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An efficient methodology is created to formulate robust trajectory design problems
within an indirect optimization framework. An augmented cost functional is used to cap-
ture the worst case scenario associated with each modeled dispersion. This approach elim-
inates the need to propagate statistical information, thereby minimizing the dimension of
the design problem. The proposed methodology enables robustness considerations to be
directly incorporated into the optimization problem in which the mathematical information
associated with indirect methods is used to provide explicit interaction information among
nominal and dispersed trajectories. Examples illustrate the ability to construct highly cou-
pled, complex solutions that capture all of the robustness considerations of interest to the
designer. This approach enables the rapid construction of families of solutions that trade
performance and robustness based on designer preference.

Nomenclature

u control vector
x state vector
CD drag coefficient
CL lift coefficient
D dispersion gradient (mixed units) or drag force

magnitude, N
k index of state vector
L lift force magnitude, N
M number of shadow vehicles

m mass, kg
N number of states
R robustness metric
r radial magnitude, m
v velocity, m/s
w multiobjective weighting factor
x x-coordinate, m
y y-coordinate, m

γ relative flight-path angle, rad
∆ vector of worst case dispersion magnitudes

captured by shadow vehicle

µ gravitational parameter, m3/s2

θ wire angle or downrange angle, rad

I. Introduction

Traditionally, conceptual hypersonic design is performed using direct optimization methods.1–6 Prior
research by Grant has demonstrated that the historical optimal control challenges associated with indirect
optimization methods can be largely overcome to perform hypersonic mission design. The creation of the
necessary conditions of optimality is performed in a completely automated fashion by leveraging modern
symbolic computational tools such as Mathematica. By formulating the optimality conditions in a generic
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fashion, the application of appropriate boundary conditions associated with various constraint arc sequences
can be dynamically enforced by employing a continuation process.7,8 Additionally, by solving a sequence
of progressively difficult optimization problems via continuation, it is possible to create complex optimal
trajectory solutions that fully satisfy the necessary conditions of optimality without supplying a good initial
guess to the complex solution.

As an example, an indirect solution can be easily constructed for a short, unconstrained, minimum
heat load trajectory as shown in Fig. 1. While this trajectory is of little interest to the designer, the
optimal solution can be easily and rapidly evolved to the desired optimal solution using indirect optimization
methods. This is accomplished by first extending the trajectory to match the desired initial and terminal
conditions as shown in Fig. 2. After this process is completed, heat rate and g-loading constraints can
be introduced and incrementally reduced to the desired value as shown in Figs. 3 and 4, resulting in a
fully constrained, minimum heat load trajectory. In this optimal control framework, the derivation of the
necessary conditions of optimality, application of appropriate multi-point boundary conditions throughout
the continuation process, and management of the continuation parameters is performed in an automated
manner that is transparent to the designer. This automation has greatly reduced the historical burden of
using optimal control theory to perform rapid mission design. In this example and in the examples provided
in this investigation, Mathematica is used to develop the necessary conditions of optimality, and Matlab
scripts are automatically generated with this information. The scripts are then automatically autocoded to
C, and the resulting boundary value problems are solved using Matlab’s bvp4c.
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Indirect Solution

Figure 1: Initial indirect solution.
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Indirect Solution

Figure 2: Trajectories from unconstrained continu-
ation.
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Indirect Solution

Heat Rate Constraint

Figure 3: Trajectories from continuation of heat rate
constraint.
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Indirect Solution

Heat Rate Constraint

G−Loading Constraint

Figure 4: Trajectories from continuation of g-
loading constraint.
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To perform robust trajectory design, the objective function traditionally associated with nominal vehicle
performance is often augmented to include robustness considerations. Common applications include the
assessment of terminal state errors due to dispersions in the initial state and other parameters.9–11 To assess
dispersed performance, statistical information is often propagated via a covariance analysis. By assuming
that dispersions retain a Gaussian form along the trajectory, the dynamics of the covariance matrices are
propagated and interrogated to provide expected probability density functions at the terminal point of
the trajectory. However, due the rather large increase in dimensionality associated with the inclusion of
covariance matrix elements as states, the covariance dynamics are often carried forward separately such
that they are propagated only during evaluation of the cost function.9,10 As such, the propagation of
covariance information is used as an efficient substitute for Monte Carlo analyses to support trajectory
design. Since the states are only of the nominal trajectory, path constraints can only be applied to the
nominal trajectory. Therefore, trajectories cannot be constructed that are also robust to path constraints.
Alternatively, generalized polynomial chaos theory has been used to efficiently propagate statistical moment
information associated with uncertainties. While this has been shown to be computationally efficient when
propagating high order moment information, previous work has demonstrated that no dimension advantages
exist for the common low order mean and variance propagations.11

The prior techniques enable the propagation of statistical information within evaluations of the cost
function without the need to perform computationally intensive Monte Carlo simulations. As an alternative,
stress cases can be used to capture the worst-on-worst set of dispersions that would be expected from Monte
Carlo simulations.12,13 These stress cases are created by the trajectory designer by noting that in many
robust trajectory design applications, there is little interest in the probability density functions. Instead,
trajectories are often designed to the worst case scenarios. In all of these robust trajectory design approaches,
the dispersed performance of a candidate robust trajectory is evaluated as a function evaluation within direct
optimization techniques. While all of these approaches enable trajectory shaping to provide robust solutions,
the techniques do not leverage all of the mathematical information that exists to create robust trajectories.
The following investigation highlights a robust trajectory design methodology that efficiently captures the
trade in nominal and robust performance in a manner that is generally of most interest to conceptual
hypersonic designers through the use of indirect optimization methods.

II. Rapid, Robust Trajectory Design Methodology

The use of indirect optimization methods allows the construction of an efficient methodology that is
capable of capturing the robust trajectory features of interest during design. The following brachistochrone
example is used to describe the methodology as well as illustrate the rapid, high quality solutions obtained
using this approach. Note that in the direct methods described in Section I, an assumption is often made
that uncertainties retain a Gaussian form along the trajectory. In the proposed methodology, no assumption
is made regarding the distribution of the uncertainties during trajectory propagation.

II.A. Brachistochrone Example

The classic brachistochrone problem consists of designing the shape of a wire between two fixed points that
minimizes the time for a frictionless bead within a constant gravity field to slide from the upper to the lower
endpoint.14 The equations of motion for this problem are shown in Eqs. (1) - (3), where θ is the control that
determines the local slope of the wire.

ẋ = v cos θ (1)

ẏ = −v sin θ (2)

v̇ = g sin θ (3)

II.A.1. The Trade Between Nominal Performance and Robust Design

In this simple example, the nominal initial velocity of the bead is 1.0 m/s, and the minimum time solution
constructed using indirect methods is shown in Fig. 5. However, the designer may also be interested in

3 of 16

D
ow

nl
oa

de
d 

by
 P

U
R

D
U

E
 U

N
IV

E
R

SI
T

Y
 o

n 
O

ct
ob

er
 4

, 2
01

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
5-

24
01

 



designing a trajectory that is robust to errors in the terminal state due to uncertainties in the initial state.
A robust solution due to a maximum initial velocity uncertainty of 0.9 m/s that minimizes errors in xf is
also shown in Fig. 5, where it is assumed that the bead is in constant contact with the wire. This example
demonstrates the trade in performance (time) and robustness (terminal accuracy) that exists when designing
trajectories, and Fig. 6 illustrates the intermediate solutions associated with this trade.

Figure 5: Optimally performing vs. robust brachis-
tochrone trajectory.

Figure 6: Transition between optimally performing
and robust solutions.

It is possible to construct the robust solution by adding covariances matrix elements as states (as described
in Refs. 9 and 10), thereby formulating an objective functional that minimizes the magnitude of the covariance
matrix elements associated with x at the terminal point. For a significant number of uncertainties, this
approach would greatly increase the dimensionality of the optimization problem. Furthermore, if a trajectory
must be constructed that is also robust to path constraints, then the information within the covariance matrix
must be repeatedly interrogated throughout the trajectory to determine dispersed performance. During
conceptual design, the designer is often only concerned with the worst case dispersed trajectories. As such,
the propagation of statistical information throughout the trajectory is not needed, as long as the worst case
scenario(s) related to robustness are appropriately captured. The designer selects the worst case scenario
that corresponds to the level of robustness desired (99th percentile, 3σ, etc.). In the proposed methodology,
these worst case scenarios are captured using “shadow vehicles” that are propagated alongside the physical
vehicle (representing the nominal trajectory) according to the worst case dispersions.

II.A.2. The Use of Shadow Vehicles To Capture Worst Case Scenarios

As an example, consider the prior robustness and performance trade shown in Fig. 5. The minimum time
solution corresponds to an optimization in performance alone, where robustness to errors in xf due to
initial velocity uncertainties is not considered. When propagating the worst case initial velocity uncertainty
(represented by the path of Shadow Vehicle 1) as shown in Fig. 7 for the same time as the physical vehicle, a
large error in xf demonstrates that the trajectory of the physical vehicle is not robust in xf to initial velocity
uncertainties. Alternatively, Fig. 8 illustrates that the robust trajectory of the physical vehicle is insensitive
to xf errors due to initial velocity uncertainties as demonstrated by the worst case shadow vehicle trajectory.
This is accomplished by optimizing the aggregated objective functional shown in Eq. (4), where w represents
the relative weighting of importance between performance (minimum time) and robustness (small xf error
between the physical vehicle and worst case shadow vehicle).

J = (w)tf + (1− w)(xf,physical − xf,shadow)2 (4)

The initial state of the shadow vehicle is selected such that the trajectory of the shadow vehicle appro-
priately reflects the worst case scenario associated with a particular dispersion. This is accomplished by first
noting the desired robustness metric as shown in Eq. (5) for the brachistochrone example. The dispersion
gradient, ∇D, is calculated as shown in Eq. (6) to determine the direction in which the shadow vehicle
should be placed relative to the physical vehicle, where xf ,physical represents the full state vector of the
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Figure 7: Nominal and shadow vehicle trajectories
for minimum time case.

Figure 8: Nominal and shadow vehicle trajectories
for xf robustness case.

physical vehicle at the terminal point. This is accomplished by computing sensitivities associated with the
nominal trajectory of the physical vehicle using the state transition matrix (STM), φ. Note that the disper-
sion gradient essentially describes the maximum adverse change in robustness (at the terminal point) due
to changes in state at the initial point. While higher order state transition tensors could be used to capture
nonlinear features of the dispersion gradient, the examples contained in this investigation only leverage the
first order state transition matrix. Comparisons to Monte Carlo results indicate the sufficiency of neglecting
higher order effects. Note that the use of the state transition matrix results in a large initial dimensional
growth of the system. However, each additional dispersion results in a linear growth of dimensionality due
to the inclusion of an additional shadow vehicle. Note that the elements of the state transition matrix are
included as states to the indirect optimization problem. As such, each state transition matrix element has
a corresponding costate, and the identity matrix is enforced as a boundary condition of the state transition
matrix at the initial point of the trajectory.

R = (xf,physical − xf,shadow)2 (5)

∇D =

(
∂R

∂xf ,physical

)T

φ(t0, tf ) (6)

After calculating the dispersion gradient, a constraint of the initial location of the shadow vehicle is
enforced to place the shadow vehicle along the worst case direction from the physical (nominal) vehicle’s
initial state. Since the dispersion gradient is computed using the state transition matrix associated with
the physical vehicle, the dispersion gradient shown in Eq. (6) describes the change in robustness due to
changes in the initial state of the physical vehicle. As such, the worst case dispersion captured by the
shadow vehicle would require an initial displacement from the physical vehicle in the direction opposite of
the dispersion gradient as shown in the scalar Eq. (7) for the kth state, where ∆ is a vector of the worst case
dispersion magnitudes captured by the shadow vehicle. This initialization constraint ensures that during the
optimization process, the shadow vehicle is always placed at the worst case location relative to the physical
vehicle. This enables the trajectory of the physical vehicle to be altered during the design process while
simultaneously ensuring that the shadow vehicle represents the corresponding worst case dispersion.

x0,shadow,k = x0,physical,k −
(
∇Dk

||∇D||

)
·∆k (7)

II.A.3. Mathematical Coupling Between Physical and Shadow Vehicles Using Indirect Methods

Unlike traditional design approaches that connect nominal and dispersed performance through function
evaluations as described in Section I, the trajectories of the physical and shadow vehicles are deeply coupled
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mathematically. As such, the trajectories of the physical and shadow vehicles are not independently optimized
with only a loose coupling via the constraint in relative initial states as shown in Eq. (7). The physical and
shadow vehicles are also coupled with the same control history, u, as described by Eqs. (8) and (9), where f
represents the equations of motion. To be robust to dispersions, the nominal trajectory of the physical vehicle
must be constructed such that, in a worst case scenario, the same control history provides a robust solution
in the presence of expected dispersions. As such, the control of the shadow vehicle cannot be independently
optimized to provide improved performance in the presence of the worst case dispersion that the shadow
vehicle represents. More importantly, when using indirect optimization methods derived from optimal control
theory, the control history shared by both the physical and shadow vehicles is a function of the states and
costates of both vehicles as well as of the sensitivities captured by the state transition matrix. This feature
arises from the optimal control calculation shown in Eq. (10) for problems with a terminal point cost only,
where H represents the Hamiltonian, λ represents the costate vector, fSTM represents the equations of motion
of the state transition matrix elements, and ui represents the ith shared control. The explicit mathematical
coupling between the physical and shadow vehicles enables the complex interactions associated with nominal
performance (from the physical vehicle) and dispersed performance (from the shadow vehicle) to be captured
in a high quality manner during the design process using indirect optimization methods.

ẋphysical = f(t,xphysical,u) (8)

ẋshadow = f(t,xshadow,u) (9)

∂H

∂ui
= λphysical

T · ∂f(t,xphysical,u)

∂ui
+ λshadow

T · ∂f(t,xshadow,u)

∂ui
+ λSTM

T · ∂fSTM

∂ui
= 0 (10)

II.A.4. Robust Design to Path Constraints

Figure 9: Robustness to path constraint.

For each additional robustness consideration, a new
shadow vehicle must be included in the optimization
process. For path constraints in the brachistochrone
problem, the worst case initial velocity (relative to
the designed physical vehicle trajectory) is propa-
gated using a second shadow vehicle as shown in Fig.
9. Since path constraints are often viewed as hard
constraints, this shadow vehicle is enforced to not
violate the path constraint. Note that in this case,
the control (which is equivalent across the physical
and two shadow vehicles) is influenced by the states
and costates of the physical vehicle and both shadow
vehicles such that the appropriate balance between
performance and robustness is achieved. These com-
plex interactions include the discontinuities of the
costates of the second shadow vehicle due to the
corner conditions at the entrance to the path con-
straint as shown in Figs. 10 and 11. As an example,
consider a linear path constraint of the form shown in Eq. (11), where h determines the location of the con-
straint. The propagation of the additional shadow vehicle enables a sufficient push-off factor of the physical
vehicle trajectory such that the constraint is not violated in the worst case scenario. Note, however, that
this push-off factor is designed in a manner that also simultaneously provides a robust solution to errors
in xf . This additional path constraint reduces the performance of the physical vehicle such that the travel
time is increased. This example demonstrates the feasibility of accounting for various robustness considera-
tions within an indirect optimization framework. Additionally, the robustness considerations are addressed
directly within the optimization problem by propagating additional shadow vehicles that capture the worst
case scenarios of interest to the designer. This example highlights the ability to provide sufficient robustness

6 of 16

D
ow

nl
oa

de
d 

by
 P

U
R

D
U

E
 U

N
IV

E
R

SI
T

Y
 o

n 
O

ct
ob

er
 4

, 2
01

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
5-

24
01

 



to mid-flight considerations such as path constraints, a feature that is not readily available in many modern
robust design methodologies.

0 > h− xshadow tan(45o)− yshadow (11)

Figure 10: Costates of physical and shadow vehicles. Figure 11: Zoomed in view of costates of physical
and shadow vehicles.

It is important to note that the initial state of the second shadow vehicle is selected to provide the worst
case dispersion associated with the potential violation of the path constraint. As such, the initial state of the
shadow vehicle is calculated in a similar manner as shown in Eq. (7). Since the worst case scenario maximizes
the potential violation of the path constraint, the robustness metric is formulated as simply the expression
of the path constraint as shown in Eq. (12), where larger values imply greater violation of the constraint
and t1 corresponds to the time of the entrance to the path constraint. Since the robustness metric occurs
at t1 instead of tf , the dispersion gradient leverages the state transition matrix at time t1 as shown in Eq.
(13). During the continuation process, path constraints are included as described in the planar hypersonic
example in Fig. 3 of Section I. The indirect optimization framework is capable of automatically splitting the
trajectory into constrained and unconstrained arc segments, thereby enabling the explicit calculation of the
state transition matrix at the entrance to the path constraint. Note that since the state transition matrix is
computed from the physical vehicle trajectory, all quantities in Eqs. (12) and (13) are associated with the
physical vehicle.

R = h− xphysical(t1) tan 45o − yphysical(t1) (12)

∇D =

(
∂R

∂xphysical(t1)

)T

φ(t0, t1) (13)

Note that since the dispersion gradient is in the direction of maximum violation of the path constraint,
the shadow vehicle is initialized in this direction resulting in an addition shown in Eq. (14) in place of
the original subtraction in Eq. (7). It is important to note that contributions from multiple dispersions
would likely provide a worst case scenario associated with potential violation of the path constraint. As
such, shadow vehicles associated with path constraints must incorporate all dispersions associated with the
design problem. However, it is unlikely that all dispersions will simultaneously be at the worst case values.
To provide an appropriate level of robustness to the path constraint, the combined set of dispersions are
constrained to be at the aggregated worst case values. As such, the kth initial state of the shadow vehicle
is calculated in a manner similar to Eq. (7), except that the dispersion gradient direction is weighted with
the dispersion magnitudes, ∆, as shown in Eq. (14), where N is the number of states of the physical vehicle.
This approach ensures that the mixed units associated with the wide range of dispersions are properly

7 of 16

D
ow

nl
oa

de
d 

by
 P

U
R

D
U

E
 U

N
IV

E
R

SI
T

Y
 o

n 
O

ct
ob

er
 4

, 2
01

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
5-

24
01

 



incorporated into a single, worst case displacement direction of the shadow vehicle.

x0,shadow,k = x0,physical,k +

 ∇Dk ·∆k√∑N
j=1(∇Dj ·∆j)2

 ·∆k (14)

II.A.5. Monte Carlo Validation

To illustrate the quality of the robust solution that also minimizes the travel time, comparisons are made to
a Monte Carlo of the initial velocity uncertainty. Each dispersed trajectory is propagated by interpolating
the control history created by the indirect optimization framework. A Gaussian distribution of the dispersed
initial velocity is assumed with a 3σ value of 0.9 m/s. The 3σ value is considered the worst case scenario
of interest to the designer and is consistent with the initial state displacement of the shadow vehicles. As
shown in Figs. 12 and 13, the terminal errors are quite small across the range of initial velocity uncertainties.
Of the three trajectories that exceed the 3σ initial velocity uncertainty, only the two high initial velocity
trajectories violate the path constraint. As such, the dispersed performance of the robust solution captures
the designer’s balance between performance (minimum time) and robustness to the path constraint and xf
errors.

Figure 12: Terminal errors across a range of initial
velocities.

Figure 13: Monte Carlo trajectories associated with
initial velocity uncertainty.

III. Robust Hypersonic Mission Design

The robust design methodology described in the prior section is applied to hypersonic mission design. The
use of indirect methods enables the creation of high quality solutions that capture the coupled interactions
between nominal vehicle performance and robustness considerations to support conceptual design. As such,
considerations to dispersed vehicle performance (often neglected during the initial phases of conceptual
design) can be captured to provide a more informed conceptual design analysis. For illustrative purposes
and consistent with many conceptual hypersonic studies, this investigation assumes planar hypersonic motion
in an exponential atmosphere with equations of motion shown in Eqs. (15) - (18). An example with a single
dispersion is first presented to illustrate the high quality trajectory shaping made possible by the indirect
optimization framework. A second example is then used to illustrate robust design in the presence of multiple
dispersions and robustness considerations.

ṙ = v sin γ (15)

θ̇ =
v cos γ

r
(16)

v̇ = −D
m
− µ sin γ

r2
(17)
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γ̇ =
L

mv
− µ cos γ

vr2
+
v cos γ

r
(18)

Table 1: Initial and terminal conditions.

Parameter Initial Value Terminal Value

r RE + 40 km RE + 0 km

V 2 km/s free

γ -10 deg free

θ 0 deg 4.5 deg

In the following examples, the angle of attack of a
high L/D, high ballistic coefficient vehicle is nominally
optimized to maximize terminal velocity at a target down-
range as shown by the minimizing cost functional in Eq.
(19). The initial and terminal states are specified in Ta-
ble 1, where the radius of the Earth, RE , is chosen to
be 6378 km. Without consideration to dispersions, the
optimal trajectory created via continuation using the in-
direct methodology is shown in Figs. 14 and 15. The
corresponding optimal flight path angle history and angle
of attack profile are shown in Figs. 16 and 17. As expected, the vehicle phugoids at high altitudes in order to
minimize drag during the downrange flight. During the terminal portion of the trajectory, the vehicle dives
to maximize velocity on target.

J = −v2f (19)

Figure 14: Altitude vs. velocity for maximum veloc-
ity trajectory.

Figure 15: Altitude vs. downrange for maximum ve-
locity trajectory.

Figure 16: Flight-path angle vs. time for maximum
velocity trajectory.

Figure 17: Angle of attack vs. time for maximum
velocity trajectory.
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III.A. Planar Hypersonic Flight with a Single Dispersion

This trajectory is consistent with the initial vehicle performance assessments common to early conceptual
design. While this solution provides insight into vehicle capability, it does not consider robustness considera-
tions that may also eventually be of interest to the designer. For example, the designer may also be interested
in creating a trajectory that is robust to terminal downrange dispersions. For illustrative purposes, a single
dispersion in flight path angle with a maximum error of two degrees is considered. Without including this
dispersion in the design process, the shadow vehicle would result in a large downrange error as shown in Fig.
18. To create a robust terminal downrange trajectory due to initial flight path angle dispersions, a robust-
ness metric is created as shown in Eq. (20). When minimizing the robustness metric, a robust trajectory
is created as shown in Fig. 19. Note that the comparison between the physical and shadow vehicle occurs
at the same final time. While the physical vehicle is constrained to terminate at the ground, the shadow
vehicle is free to terminate at any terminal state (which occurs slightly below the ground for this example).
However, the methodology does create a robust terminal downrange solution due to errors in initial flight
path angle. In fact, the physical and shadow vehicle trajectories converge well before the ground is reached.

R = (θf,physical − θf,shadow)2 (20)

Figure 18: Maximum velocity trajectory with prop-
agated worst case dispersion in flight-path angle.

Figure 19: Robust downrange trajectory with prop-
agated worst case dispersion in flight-path angle.

Figs. 20 - 23 illustrate the change in trajectories as the designer preference is altered from nominal
performance (terminal velocity) to robust performance (small terminal downrange errors). Note that in all
cases, the optimal trade in nominal and robust performance is captured by the weighted objective functional
shown in Eq. (21). As such, the designer is able to identify sufficiently robust trajectories that also maximize
velocity on target. As shown, the robust trajectories illustrate significant deviations from the nominal
solution. In general, the overall phugoiding structure and angle of attack profile is substantially altered.
The ability to incorporate robust design considerations early in the conceptual design process can provide a
substantially different perspective of the overall hypersonic flight profile.

J = w(−v2f ) + (1− w)(θf,physical − θf,shadow)2 (21)
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Figure 20: Altitude vs. velocity evolution due to
transition from nominal to robust performance.

Figure 21: Altitude vs. downrange evolution due to
transition from nominal to robust performance.

Figure 22: Flight-path angle vs. time evolution due
to transition from nominal to robust performance.

Figure 23: Angle of attack vs. time evolution due to
transition from nominal to robust performance.

Figure 24: Pareto frontier of downrange error vs. ter-
minal velocity.

This additional insight during the conceptual de-
sign process enables the creation of optimal trades
of nominal performance to robust design considera-
tions. In this example, the optimal trade in maxi-
mum terminal downrange error vs. nominal terminal
velocity can be rapidly created using the solutions
shown in Figs. 20 - 23. As such, the optimal trade in
nominal performance (terminal velocity) and robust
design (terminal downrange error) can be created as
shown in Fig. 24.
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III.B. Planar Hypersonic Flight with Multiple Dispersions and A Path Constraint

Table 2: Hypersonic trajectory dispersions (all assumed
Gaussian for illustration).

Parameter 3σ Value Shadow #

Initial flight-path angle, γ0 2 deg Vehicle 1

Initial altitude, r0 3 km Vehicle 2

Atmospheric density multiplier 0.2 Vehicle 3

CL multiplier 0.1 Vehicle 4

CD multiplier 0.1 Vehicle 5

As illustrated with the Brachistochrone exam-
ple described in Section II.A, multiple disper-
sions can be addressed using multiple shadow
vehicles. In the following example, a 3σ ro-
bust hypersonic trajectory is created due to
the presence of select dispersions (for illustra-
tive purposes) shown in Table 2 where the min-
imizing objective functional shown in Eq. (22)
is used. The weighting, w, trades performance
(terminal velocity) with the aggregated robust-
ness (terminal downrange error) across all M
shadow vehicles. Robustness to parameters,
such as atmospheric and aerodynamic scaling parameters, can be easily performed by treating each param-
eter, p, as a state with a time derivative of zero as shown in Eq. (23). When performing robust design to all
dispersions as shown in Fig. 25, it is clear that the shadow vehicles result in notable downrange errors, with
the shadow vehicles corresponding to dispersions in CL (Shadow Vehicle #4) and in CD (Shadow Vehicle
#5) dominating. Since the downrange errors from these two cases dominate, the robust design solver is
heavily weighted toward these dispersions. The fact that no robust solution can be found implies that the
downrange error from aerodynamic dispersions cannot be substantially reduced. This is further verified by
performing robust design with consideration to CL uncertainties only. As shown by the best robust solution
in Fig. 26, it is not possible to substantially reduce the downrange errors associated with this uncertainty.
This is reasonable considering the particular flight profile analyzed. To provide robust solutions with respect
to aerodynamics, the vehicle would be required to reduce its interaction with the atmosphere. However, to
maximize velocity at the target, the vehicle phugoids during the majority of flight and dives after reaching
the target. As such, the flight profile already substantially limits the vehicle’s interaction with the atmo-
sphere in order to maximize velocity on target, preventing the creation of robust solutions with respect to
aerodynamic uncertainties.

J = w(−v2f ) + (1− w)

(
M∑
i=1

(θf,physical − θf,shadow,i)
2

)
(22)

ṗ = 0 (23)

Figure 25: Altitude vs. downrange for all disper-
sions.

Figure 26: Altitude vs. downrange due to CL uncer-
tainty only.
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Figure 27: Angle of attack vs. time for robust trajec-
tory without aerodynamic dispersions.

After removing the aerodynamic uncertainties,
it is clear from Figs. 28 and 29 that a highly robust
solution can be found that appropriately accommo-
dates the remaining relevant dispersions. Note that
the robust solution is able to accommodate a wide
range of shadow vehicle trajectories in a manner
that ensures all terminate at the target downrange.
The angle of attack profile shown in Fig. 27 is cre-
ated by coupling the states and costates of the phys-
ical and three shadow vehicles in an explicit manner
as described by Eq. (10) in Section II.A.3. This
explicit mathematical relationship of all of the ve-
hicles within the optimal control expression enables
the detailed creation of such complex control histo-
ries that provide the best possible combined nominal
and robust performance.

Figure 28: Altitude vs. downrange for non-
aerodynamic dispersions.

Figure 29: Altitude vs. velocity for non-aerodynamic
dispersions.

For validation, a 2000 case Monte Carlo is performed with the dispersed results shown in Figs. 30 and
31. As expected, all of the terminal state dispersions are quite small while the maximum terminal velocity
is retained as best as possible. For comparison, the histogram of the dispersed performance of the nominal
maximum velocity solution is also shown in Fig. 30. As expected, the robust solution provides a substantial
improvement in terminal downrange error. Note that this example highlights an important consideration
discussed in Section I. While the initial uncertainties may be assumed to be Gaussian, these dispersions do
not necessarily correspond to Gaussian dispersions at future times, and this result is evident by the skewed
distribution of the robust trajectories shown in Fig. 30. The use of shadow vehicles enables the worst case
dispersions to be captured without the need to consider the form of distributions or calculation of statistical
moments throughout the trajectory. Finally, it is important to note that while the robust physical vehicle
trajectory was designed to ensure that all shadow vehicles converge to the terminal point, this does not
mean that all dispersed trajectories have a near zero terminal downrange error. This is evident in the robust
solutions shown in Fig. 30. While it is impossible to ensure that every dispersed trajectory has a near zero
terminal downrange error, the use of shadow vehicles to independently assess various worst case dispersions
provides an efficient orthogonal set of cases to use in the robust design framework. In fact, the entire design
process (including formulation of necessary conditions of optimality, etc.) was accomplished in approximately
30 minutes using a single 2.6 GHz processor.

As a final example, the designer may also require the trajectory to be robust to a particular heat rate
constraint. To account for the heat rate constraint, an additional shadow vehicle is included that accounts
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Figure 30: Histogram of dispersed performance us-
ing nominal and robust trajectory control profiles.

Figure 31: Altitude vs. downrange for robust trajec-
tory control profile.

for the worst case scenario as described in Section II.A.4. This additional consideration results in the
construction of a physical trajectory with a sufficient push-off factor from the heat rate constraint as shown
in Fig. 32. As shown in Fig. 33, the need for a sufficient push-off factor from the heat rate constraint
requires the physical vehicle to phugoid at higher altitudes. This result directly contrasts the trend in robust
trajectories to initially dive deeper into the atmosphere as shown in Fig. 21. As such, the ability to construct
trajectories that are also robust to terminal downrange errors is severely limited, and this limitation can
be easily observed by the relatively large downrange errors of the shadow vehicles also shown in Fig. 33.
The dispersed Monte Carlo performance of the robust trajectory solutions with and without the heat rate
constraint is shown in Fig. 34, illustrating the noticeable degradation in terminal downrange accuracy due
to the accommodation of the heat rate constraint. Fig. 35 illustrates that the constructed control profile is
indeed robust to the heat rate constraint.

The construction of the robust solution was accomplished in approximately 45 minutes on a 2.6 GHz
processor. This is particularly fast considering the numerous dispersions captured by the shadow vehicles
and sensitivities about the physical vehicle trajectory captured by the state transition matrix that are also
included in the optimization process. As such, this example consists of 50 states and 50 costates with over
100 boundary conditions that are simultaneously satisfied within the indirect optimization framework. The
automation described in Section I enables the creation of and solution to such large indirect optimization
problems. It is expected that the natural parallelization of the indirect optimization framework will enable
even larger systems to be assessed in a fraction of the time.15

Figure 32: Physical trajectory with sufficient push-
off from heat rate constraint.

Figure 33: Altitude vs. downrange for trajectories
with robustness to heat rate constraint.
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Figure 34: Histogram of dispersed performance of
robust trajectories with and without heat rate con-
straint.

Figure 35: Heat rate vs. time for dispersed trajecto-
ries robust to heat rate constraint.

IV. Conclusions

This investigation illustrates that robust trajectory design can be efficiently performed using an indirect
optimization framework. The use of shadow vehicles enables the worst case dispersions to be captured and
propagated throughout the trajectory without the need to propagate moments or to assume a form of the
distributions throughout the trajectory. By propagating the shadow vehicles with the same control history
as the physical (nominal) vehicle, an explicit relationship can be created for the optimal control solution that
is a function of the states and costates of the physical and shadow vehicles. This deep mathematical coupling
enables the creation of high quality robust solutions that efficiently capture the worst case dispersions that
is generally of most interest to the designer. By dynamically constraining the initial states of the shadow
vehicles to reside in the worst case direction from the physical vehicle, the trajectory of the physical vehicle
can be modified during the design process to construct robust solutions. This direction is calculated by
using a state transition matrix along the physical vehicle trajectory. The corresponding sensitivities along
this central trajectory are used to calculate the worst case dispersion direction for each individual shadow
vehicle.

Since the state transition matrix elements are added as states to the indirect optimization framework,
there is a large initial growth in the dimension of the two-point boundary value problem. As each new
dispersion is considered, a corresponding shadow vehicle must be added, resulting in only a linear growth
in the number of states as dispersions are included. Ultimately, a system of approximately 100 states and
costates is created for the planar hypersonic problem. The ability to construct the necessary conditions of
optimality automatically using Mathematica and to solve complex indirect optimization problems using con-
tinuation removes much of the burden associated with formulating and solving the corresponding boundary
value problem.

By formulating a weighted objective functional that trades performance and robustness considerations
of interest to the designer, high quality robust solutions are created for a simple Brachistochrone problem
and for a planar hypersonic example. The performance of the robust solutions is evaluated using Monte
Carlo analyses. The narrow distributions about the desired robust quantities illustrate the quality of robust
solutions created by the indirect optimization framework. While the example trajectories only consist of a
small number of dispersions for illustrative purposes, the overall robust trajectory design methodology can
be extended to an arbitrary number of states and dispersions. As a result, this robust design methodology
is capable of explicitly capturing the considerations of most interest to conceptual hypersonic trajectory
designers while simultaneously leveraging all of the available mathematical information that relates nominal
trajectory performance to robust design considerations.
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