a family of optimal trajectories in Figure 15 was obtained
in minutes. Using continuation, the optimal trade in initial velocity and heat load can be constructed as
shown in Figure 16. When performing continuation, the change in trajectory parameters must be small
enough that the initial guess from the prior indirect solution resides in the region of attraction of the indirect
method. The convergence of the indirect method with relatively large changes in initial velocity illustrate
that large changes can be made to trajectory parameters during the continuation process.
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Figure 15. Optimal trajectories for varying initial veloc-
ity.
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Figure 16. Optimal trade in initial velocity and minimum
heat load.

III.B. Extensibility of Continuation

III.B.1. Additional Trajectory Parameters

The previous example demonstrated that initial state can be varied in the continuation process. However,
additional trajectory parameters can also be varied, including terminal conditions and vehicle requirements
such as heat rate and g-loading constraints. The inclusion of these additional parameters allows the sensitivity
of system-level requirements to be rapidly mapped to vehicle performance to address margin requirements.
For example, the optimal trade in maximum heat rate, which governs the choice in TPS material, and
minimum heat load, which governs TPS mass, can be constructed in minutes using continuation. The
minimum heat load trajectories corresponding to various heat rate constraints are shown in Figure 17, and
the optimal trade in heat rate and heat load is shown in Figure 18.

For this example, the minimum heat load appears to asymptote near 1.5e5 J/cm2 as the maximum
allowable heat rate increases. The asymptotic behavior is due to the particular choice in g-loading constraint.
As the maximum heat rate constraint increases, the vehicle travels along greater portions of the g-loading
constraint. At a maximum heat rate near 6000 W/cm2, the heat rate constraint lies entirely within the
constrained g-loading region. Thus, the vehicle travels directly to the g-loading constraint at these high heat
rate values, and the trajectory is no longer inuenced by changes in the heat rate constraint. Optimal trades
in heat rate and heat load can be obtained for various g-loading constraints in minutes, enabling system-level
requirements such as g-loading to be rapidly mapped to vehicle performance such as heat rate and heat load.
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Figure 17. Optimal trajectories for varying heat rate con-
straint.
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Figure 18. Optimal trade in heat rate constraint and
minimum heat load.

III.B.2. Vehicle Shape

Although indirect methods have largely been developed to solve optimal control problems, the continuation
process is not limited to changes in trajectory parameters. Prior work focused on the development of
analytic hypersonic relations as a function of vehicle shape, angle of attack, and sideslip.32 These relations
were validated with a current state-of-the-art hypersonic design tool, the Con�guration Based Aerodynamics
(CBAERO) tool. Unlike panel methods that include CBAERO, the analytic mapping of vehicle shape to
aerodynamic performance allows vehicle shape to be included in the continuation process. As an example,
the slender biconic used during the continuation of trajectory parameters was evolved to more blunt biconics
as shown in Figure 19. As the vehicle shape is altered, minimum heat load trajectories converge in seconds
using continuation. The resulting trajectories are shown in Figure 20.
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Figure 19. Vehicle shape change.
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Figure 20. Optimal trajectories for varying vehicle shape.

13 of 16

American Institute of Aeronautics and Astronautics



3200 3400 3600 3800 4000 4200 4400 4600
0

0.5

1

1.5

2

x 10
5

Ballistic Coefficient, kg/m2

H
ea

t L
oa

d,
 J

/c
m

2

Figure 21. Optimal trade in ballistic coe�cient and mini-
mum heat load.

In this example, the bluntness of the vehicle was
increased without modifying the nose radius. Thus,
the stagnation point heat rate used for this analy-
sis was una�ected by changes in vehicle shape, and
all minimum heat load solutions follow the original
heat rate constraint. However, the lift and drag co-
e�cients and, consequently, g-loading are dependent
on vehicle shape change. Thus, as the bluntness of
the vehicle increases, trajectories must be own at
higher altitudes to satisfy the same g-loading con-
straint. Evidence of this result is shown in Figure 20
for the relatively small change in vehicle bluntness
used for this example. Additionally, the equations
of motion are satis�ed along each new trajectory, a
result from the convergence of the indirect method.
Using continuation, the optimal trade in heat rate
and ballistic coe�cient can be rapidly constructed
for this range of shapes as shown in Figure 21. Al-
though the altitude-velocity trajectory of each vehicle shape is similar, the downrange and time of each
trajectory di�er substantially. As the ballistic coe�cient is decreased, the time of the trajectory also de-
creases, resulting in reduced optimal heat loads.

III.B.3. Additional Parameters

The prior examples that modify trajectory parameters and vehicle shape demonstrate common trades of
interest for a particular entry problem. However, the continuation process can be extended to include any
parameter associated with the analysis. For example, the scale height and surface density of the exponential
atmosphere can be modi�ed using continuation to converge to optimal trajectories associated with di�erent
atmospheres. Minimum heat load trajectories for varying scale heights and surface densities are shown in
Figure 22 and Figure 23, respectively. In addition to the atmosphere, gravity can be modi�ed to rapidly
evolve Earth-based optimal trajectories to optimal trajectories associated with other celestial bodies such as
Mars and Titan using continuation.
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Figure 22. Optimal trajectories for varying atmospheric
scale height.
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Figure 23. Optimal trajectories for varying atmospheric
surface density.
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Figure 24. Optimal trajectories from variation of all param-
eters.

The continuation process is not limited to vary-
ing a single set of parameters as shown in the prior
examples. All parameters associated with the prob-
lem can be modi�ed simultaneously to obtain solu-
tions to new problems of interest as well as iden-
tify optimal trades in vehicle and trajectory perfor-
mance. As an example, the initial velocity, termi-
nal altitude, vehicle geometry, g-loading constraint,
heat rate constraint, surface density, scale height,
and gravity were varied simultaneously, and the re-
sulting minimum heat load trajectories are shown
in Figure 24. Thus, many entry problems are
linked and can be rapidly solved using continua-
tion and indirect methods. The extent of entry
problems that are linked will be investigated in fu-
ture work. Speci�cally, the transformation from
an Earth-based, slender entry body, conventional
prompt global strike solution to a blunt body, Mars
entry solution will be evaluated. Finally, this methodology is not limited to entry problems and could also
be applied to other hypersonic ight applications such as aerocapture.

IV. Conclusion

In this investigation, an automated process has been developed to compute the necessary conditions of
optimality and execute the required steps to obtain a converged indirect solution. This process combines
and advances disparate trajectory optimization techniques developed over the previous century into a uni�ed
framework that is capable of solving a wide range of design problems. Speci�cally, this framework imple-
ments discrete dynamic programming, nonlinear inversion, pseudospectral methods, indirect methods, and
continuation. This process is based on the perspective that trajectory designers are usually interested in
directly constructing optimal trajectories. Additionally, a new entry interface that is a function of velocity,
vehicle shape, and celestial body was constructed to improve e�ciency of trajectory optimization when com-
pared to previous and current studies. This framework enables rapid trajectory optimization using indirect
methods and continuation, enabling (i) rapid trajectory optimization and design space exploration, (ii) rapid
sensitivity and robustness analysis, and (iii) rapid vehicle requirements de�nition.

Examples demonstrate that families of optimal trajectories can be constructed in minutes for varying
trajectory parameters such as initial velocity. Additionally, optimal trades in trajectory performance and
vehicle requirements can be performed, and an example optimal trade was shown for heat rate which governs
TPS material and heat load which governs TPS mass. Prior advancements in analytic hypersonic aerody-
namics enabled the continuation process to expand beyond trajectory parameters to include vehicle shape.
The resulting optimal solutions inherently satis�ed the equations of motion for each vehicle shape as well
as the change in g-loading location throughout the altitude-velocity space. Finally, convergence was demon-
strated when atmospheric properties and gravity were varied, validating the hypothesis that many optimal
entry trajectories are linked through indirect methods. For example, solutions of slender body Earth-based
entry missions can be evolved to solutions of blunt body Mars-based entry missions. Finally, the results of
this work can be easily extended to any hypersonic ight application including aerocapture.
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