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To solve optimal control problems for hypervelocity vehicles in a computationally effi-

cient manner, it is common to make assumptions that simplify the problem, such as flight

at maximum lift-to-drag ratio or equilibrium glide. Such assumptions are usually taken to

reduce the dimensionality of the dynamical system, and may result in analytical expressions

for the control that require a numerical search over a small number of parameters instead

of solving the full-order optimal control problem. However, these assumptions have been

shown to not always result in favorable comparisons with the numerical solution of the

“full” optimal control problem. This paper addresses the problem of trajectory optimiza-

tion by utilizing known integrals-of-motion and an analysis of the behavior of the co-states

for a family of trajectories. It is shown that it is possible to simultaneously reduce the

dimensionality of the optimal control problem without affecting the underlying physics,

and yet also provide a quality initial guess for the co-states. The latter is important for

the solution of optimal control problems using indirect methods.

I. Introduction

Successful real-time implementation of air vehicle trajectory planning/guidance algorithms have utilized
approximate methods that either assume some knowledge of the control and/or make assumptions to reduce
the dimensionality of the dynamical system. For example, in atmospheric entry vehicles such as the Space
Shuttle Orbiter, the angle-of-attack profile is often determined a priori, either to satisfy heating constraints
or to maximize lift-to-drag ratio.1 This implementation eliminates having guidance generate the angle-of-
attack command, leaving bank angle as the only control. For example, the guidance law for the Space Shuttle
Orbiter utilized bank angle to modulate energy during re-entry and used angle-of-attack corrections to a
nominal profile to control heating rates.2

However, the desire to solve optimal control problems in real-time for use in a guidance system has
been well stated in the literature.3 Significant progress has been made in the last 20-plus years with direct
optimization methods and improved computing power that recently culminated in a flight demonstration
of an optimal attitude change maneuver on a satellite.4 However, for general aircraft problems that have
significantly more complex dynamics, real-time optimal control is a goal that has not been reached because
convergence to a solution is still not guaranteed in a fixed number of steps.

There is a rich history of aerospace vehicle trajectory optimization literature that dates back nearly 60
years. A general theorem for optimizing cost functions of the Mayer type for aircraft and rocket trajectory
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optimization that was given by Breakwell5 that relaxed many prior assumptions. Breakwell addressed
problems such as boosting a missile for maximum range by breaking the problem up into distinct phases:
an ascent phase where the thrust magnitude is assumed known, but the thrust can be vectored and the
angle-of-attack can be varied; an exo-atmospheric phase that is described by classical orbital mechanics; and
an un-powered re-entry phase. The first-order necessary conditions were derived for each phase, and as one
would expect, the solution required matching the end points for each of the different phases to obtain the
complete trajectory.

Vinh addresses the solution of the footprint problem in Reference [6]. The solution that is developed
assumes the vehicle flies an equilibrium glide and that the lateral range (latitude) is small. An approximate
bank-angle law is then computed analytically as a function of the known terminal boundary conditions on the
states. This control law was determined, in part, from integrals-of-motion for the system. However, Fahroo,
et.al.7 compared the performance of Vinh’s analytical bank angle guidance law to that of a pseudospectral
method, and showed that the reduction in the state space/dynamics assumed by Vinh resulted in a smaller
footprint when compared to the full point-mass dynamics used in their application of a pseudospectral
method.

In Reference [1], Lu and Xue discuss the difficulty of numerically solving the maximum crossrange problem
for a given downrange to a desired terminal energy state. They make an assumption that the entire flight
will occur at a quasi-equilibrium glide condition and are able to reduce the dimension of the state-space
by eliminating the flight-path angle dynamics. A near-optimal bank angle control law is then derived in
closed-form as a non-linear function of the vehicle’s state. The quasi-equilibrium glide assumption also acts
to remove phugoid-like oscillations in the trajectory, which arise when the problem includes all the point-
mass dynamic states. Finally, the footprint problem is re-cast in terms of minimizing the distance to some
desired latitude-longitude pair that is known to be unreachable. This then reduces the problem, for a single
trajectory, to be solved by searching for the value of a single parameter.

Lu, Forbes, and Baldwin8 address the gliding guidance of high lift-to-drag ratio hypersonic vehicles that
are considered sub-orbital because they do not have the initial energy of re-entry vehicles, although they
point out that this particular assumption is not a limiting assumption. The approach utilized an adaptive
predictor-corrector algorithm for a fixed angle-of-attack profile to rapidly compute a feasible trajectory from
known initial conditions to a defined terminal condition. The algorithm solved for the bank angle commands
to meet defined terminal boundary conditions. The paper also provides a feedback control that utilizes a
sink-rate command to eliminate phugoid motions from the optimal trajectory.

Bollino9 has investigated the possibility of using pseudo-spectral methods in real-time for the re-entry
problem that terminates at a specified window of terminal conditions. The study looked at re-computing the
optimal trajectory in order to account for wind variations and other trajectory constraints. While not solved
in real-time due to its implementation on a desktop computer, the study did demonstrate the robustness
of the approach. Subsequently, benchmark execution times were recorded that showed the promise of this
particular pseudo-spectral optimal control code for real-time control in an aerospace vehicle application.

Because of their prior use in analytical dynamics to analytically solve systems whose equations-of-motion
are derived using variational methods, integrals-of-motion for aircraft and spacecraft trajectory optimization
problems have been derived and utilized in various ways. Both Moyer10, 11 and Vinh12 derive integrals-of-
motion for aircraft and spacecraft for optimal control problems of the Mayer type. Moyer11 applied Noether’s
Theorem to obtain integrals-of- motion that contained the co-states associated with heading, latitude, and
longitude for flight over a spherical planet. Vinh,12 on the other hand, used geometric arguments to find
integrals of motion under some restrictive assumptions, such as flight at a maximum lift-to-drag ratio and
over a flat Earth. However, while Moyer only computed the integrals-of-motion, Vinh6, 13 took advantage of
different assumptions to use the integrals to derive a bank angle control law for flight at maximum lift-to-
drag ratio. In Reference [1], the integrals-of-motion are also used to develop a bank angle control law for the
footprint problem, similar to what has been done previously by Vinh.6

The contribution of this paper is that a homotopy and potential parallelization method for generating a
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minimum terminal energy footprint for a hypervelocity aircraft is proposed that is based on the evolution of
the initial co-states and integrals-of-motion using the longitude co-state (which is an integral-of-motion) as
a sweeping parameter. Using the integrals-of-motion admits closed-form solutions for the heading co-state
and latitude co-states, thus avoiding numerical integration of these two co-states. However, to utilize these
expressions, the values of the integrals-of-motion must be known a priori. Information about how the initial
conditions of the co-states evolve as the longitude co-state is varied can then be used to provide accurate
initial guesses for the co-states, thus improving convergence of indirect methods.

II. Trajectory Optimization Problems: Mayer Formulation

A set of optimal control problems for un-powered or gliding hypersonic vehicles are considered where the
performance index to be minimized is of the Mayer type

J = Φ(x(tf ), tf )

where the initial state x(0) = x0 is given and x(t) ∈ R
n, the final time tf is free, and q ≤ n terminal

boundary conditions x(tf ) are specified. The dynamics of the system are given by the differential equation

ẋ = f (x(t),u(t), t)

where u(t) ∈ R
m are the controls. Additionally, it is assumed that there are no constraints on either the

states or the controls, nor are there path constraints.

Because the optimal control problem being considered is of the Mayer type, the Hamiltonian is then

H = λT ẋ

The first-order necessary conditions for the optimal control problem (the Euler-Lagrange Equations)
are:14

ẋ =
∂H

∂λ
= f(x(t),u(t), t) (1)

λ̇ = −
∂H

∂x
(2)

0 =
∂H

∂u
(3)

The terminal boundary conditions are then (Reference [14])

0 =
∂G

∂t

∣

∣

∣

∣

tf

+ H (tf ) (4)

xi(tf ) = xi,f , i = 1, . . . , q (5)

xi(tf ) = free, i = q + 1, . . . , n (6)

λi(tf ) =
∂G

∂xi

∣

∣

∣

∣

tf

+ νi, i = 1, . . . , q (7)

λi(tf ) = 0, i = q + 1, . . . , n (8)

where the end-point function for the purposes of this paper is defined as

G
△

= Φ(x(tf ), tf ) +

q
∑

i=1

νi(xi(tf )− xi,f ) (9)
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Remark 1 Equation 9 is a special case of the most general case, where one can define a manifold Γ(x(tf ), tf ) =
0 for the terminal boundary condition. The end-point function in this case becomes

G
△

= Φ(x(tf ), tf ) + ν
TΓ(x(tf ), tf ) (10)

with the vector of constant Lagrange multipliers ν ∈ R
q.

A. First-Order Necessary Conditions for Hypersonic Glide Vehicle

The point mass equations-of-motion for an un-powered vehicle flying above a non-rotating, spherical Earth
are found in Reference [15] and are included here for completeness

V̇T = −
D

m
− g sin γ (11)

γ̇ =
L cosµ

mVT
−

(

g

VT
−
VT
R

)

cos γ (12)

χ̇ =
L sinµ

mVT cos γ
+
VT
R

cos γ tanφ sinχ (13)

ḣ = VT sin γ (14)

φ̇ =
VT cos γ cosχ

R
(15)

Λ̇ =
VT cos γ sinχ

R cosφ
(16)

where VT is the airspeed, γ is the flight path angle relative to the local horizontal, χ is the heading of the
velocity vector measured positive clockwise from North, h is the altitude above the Earth’s surface, φ is the
latitude, and Λ is the longitude. The lift and drag are respectively given by L = (1/2)ρ(h)V 2

T SCL(α,M),
D = (1/2)ρ(h)V 2

T SCD(α,M), where M is the Mach number. The controls are defined to be the angle-of-
attack, α, and the aerodynamic bank angle, µ. The acceleration due to gravity is defined as

g = g0

(

RE

RE + h

)2

(17)

where RE is the Earth’s radius. Furthermore, because R
△

= RE + h, then ḣ = Ṙ in the equations of motion.

From Equation 3 the controls must satisfy:

∂H

∂α
= 0 = −

λV
m

∂D

∂α
+
∂L

∂α

(

λγ cosµ

mVT
+

λχ sinµ

mVT cos γ

)

(18)

∂H

∂µ
= 0 =

L

mVT

(

−λγ sinµ+
λχ cosµ

cos γ

)

(19)

Equation 19 can be re-written as follows since the lift will not in general be zero,

−λγ sinµ+
λχ cosµ

cos γ
= 0 (20)

Equation 20 can also be solved in terms of the bank angle

tanµ =
λχ

λγ cos γ
(21)

Equation 20 is then used to eliminate either λχ or λγ from Equation 18. Choosing to eliminate λχ gives
the following function for angle-of-attack

−λV
∂D

∂α
+
∂L

∂α

λγ
VT cosµ

= 0 (22)
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Alternatively, since both lift and drag are functions of angle-of-attack, Equation 22 can be re-written as

∂D

∂L
=
∂CD

∂CL
=
λγ secµ

VTλV
(23)

Expanding the Euler-Lagrange Equations for the co-states, applying Equations 20 and 22 where appro-
priate, and simplifying gives the following:

λ̇V = −

{

+λγ

[

−
L cosµ

mV 2
T

−

(

−
g

V 2
T

−
1

R

)

cos γ

]

+ λχ

[

−
L sinµ

mV 2
T cos γ

+
cos γ sinχ tanφ

R

]

+ λh sin γ + λφ
cos γ cosχ

R
+ λΛ

cos γ sinχ

R cosφ

} (24)

λ̇γ = −

{(

−λV g + λhVT

)

cos γ + λγ

(

g

VT
−
VT
R

)

sin γ − λΛ
VT sin γ sinχ

R cosφ

+ λχ

(

L sinµ

mVT

sin γ

cos2 γ
−
VT
R

sin γ sinχ tanφ

)

− λφ
VT
R

sin γ cosχ

} (25)

λ̇χ = −
VT cos γ

R

[(

λχ sinφ+ λΛ

)

secφ cosχ− λφ sinχ

]

(26)

λ̇φ = −
VT cos γ sinχ

R cos2 φ

(

λχ + λΛ sinφ

)

(27)

λ̇Λ = 0 (28)

λ̇h =
2g

R

(

λV sin γ − λγ cos γ

)

+
VT cos γ

R

[

−λγ +

(

λχ sinφ+ λΛ

)

sinχ

cosφ
+ λφ cosχ

]

(29)

The terminal boundary conditions for the co-states are computed from Equations 7 and 8. Assuming
that the longitude and the altitude will be specified at the final time, with all other states free, and that the
cost is J = −φ(tf ), the terminal boundary conditions are:

h(tf ) = 0 (30)

Λ(tf ) = Λf (31)

λV (tf ) = 0 (32)

λγ(tf ) = 0 (33)

λχ(tf ) = 0 (34)

λh(tf ) = νh (35)

λΛ = νΛ (36)

λφ(tf ) = −1 (37)

H (tf ) = 0 (38)

The Lagrange multipliers νh and νΛ are unknowns. The terminal value of the Hamiltonian comes from
Equation 4.

III. Noether’s Theorem and Its Application

A first integral of a system of differential equations is defined as a function that is constant along all
extremal curves. Applying Noether’s Theorem to a system of differential equation allows one to determine
any first integrals of that system that may exist. This is done through the application of a transformation
in either the independent variable t and/or the dependent variables x.
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Given a functional

J(x) =

∫ tf

t0

F (t,x, ẋ)dt (39)

and a transformation

t∗ = Φ(t,x, ẋ) (40)

x∗ = Ψ(t,x, ẋ) (41)

then the functional is said to be invariant under the transformation if

∫ t∗f

t∗
0

F (t∗,x∗, ẋ∗) dt∗ =

∫ tf

t0

F (t,x, ẋ) dt (42)

Theorem 1 (Noether’s Theorem16) If the functional

J(x) =

∫ tf

t0

F (t,x, ẋ) dt (43)

is invariant under the transformations above for arbitrary t0 and tf , then

∂F

∂ẋ

T

ψ +

(

F − ẋT ∂F

∂ẋ

)

ϕ = const (44)

where

ϕ =
∂Φ(t,x, ẋ; ǫ)

∂ǫ

∣

∣

∣

∣

ǫ=0

(45)

ψ =
∂Ψ(t,x, ẋ; ǫ)

∂ǫ

∣

∣

∣

∣

ǫ=0

(46)

In other words, every one parameter family of transformations leaving J(x) invariant leads to a first integral
of its Euler equations.

Proof 1 The proof can be found in Reference [16].

To apply Noether’s Thereom, it can be shown that Equation 44 can also be restated in terms of the
Hamiltonian and the co-states λ by using a Legendre Transformation

λTψ − H ϕ = const (47)

If ǫ is a small quantity, then in the most general case,

t∗ = t+ ǫϕ(t,x, ẋ) + o(ǫ) (48)

x∗ = x+ ǫψ(t,x, ẋ) + o(ǫ) (49)

From the above equations δt = ǫϕ and δx = ǫψ, and Equation 47 then becomes

λT δx− H δt = const (50)

Using Equation 50, two different cases are examined. First, if F (t,x, ẋ), or equivalently the corresponding
Hamiltonian, is not an explicit function of t and one takes the transformation

t∗ = t+ ǫ

x∗ = x
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resulting in ϕ = 1, and ψ = 0, then the Hamiltonian can be shown to be a constant along each extremal.

In the second case, relaxing the assumption that t appears explicitly in the function F (t,x, ẋ) and
applying the transformation

t∗ = t

x∗ = x+ ǫ

gives ϕ = 0 and ψi = 1 if ǫi 6= 0, and 0 otherwise. Equation 50 then simplifies to the form utilized by
Moyer10, 11

λT δx = const (51)

Remark 2 Note that Noether’s Theorem only holds for weak variations (Reference [10]). From Bryson and
Ho,14 a weak variation is defined as a variation where ‖δx‖2 = 0 and ‖δẋ‖2 = 0.

Remark 3 Although this paper is addressing optimal control problems of the Mayer type, Noether’s Theorem
still applies. This is because any end-point cost can be rewritten in terms of a running cost.

Remark 4 A necessary and sufficient condition for an arbitrary function Ψ to be a first integral of the Euler
equations is that the Poisson Bracket of Ψ and the Hamiltonian, H

[Ψ,H ] =
n
∑

i=1

∂Ψ

∂xi

∂H

∂λi
−
∂Ψ

∂λi

∂H

∂xi

vanishes identically.

A. Application of Noether’s Theorem

In this section, Moyer’s approach (Reference [11]) of employing infinitesimal rotations one at a time to
compute the integrals-of-motion using Noether’s Theorem is described. The derivation is formally included
here in order to resolve sign differences in the integrals-of-motion determined by Moyer and those derived in
this paper. The differences in the constants arise due to how the respective coordinate systems are defined.

For this analysis, we define an Earth-centered, Earth-fixed (ECEF) coordinate system where ı̂ lies in the
plane of the equator and passes through the Prime Meridian. The unit vector k̂ points toward the North
Pole, and finally, ı̂ × ̂ = k̂ defines the ECEF frame. The position of the vehicle will be defined using a
spherical coordinate system. The longitude Λ is defined as a positive (Eastward) rotation about k̂ and the
latitude φ is a positive rotation above the equatorial plane. The corresponding position is then

r = R cosΛ cosφı̂+R sinΛ cosφ̂+R sinφk̂

where R
△

= RE + h, RE is the Earth’s mean radius, and h is the altitude of the vehicle above the Earth’s
surface.

To apply Noether’s theorem, define the variation of the position vector in spherical coordinates

δr =δR(cosΛ cosφı̂ + sinΛ cosφ̂+ sinφk̂)+

Rδφ(− sinφ cosΛı̂− sinφ sinΛ̂+ cosφk̂)+

RδΛ(− cosφ sinΛı̂+ cosφ cos Λ̂) (52)

Note that the position vector r also describes the origin of a plane attached to the center-of-mass of the
vehicle. This is a local-vertical, local-horizontal plane that is normal to the radial vector described above.
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This frame is oriented such that n̂1 points due North, n̂2 is due East, and n̂3 is positive towards the center
of the Earth. The aircraft’s velocity vector projected onto this unit triad is then

V T = VT (cos γ cosχn̂1 + cos γ sinχn̂2 − sin γn̂3)

where γ is the inclination of the velocity vector above the LVLH plane, and χ is the orientation or heading
of the velocity vector on the plane. Note that in this case, a zero heading means the aircraft is flying due
North. The rotation matrix from the LVLH frame to the ECEF frame is

RE/L =







− sinφ cosΛ − sinΛ − cosφ cos Λ

− sinφ sinΛ cosΛ − cosφ sinΛ

cosφ 0 − sinφ







The variation of the velocity of the vehicle in the ECEF frame is then found in the same manner and is
straight-forward.

1. Infinitesimal Rotation about Polar Axis

The first rotation that will be examined is a rotation about the polar or k̂ axis of magnitude ǫ. The variation
due to the infinitesimal rotation can be written as the product of a skew-symmetric (cross-product) matrix
and the position vector (Reference [17])

δr = δΩr

where

δΩ =







0 δΩz −δΩy

−δΩz 0 δΩx

δΩy −δΩx 0







Letting δΩx = δΩy = 0 and δΩz = ǫ gives the result

δx = ǫR cosφ sinΛ

δy = −ǫR cosφ cosΛ

δz = 0

From Equation 52, equate like components of the vector δr to those immediately above.

ǫR cosφ sin Λ = δR cosΛ cosφ−Rδφ sinφ cosΛ−RδΛ cosφ sinΛ

ǫR cosφ cos Λ = δR sinΛ cosφ−Rδφ sinφ sinΛ +RδΛ cosφ cosΛ

0 = δR sinφ+Rδφ cosφ

Solving the above three equations for δR, δφ, and δΛ gives δR = δφ = 0, and δΛ = −ǫ. This process
is then repeated for the velocity in the ECEF frame replacing the position vector and its variation where
appropriate. The result is that δV = δγ = δχ = 0.

Now, substituting into λTδx = c′3 where c′3 is a constant (the convention used in this paper is that
the subscript on the constant indicates the axis about which the infinitesimal rotation occurs) yields the
following integral

λΛ = −c′3/ǫ = c3

This integral is also evident from the derivation of the first-order necessary conditions for optimality since

λ̇Λ = −
∂H

∂Λ
= 0
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One then simply repeats the process for rotations about the x and y axes, which yields the following two
integrals-of-motion for the system:

c′1 = ǫ

[

λφ cosΛ + sinΛ secφ

(

λχ + λΛ sinφ

)]

(53)

c′2 = ǫ

[

−λφ sinΛ + cosΛ secφ

(

λχ + λΛ sinφ

)]

(54)

From Equations 53 and 54, it is evident that these equations can be solved to yield closed-form solutions
for λχ and λφ

λφ = c2 cosΛ− c1 sinΛ (55)

λχ = −λΛ sinφ+ cosφ

(

c1 cosΛ + c2 sinΛ

)

(56)

The constants c1 and c2 are simply c′1/ǫ and c
′

2/ǫ and are determined by the terminal boundary conditions
for λφ and λχ.

If we assume the most general case where the terminal values of the latitude, longitude, and heading are
specified, and using the following endpoint function for the optimal control problem

G = Φ(x(tf ), tf ) + νχ(χ(tf )− χf ) + νφ(φ(tf )− φf ) + νΛ(Λ(tf )− Λf )

it can be shown that

∂G

∂χf
=
∂Φ

∂χ
+ νχ = λχ(tf )

∂G

∂φf
=
∂Φ

∂φ
+ νφ = λφ(tf )

∂G

∂Λf
=
∂Φ

∂Λ
+ νΛ = λΛ(tf )

Therefore, for a given Λf = Λ(tf ) and φf = φ(tf ), the general expressions for the latitude and heading
co-states are

λφ(t) = λφ(tf ) cos(Λ − Λf)− secφf sin(Λ− Λf )[λχ(tf ) + λΛ sinφf ] (57)

λχ(t) = λφ(tf ) cosφ sin(Λ − Λf )− λΛ sinφ+ cos(Λ− Λf ) cosφ secφf [λχ(tf ) + λΛ sinφf )] (58)

Additionally, because time does not explicitly appear in the Hamiltonian, it is an additional integral-of-
motion. The value of the Hamiltonian depends upon Equation 4.

IV. Solution of Minimum Energy Optimal Footprint

In this section, we will describe a new homotopy approach for an indirect numerical method to solve for
the minimum energy footprint. Although a study of the execution times was not conducted, the expected
benefit to be realized is a reduction of the execution time that results from improved initial guesses for the
co-states. The approach uses a neural network to predict the initial conditions of the co-states by leveraging
the integrals-of-motion c1 and c2 along the footprint. The co-state associated with longitude, λΛ, is used
as a sweeping parameter, since this co-state is directly related to the final longitude. This differs from the
traditional approach of solving each individual trajectory using the final longitude as a sweeping parameter,
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but provides the same result while decreasing the dimension of the search space for the co-state initial
conditions.

The footprint problem is one of a class of minimum energy optimal control problems of interest for re-
entry vehicles and for hypersonic test vehicles. In the case of re-entry vehicles, the footprint is computed
to a desired energy state to determine alternate landing sites if there is a hardware failure such as a stuck
control effector that increases the rate of energy dissipation due to a reduced lift-to-drag ratio, or some other
anomaly. The energy condition (velocity and altitude) needs to be satisfied in order to begin the transition
from the re-entry phase to the terminal area energy management and approach and landing phases. Lu and
Xue1 have cast this particular footprint determination problem as one of minimizing the distance to a target
latitude-longitude pair that is outside the actual footprint while achieving the specified terminal energy.

On the other hand, for a hypersonic test vehicle, the size of the footprint dictates whether range safety
requirements will require a flight termination system. The footprint in this case is the maximum crossrange
for a given downrange that can be achieved by minimizing the energy when the altitude is zero. For the
reachability footprint, the terminal velocity is allowed to be free. The cost function is the same for both cases,
which is to maximize cross range (lateral deviation) for a prescribed downrange, and is defined along a great
circle ground track. (Note that for an arbitrary initial heading, a coordinate transformation can be used to
define an equivalent problem of flying along the equator). Also, terminal heading and flight path angle are
allowed to be free. From the end-point conditions, it can be shown that λφ(tf ) = −1 and λχ(tf ) = 0. Using
Equations 58 and 57, this gives us the following analytical expressions for these two co-states:

λφ(t) = λΛ sin(Λ− Λf ) tanφf − cos(Λ − Λf) (59)

λχ(t) = λΛ[sinφ− cosφ tanφf cos(Λ− Λf )]− cosφ sin(Λ− Λf ) (60)

which can be used in place of the differential equations for these two co-states.

In principle we have a total of four integrals-of-motion, including the Hamiltonian, and therefore should
be able to eliminate four of the co-state differential equations as there are four closed form solutions, leaving
two differential equations for the co-states that need to be solved. While this is obvious, it does not reduce
the number of unknowns (initial conditions on the co-states) that must be found to solve the problem using
an indirect method. Therefore, an alternate approach is taken that allows one to take advantage of the
expressions for c1 and c2 and how their values change for each trajectory that defines a given footprint in
order to improve the guesses for the co-state initial conditions.

A. Numerical Method

An examination of several footprints for a hypersonic vehicle were studied that included a fixed set of initial
conditions with varying initial heading, and two different initial energy conditions. The behavior of the
co-states at t = 0 and the integrals-of-motion were then analyzed for the various optimal trajectories that
were computed. It is known that when λΛ = 0, the resulting optimal trajectory corresponds to one that
either maximizes or minimizes the latitude for the entire footprint. What is also important is that this result
is independent of the initial heading, and would in fact correspond to the maximum downrange if the initial
heading were due North.

Figure 1 shows a partial footprint and the corresponding altitude time histories for each trajectory for
a hypersonic vehicle initially flying due West. The dashed line in each plot corresponds to the maximum
crossrange trajectory, so the longitude co-state λΛ = 0. In the altitude plot, notice that the vehicle initially
wants to dive then climb in a phugoid-type of motion.

The corresponding optimal angle-of-attack and bank angle time histories are shown in Figure 2. Again,
the dashed line in each plot corresponds to the maximum crossrange trajectory. The controls are typical
of what is seen for these trajectories, especially the behavior at the terminal point of the trajectory. Those
trajectories that fly for a longer time than the maximum crossrange trajectory correspond to λΛ > 0 and
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increase as λΛ increases. The shorter trajectories correspond to λΛ < 0 and decrease as the longitude co-state
becomes more negative. In the case of angle-of-attack, both the velocity and flight-path angle co-states tend
to zero, albeit at different rates. Physically, the aircraft wants to increase lift to extend the range, so it
increases angle-of-attack. The bank angle eventually becomes monotonic as it goes to zero due to the fact
the final heading is free, so the heading co-state λχ(tf ) = 0.

In Figure 3, the terminal longitude and latitude are given as functions of the sweeping parameter λΛ.
The longitude can be fit reasonably well with an arc-tangent function, although it is not shown here. On
the other hand a seventh-order polynomial is a good approximation for this curve. In Figures 4 and 5, the
integrals of optimal motion are also shown to be well behaved across footprints with varying initial headings,
implying that the calculation of c1 and c2 will likely not be a significant challenge. In Figure 6, the co-states
are given as functions of the sweeping parameter λΛ for various initial headings. Since the co-states are
relatively well behaved, it is expected that improved initial guesses to an indirect solver can be constructed
using a nonlinear prediction method based on these data.
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Figure 1. Reachability Footprint Trajectories, Initial Heading Due West (χ0 = −90 deg)
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Figure 2. Reachability Footprint Controls, Initial Heading Due West
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Figure 3. Variation of Longitude and Latitude with λΛ (Half-Footprint), Initial Heading Due West
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Figure 4. Integrals-of-Motion as a Function of λΛ and Initial Heading

B. High Quality Predictions Using An Artificial Neural Network

To provide accurate initial guesses for the unknown initial co-states, a nonlinear prediction model can be
created. Since the initial co-states are well-behaved, it is expected that many nonlinear prediction methods
would be suitable. For this investigation, a neural network was created to provide accurate initial co-state
estimates along the hypersonic trajectory. Traditionally, a neural network is used to provide predictions of
complex systems in the absence of underlying physical theory. While the physics of the optimal hypersonic
footprint problem are known (as described in Section A), numerically solving the boundary value problem
is extremely challenging. As such, the neural network must be constructed in a manner that provides high
confidence of the optimality associated with the predicted initial co-states.

For direct trajectory optimization applications, the quality of a neural network’s fit is determined nu-
merically by testing an independent set of validation cases.18, 19 While these cases are often expansive across
the input space, the approach does not provide confidence that the neural network will also provide accurate
predictions for non-validated inputs. As such, it is necessary to validate the model for the infinitely many
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Figure 5. Integrals-of-Motion as a Function of λΛ and Initial Energy, Initial Heading Due West

possible input combinations that may be passed to the neural network. The formulation of the optimization
problem as a boundary value problem (provided by the indirect approach) enables a unique opportunity to
analytically evaluate the quality of the predictions across the infinitely many input combinations using the
process described below.

1. Neural Network Training

Figure 7. Notional Diagram of a Neural Net-
work

To train the neural network, a training set of data is created
by numerically solving the optimal control problem as shown
in Section A where the initial states are selected to surround
an expected hypersonic trajectory. Using these data, a neural
network that consists of a single hidden layer with 12 nodes (de-
scribed by Figure 7) is trained to predict the unknown co-states
at the initial location of the trajectory. The hidden nodes are
chosen to have the standard logistic sigmoid activation function
and the output nodes are chosen to have the standard linear ac-
tivation function. Since the footprint analysis is conducted over
a non-rotating, spherical Earth, only the footprint associated
with an initial latitude and longitude of zero degrees and due
West heading is considered. It is expected that this footprint
could be appropriately rotated across the spherical surface to
the appropriate location due to varying initial latitudes, lon-
gitudes, and headings. As such, a neural network could be
created across a wide range of anticipated initial states in al-
titude, velocity, and flight-path angle as well as the footprint
sweeping parameter, λΛ, to predict the remaining unknown
initial co-states and the propagation time, tf , as described by
Equations 61-66.
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Figure 6. Initial Co-states as a Function of Longitude Co-state and Initial Heading
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λVT
(t0) ≈ N1(λΛ, h0, VT,0, γ0) (61)

λγ(t0) ≈ N2(λΛ, h0, VT,0, γ0) (62)

λχ(t0) ≈ N3(λΛ, h0, VT,0, γ0) (63)

λh(t0) ≈ N4(λΛ, h0, VT,0, γ0) (64)

λφ(t0) ≈ N5(λΛ, h0, VT,0, γ0) (65)

tf ≈ N6(λΛ, h0, VT,0, γ0) (66)

It is important to note that the integrals-of-motion, c1 and c2, can be predicted separately by quadratic
curve fits due to the relatively consistent behaviors with respect to λΛ for the due West trajectory and range
of flight energies as shown in Figures 4 and 5. As such, a curve fit is created for each integral-of-motion
as shown in Equations 67 and 68, and these integrals can be used to compute λφ(t0) and λχ(t0) directly
from Equations 55 and 56 rather than from the neural network as described by Equations 63 and 65. The
integrals-of-motion play a key role in reducing the dimensionality of the neural network predictions, resulting
in the reduced system shown in Equations 69-72. This reduction greatly simplifies the training and validation
of the network.

c1 = c1,0 + c1,λΛ
λΛ + c1,λ2

Λ
λ2Λ (67)

c2 = c2,0 + c2,λΛ
λΛ + c2,λ2

Λ
λ2Λ (68)

λVT
(t0) ≈ N1(λΛ, h0, VT,0, γ0) (69)

λγ(t0) ≈ N2(λΛ, h0, VT,0, γ0) (70)

λh(t0) ≈ N3(λΛ, h0, VT,0, γ0) (71)

tf ≈ N4(λΛ, h0, VT,0, γ0) (72)

Since the co-states are well behaved, the neural network was verified to provide a good fit to the training
data. This is illustrated in Figure 8 for the initial co-state predictions for a high energy hypersonic vehicle
initially traveling due West. On average, each neural network evaluation required 5 ms on a modern, dual-
core laptop. The rapid prediction of initial co-states could be used within time sensitive applications that
require the rapid generation of optimal footprints. To ensure that the neural network provides high quality
predictions across all possible input combinations, a verification process is employed that makes use of the
analytic theory from the necessary conditions of optimality.

2. Artificial Neural Network Validation

During the training process, the data from optimal indirect trajectories are passed through the neural
network, and the corresponding numerical predictions are compared to the indirect data. This process
creates a set of numerical weights and biases within the neural network that accurately predicts the numerical
data. To verify the quality of the neural network across the infinitely many possible input combinations, a
symbolic representation of each input is passed through the neural network. Since the neural network consists
of a combination of arithmetic and exponential operations, the output of the neural network (described by
Equations 69-72) can also be represented as complex symbolic expressions. This distinction is notionally
described in Figure 9 for inputs x and y and outputs a and b. Additionally, symbolic predictions of c1 and
c2 can be created from the quadratic curve fits (Equations 67 and 68).

Since the optimal footprint problem is not an explicit function of time, the Hamiltonian retains a constant
value across all optimal footprint trajectories. As such, the terminal boundary condition H (tf ) = 0 implies
that the Hamiltonian is also zero at the initial point of the trajectory. This is a particularly useful result.
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(a) λv(0) vs. λΛ (b) λγ(0) vs. λΛ

(c) λχ(0) vs. λΛ

(d) λh(0) vs. λΛ (e) λφ(0) vs. λΛ

Figure 8. Predicted Initial Co-States as a Function of the Sweeping Parameter, λΛ.
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Figure 9. Notional Difference Between Numerical and Symbolic Evaluation of the Neural Network

In general, the initial Hamiltonian can be analytically expressed as a function of the initial states and co-
states. Since the predicted initial co-states can be represented symbolically as a function of the inputs to the
neural network and quadratic curve fits, then the initial Hamiltonian condition can be expressed as shown
in Equation 73.

H (VT (t0), γ(t0), h(t0), λΛ(t0)) = 0 (73)

If the maximum residual in the initial Hamiltonian can be determined analytically, then an assessment
can be made regarding the quality of the neural network. More importantly, an analytic assessment of
the maximum residual of the initial Hamiltonian would effectively assess the infinitely many combinations of
possible inputs to the neural network. This unique analytic analysis is made possible through the formulation
of necessary conditions provided by indirect methods.

3. Analytic Assessment of the Initial Hamiltonian Maximum Residual

Due to the highly nonlinear expressions that are symbolically output from the neural network, it is generally
not possible to develop analytic, closed-form solutions that correspond to the extrema of the residual. A
purely numerical search for the maximum residual would only assess a finite number of possible input
combinations, thereby negating the benefits of assessing all possible input combinations using the analytic
Hamiltonian formulation. As a simple example, for a fixed initial altitude, velocity, and flight-path angle,
the residual of the Hamiltonian is only a function of the remaining input to the neural network, λΛ. The
residual in the predicted initial Hamiltonian is shown as a function of the footprint sweeping parameter in
Figure 10. As expected, the Hamiltonian residual is near zero across the range of the sweeping parameter.
This implies that the neural network predictions are of high quality without over-fitting to the training data.
For footprints generated from a single parameter, the maximum residual in the Hamiltonian can be examined
graphically. For footprints generated by the full range of inputs to the neural network, a robust analytic
method is required.

To obtain approximate extrema across the entire domain of possible inputs, the analytic residual of the
initial Hamiltonian is approximated using a Taylor series expansion. For example, Equation 74 illustrates
the Taylor series in the sweeping parameter, λΛ, for a single set of initial states. The interior extrema of
the residual can be determined by differentiating Equation 74 and solving for the corresponding roots. To
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Figure 10. Residual of Predicted Hamiltonian by the Neural Network

ensure that analytic roots can be found, the original Taylor series cannot have an order greater than five.
This requirement ensures that the differential is a polynomial of order four or less, thereby guaranteeing an
analytic solution to the roots. The residual at the boundaries of the sweeping parameter can also be assessed
to analytically determine the global extrema associated with the Taylor series approximation. This feature
is particularly useful since this process effectively analyzes the infinitely many residuals associated with each
possible λΛ.

H (λΛ +∆λΛ) =

∞
∑

n=0

1

n!

∂nH (λΛ)

∂λnΛ
(∆λΛ)

n (74)

Due to the highly nonlinear Hamiltonian residual (see Figure 10), a single, fifth order Taylor series
approximation across the entire input domain will be inaccurate. To be confident of the maximum residual
computed as described above, the accuracy of the Taylor series expressions must be verified. To create
accurate Taylor series approximations, the range of possible inputs is divided into intervals, and a unique
Taylor series approximation is created within each interval. As an example, the Hamiltonian residual is
segmented according to the sweeping parameter, λΛ, as shown in Figure 11 for various numbers of intervals,
where the blue x’s correspond to the centers of each interval. For large segments that correspond to a small
number of intervals, many of the example fifth order Taylor series approximations are not accurate. However,
as the segments are chosen to be sufficiently small (corresponding to a sufficiently large number of intervals),
then the Taylor series approximations are very accurate. As such, a process must be created to verify that
the regions are chosen sufficiently small such that the Taylor series approximations converge to the actual
residual with sufficient accuracy.

To assess the accuracy of the Taylor series approximations, the process described above is performed
across a wide range of numbers of intervals. For each choice in the number of intervals, the maximum
residual across all intervals is recorded as shown in Figure 12. If the maximum residual is observed to
converge as the number of intervals is increased, then the Taylor series within each interval is assumed to
have also converged. After this process is completed, the maximum residual corresponding to the highest
number of intervals is recorded. This recorded maximum residual essentially provides a worst case residual
of the initial Hamiltonian. If this maximum residual is sufficiently small, then the neural network is expected
to provide sufficiently accurate predictions of the optimal initial co-states across the infinitely many possible
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(a) 6 intervals (b) 10 intervals

(c) 30 intervals

Figure 11. Taylor Series Approximations of the Hamiltonian Residual for Different Numbers of Intervals
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inputs.

Figure 12. Maximum Residual of Predicted Hamiltonian by the Taylor Series Segments

This process for a single input can be extended to an arbitrary number of dimensions. For the general
four-dimensional input of the neural network shown in Equations 69-72, the Taylor series approximations
can be constructed as described in Equation 75. Multidimensional intervals are then constructed throughout
the range of inputs to the neural network defined by the set of hypersonic trajectories of interest. The
residual of Taylor series approximations are then interrogated across a range of interval sizes. To simplify
the higher dimensional root-solving process after differentiating Equation 75, only second order Taylor series
approximations were leveraged. The maximum residual of the initial Hamiltonian as function of the number
of intervals along one of the four dimensions is shown in Figure 13. Equally spaced intervals were constructed
that span the four dimensions, resulting in a maximum of 74 = 2, 401 intervals in this analysis. The maximum
predicted residual converges as the number of intervals used to generate the Taylor series approximations
increases, indicating that a high quality neural network is created to predict the optimal initial co-states to
support footprint generation across a wide range of expected trajectories.

H =

∞
∑

n1=0

∞
∑

n2=0

∞
∑

n3=0

∞
∑

n4=0

1

n1!n2!n3!n4!

∂(n1+n2+n3+n4)H (VT,0, γ0, h0, λΛ)

∂V n1

T,0∂γ
n2

0 ∂hn3

0 ∂λn4

Λ

∆V n1

T,0∆γ
n2

0 ∆hn3

0 ∆λn4

Λ (75)

With verified high quality initial co-state predictions, the neural network could be used in parallel to
generate a large set of initial co-states that correspond to the many footprint trajectories associated with a
particular state of the hypersonic vehicle. As such, each trajectory that resides on the maximum footprint
can be propagated in parallel, thereby avoiding the sequential creation of trajectories associated with a
homotopy in λΛ. This parallel feature would enable the rapid creation of various footprints to support
time-critical operations.

V. Conclusions

In this investigation, a methodology is created to improve the solution time of generating hypersonic
footprints. A homotopy method is employed to generate optimal hypersonic footprint data using indirect
optimization methods. The application of Noether’s Theorem to the optimal hypersonic footprint problem
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Figure 13. Maximum Residual of Predicted Hamiltonian by the Four-Dimensional Taylor Series Segments

enables the calculation of integrals-of-motion along each trajectory. Analysis of the data indicates that the
integrals of motion can be easily predicted as a function of the longitude co-state. In fact, the integrals-
of-motion exhibit a nearly consistent linear behavior for a wide range of trajectories. Using curve fits
of the integrals-of-motion, the number of unknown initial co-states that must be predicted to generate
optimal hypersonic footprint trajectories is reduced. To support time-critical operations, a neural network
is created to provide highly accurate predictions of the reduced number of initial co-states associated with
optimal footprint trajectories. The quality of the initial co-state predictions is verified by leveraging analytic
information provided by the necessary conditions of optimality. Specifically, the maximum residual of the
initial Hamiltonian can be assessed analytically across the infinitely many possible input combinations to the
neural network. The small residuals associated with this analysis indicate that the initial co-state predictions
by the neural network will always be of high quality. The rapid evaluation of the neural network would
enable the nearly instantaneous creation of initial co-states associated with the wide range of trajectories
that encompass the footprint. These trajectories can then be propagated in parallel to rapidly generate
hypersonic footprints to support time-critical operations.
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