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1 Introduction

Software complexity has led to a need for better tools
for understanding system state. Such mechanisms pro-
vide introspection, which has a wide variety of uses. The
success of introspection in Java, tools like Valgrind and
gprof, and hardware performance counters demonstrates
its value.

Unfortunately, current introspection mechanisms usu-
ally impose a high performance overhead or are difficult
for programmers to use. For example, a 1000x slowdown
using Valgrind for application debugging is not uncom-
mon, and the lack of precise instruction counters has com-
plicated research in deterministic multiprocessing [1, 7, 2].
However, with careful hardware support, introspection
can be made both efficient and precise. One such ex-
ample is the success of debug registers in x86 processors,
which allow the system to efficiently monitor memory ac-
cesses, and trap to software precisely when a read or write
occurs to a monitored address.

In spite of their limitations, we have used existing x86
debug registers to implement several low-overhead pro-
gram analysis tools’ for multithreaded code. However,
basic event monitoring only scratches the surface: future
research across the system stack demands better support
for introspection.

In this work we are advocating for the addition of new,
more sophisticated hardware mechanisms for introspec-
tion. The main obstacle to the adoption of such mecha-
nisms is the increase in cost of designing, implementing
and verifying additional hardware that doesn’t yield obvi-
ous or immediate performance benefits. Our main claim
is that the benefits provided by system support for in-
trospection justify their treatment as first-order design
goals. Our view is shared by others in our community [4].
In line with our claim, this paper outlines one possible
direction for future research that illustrates the power of
hardware support for introspection.

1 More information can be found at
http://cs.washington.edu/homes/bluciala/introspect.html

2 Hardware Watchmachines

Motivated by the introspection capabilities of hardware
watchpoints in modern processors, we propose Hardware
Watchmachines (HWMs). HWMs are a novel hardware
mechanism for monitoring sequences of operations, such
as the execution of certain instructions or references to
certain data by instructions or coherence messages. The
sequence of operations is represented in an HWM as
a finite state machine (FSM), where the states encode
the progression through the sequence and transitions fire
when a specified operation occurs. The system traps to
software whenever an FSM reaches an accept state.

Performance Profiling HWDMs can be used to profile
program performance. Analysis techniques (e.g., static
data-flow analysis, or dynamic profiling in a JIT) can be
used to identify potentially interesting sequences of op-
erations or data. The HWMs could be configured to en-
code these sequences as FSMs. Software can maintain a
count representing the number of times each FSM traps
on an accept state. This analysis will identify hot code
and data sequences, rather than single code points or ob-
jects, without the overhead of software-based techniques.
Furthermore, the low-overhead of hardware support may
enable profiling of deployed applications.

Debugging Prior work has characterized normal pro-
gram behavior using FSMs [5]. We can use HWMs to
detect deviations from normal behavior by constructing
anew FSM identical to the original FSM identified as nor-
mal behavior, but with a new accept state that represents
a deviation from the expected sequence. Transitions to
this new state occur whenever an operation is triggered
that doesn’t correspond to a transition in the original
FSM. In the HWM trap handler, debug information (the
FSM, for example) can be reported. Section 3 illustrates
using HWMs for debugging in more detail.

Avoiding Errors In addition to detecting bugs as de-
scribed above, we can use HWMs to avoid bugs as well
(¢f. prior work [6, 8, 9]). We can create FSMs character-
izing the buggy sequence of events, adding accept states
before the behavior manifests. When the system traps for
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Figure 1: g() violates a program invariant requiring all
updates to str be followed by an update to len. Fig-
ure 1(b) is a FSM characterizing this invariant.

these accept states, it can take an avoidance action such
as a delay or rollback to a checkpoint of correct state.

Testing HWDMs can be used to improve software test-
ing. During testing, a system can collect FSMs of ob-
served behavior. HWMs can then be configured with
these FSMs, and as testing progresses, the system can
avoid the previously observed behavior by changing val-
ues used in control flow, or adding delays to change a
parallel program’s thread schedule. Steering execution
away from previously observed behavior is likely to in-
crease test coverage.

3 Debugging with HWMs

As a concrete example, this section demonstrates the use
of HWMs to detect buggy behavior in an application.
Figure 1(a) shows a segment of code from a program that
is supposed to maintain the invariant that all updates to
the str variable are followed by a corresponding update
to len. Function £() correctly updates both, whereas
function g() updates only str. Failure to update len in
g() could lead to a crash later in the program since len
is no longer an accurate reflection of the string’s length.

In Figure 1(b), we have constructed a FSM that en-
codes this program invariant. Prior work [5] has demon-
strated techniques for identifying such program invariants
automatically. Alternatively programmers could explic-
itly specify such an FSM in their code.

The FSM starts in the state labeled start and upon
observing a write to str, transitions to state s1. When
the program behaves correctly and updates len next, the
FSM transitions to s2 and ultimately back to the start
state. However, if a second write to str is observed with-
out an interleaving update to len, the FSM transitions
to the accept state labeled X, indicating the invariant
was violated. Encoding the FSM in a HWM allows the
developer to execute diagnostic code in a trap handler
whenever the program violates the invariant.
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Figure 2: A schematic showing the hardware support for
implementing HWMs. Incoming coherence traffic, and
addresses accessed by the CPU are inputs to the HWM
hardware extensions.

4 Hardware Support

We can implement HWMs with a small amount of hard-
ware support. Figure 2 shows a block diagram of the
hardware support we envision. There are no major
changes to the CPU implementation. The FSM logic re-
quired to implement HWMSs can be implemented with a
register to track the FSM’s current state, and lookup ta-
bles (LUTSs) to determine the next state for each action.
The FSM transition logic is connected to the coherence
network and to the CPU’s address bus, so when an access
or coherence message occurs, the HWM can transition if
necessary. Figure 2 shows the logic for one HWM; we en-
vision an array of tens or hundreds of HWMs in a system.

We can limit the amount of unnecessary checking
HWMs must do by encoding the set of all addresses in-
volved in its FSM in a hardware bloom filter [3]. The
FSM’s incoming connections can be deactivated if their
values do not appear in the bloom filter.

Hardware limits the size of HWMs — the LUTs are of
fixed size, and so some state machines may not fit in the
HWM hardware. We can use the bloom filter address
hash to help virtualize HWMs. All addresses involved
in an excessively large state machine can be encoded in
the hash. If an address is found in the hash, and not in
the LUT, the HWM could trap to a software handler to
determine the next FSM state. For performance, common
case transitions should reside in the LUTSs, and rarer cases
can be handled by software at higher cost.

5 Conclusion

In this work, we have proposed a new hardware introspec-
tion mechanism called Hardware Watchmachines, and
several applications of this mechanism illustrating its po-
tential. Our goal is to bring attention to the value of
hardware introspection mechanisms and the opportuni-
ties they present for future research, despite the cost of
their design, implementation, and verification.
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