
High-Level Adaptive Program Optimization with ADAPT �

Michael J. Voss and Rudolf Eigenmann
School of Electrical and Computer Engineering

Purdue University, West Lafayette, IN

ABSTRACT
Compile-time optimization is often limited by a lack of tar-
get machine and input data set knowledge. Without this
information, compilers may be forced to make conservative
assumptions to preserve correctness and to avoid perfor-
mance degradation. In order to cope with this lack of in-
formation at compile-time, adaptive and dynamic systems
can be used to perform optimization at runtime when com-
plete knowledge of input and machine parameters is avail-
able. This paper presents a compiler-supported high-level
adaptive optimization system. Users describe, in a domain
speci�c language, optimizations performed by stand-alone
optimization tools and backend compiler
ags, as well as
heuristics for applying these optimizations dynamically at
runtime. The ADAPT compiler reads these descriptions
and generates application-speci�c runtime systems to ap-
ply the heuristics. To facilitate the usage of existing tools
and compilers, overheads are minimized by decoupling op-
timization from execution. Our system, ADAPT, supports
a range of paradigms proposed recently, including dynamic
compilation, parameterization and runtime sampling. We
demonstrate our system by applying several optimization
techniques to a suite of benchmarks on two target machines.
ADAPT is shown to consistently outperform statically gen-
erated executables, improving performance by as much as
70%.

1. INTRODUCTION
Making accurate compile-time predictions of program per-

formance, and the impact of optimizations on this perfor-
mance, has always been di�cult. Analytical models applied
at compile-time must make assumptions that may often be
sensitive to input that is unknown until runtime. The same
program may have markedly di�erent characteristics when
run with di�erent input data sets. Compiler writers are
aware of these variations in behavior, and will often choose

�This work was supported in part by NSF grants #9703180-
CCR and #9975275-EIA.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPOPP'01, June 18-20, 2001, Snowbird, Utah, USA.
Copyright 2001 ACM 1-58113-346-4/01/0006 ...$5.00.

to not apply a technique if there is the potential that it may
degrade performance.
Compounding these challenges, technologies are now con-

verging, with there being only a few dominant processor ar-
chitectures and operating systems. With this convergence,
comes the ability to generate a single executable image for a
range of compatible but diverse systems. These compatible
systems may di�er in many ways, including the con�gura-
tion and sizes of the memory hierarchy, the network topol-
ogy and the processor generation and speed. Each of these
characteristics can have signi�cant impact on performance
and the pro�tability of optimizations. In addition, emerging
technologies such as Condor pools [1] and Grid computing [2,
3] allow users to submit jobs without any advanced knowl-
edge of the exact systems on which they will execute. This
lack of machine parameter knowledge only exacerbates the
di�culties associated with the static performance prediction
and tuning of applications.
To cope with this combined lack of machine parameter

and input data set knowledge, recent work has begun to ex-
plore adaptive and dynamic optimization paradigms, where
optimization is performed at runtime when complete system
and input knowledge is available.

1.1 Adaptive Optimization Paradigms
A range of adaptive and dynamic optimization systems

have been proposed in the literature. These systems will be
discussed in more detail in Section 6, but to highlight the
contributions of our framework, we will brie
y discuss their
major features. Dynamic optimization systems can be bro-
ken into three categories: (1) those that choose from stati-
cally generated code variants (2) those that modify behavior
through parameterization and (3) those that use dynamic
compilation.
In approaches like static multiversioning [4] and Dynamic

Feedback [5], multiple versions of a code section are gener-
ated at compile-time, and at runtime one of these versions
is selected based upon runtime values or monitored perfor-
mance. Using statically generated code variants, these ap-
proaches are limited because optimizations are applied be-
fore input data set and machine parameter knowledge is
available. To guard against the negative impact of code ex-
plosion, often only a few versions are generated for each code
section.
Parameterization attempts to avoid the limitations of

static multiversioning. Code is generated at compile-time
that can be \restructured" by changing the values of pro-
gram variables. A simple example is a tiled loop nest where
the tile size is a variable. Changing the tile size variable

93

will in e�ect re-order the loop iterations in di�erent ways
with respect to the original untiled loop nest. Gupta and
Bodik [6] discuss ways of applying many common transfor-
mations through parameterization.
Finally, the most general form of dynamic optimization is

dynamic compilation, where code is re-compiled at runtime,
allowing compiler optimizations to be applied with complete
machine and input data set knowledge available. Dynamic
compilation, if loosely interpreted, can include a range of
systems from more traditional specializers [7, 8, 9, 10], to
binary translators like Dynamo [11] and Java virtual ma-
chines like Jalapeno [12].

1.2 A New Approach : ADAPT
In this paper, we proposed a generic compiler-support

framework for adaptive program optimization, ADAPT.
ADAPT supports dynamic compilation and parameteriza-
tion paradigms, and like Dynamic Feedback [5], allows users
to explore optimization spaces through \runtime sampling".
Using ADAPT language, users specify heuristics for ap-

plying optimizations dynamically at runtime. The ADAPT
compiler then reads these heuristics and a target application,
generating a complete runtime system for applying the user-
described techniques. ADAPT removes overheads from the
application's critical path by decoupling optimization from
execution. The optimizer that is generated by the ADAPT
compiler can be run on a free processor of a multiprocessor
or, when the target application is being run on a uniproces-
sor, on a remote machine across the network.
ADAPT, unlike other approaches in the literature, fa-

cilitates an iterative modi�cation and search approach to
dynamic optimization. Users have available to them the
power of dynamic compilation and parameterization, and
an e�cient framework for runtime sampling. These facil-
ities support iterative modi�cation and search approaches
to optimization that (1) generate a range of optimized code
versions, which can then be monitored and selected from
based on measured performance and (2) dynamically gen-
erate new code versions based on the performance of other
experimental variants.
The key contribution of this work is to present a dynamic

optimization system that:

� is a generic framework, leveraging existing tools,

� can apply diverse optimization techniques,

� understands a domain speci�c language, AL, with
which users can specify adaptive techniques,

� facilitates an iterative modi�cation and search ap-
proach to optimization,

� is shown to consistently outperform static optimization
approaches.

In the next section, we present an overview of the ADAPT
framework. In Section 3, we brie
y describe ADAPT Lan-
guage (AL) and provide a simple example showing its usage.
Our experimental setup is described in Section 4 and an eval-
uation of ADAPT is presented in Section 5. In Section 6,
we discuss related work. Section 7 presents our conclusions.

2. AN OVERVIEW OF ADAPT
A dynamic or adaptive optimization system performs

three basic functions: (1) it must evaluate the usefulness
of applying an optimization technique using current system
and data set information, (2) it must be able to apply a
program optimization technique if it �nds that it will be
pro�table and (3) it must then be able to re-evaluate its
decisions and tune the application as the runtime environ-
ment changes. These basic functionalities must be provided
in a way that minimizes overheads, so that the bene�ts of
optimization are not o�set by the runtime costs.
The ADAPT framework provides these facilities through

the approach shown in Figure 1. Code sections that are can-
didates for optimization have two control paths: (1) a path
through a best known version and (2) a path through an ex-
perimental version. Each of these versions can be replaced
dynamically by the ADAPT optimizer.

Experiment?

BEST KNOWN
 VERSION

EXPERIMENTAL
 VERSION

YESNO

OPTIMIZER

Can swap and monitor versions

Figure 1: Overview of the ADAPT dynamic opti-
mization system. The shown scheme is applied to
each candidate code section in a program.

Before a code section is executed, a
ag is checked. If the

ag indicates that an experimental version exists, it will be
used, otherwise the best known version is executed. The
ADAPT optimizer modi�es the behavior of the code section
by swapping in new best known and experimental versions
as the program executes. The experimental version is mon-
itored, and the data collected during its execution can be
used as feedback into the optimization process.
The target application's overhead for decision making is

small, being only the check of a
ag setting and determina-
tion of the current context of the interval. ADAPT is able to
independently optimize multiple contexts of the same inter-
val, where the context is determined by the value of the loop
bounds. All data collection and optimization decisions can
be removed from the application's critical path and placed
in an optimizer that runs asynchronously in the background.
This decoupled structure is the heart of the ADAPT frame-
work, which is pictured in Figure 2.
ADAPT has both a compile-time and runtime component.

The ADAPT compiler1 reads both the target application
and user-speci�ed heuristics, and generates a complete run-
time system for applying these heuristics to the application

1The ADAPT compiler is built on top of the Polaris com-
piler infrastructure. Polaris is a parallelizing and optimizing
source-to-source restructurer [13].

94

dynamically. The ADAPT compiler �rst selects interest-
ing code sections (intervals) as candidates for optimizations.
Currently, the compiler selects loop nests that contain no
I/O and no function calls and that are contained in a cy-
cle in the inter-procedural control
ow graph. The compiler
then generates a runtime system based on the user heuris-
tics. These heuristics are speci�ed in the domain speci�c
language, ADAPT Language (AL), which is described in
more detail in the next section.

LOCAL OPTIMIZER

SHARED
LIBRARY

SHARED
LIBRARY

SHARED
LIBRARY

SHARED
LIBRARY

REMOTE OPTIMIZER

SHARED
LIBRARY

SHARED
LIBRARY

SHARED
LIBRARY

SOURCE
 FILES

OPTIMIZATION TOOL
OPTIMIZATION TOOL

OPTIMIZATION TOOL TRANSLATOR
OR COMPILER

 ORIGINAL
APPLICATION
 SOURCE

USER-SPECIFIED
 OPTIMIZATION
 HEURISTICS

ADAPT COMPILER

Runtime System

Compile-time System

Optimizer

 MODIFIED
EXECUTABLE

Figure 2: A detailed view of the complete ADAPT
framework.

The compiler-generated runtime system consists of a mod-
i�ed version of the application, which contains the two con-
trol paths shown in Figure 1 for each candidate interval. It
also contains a local optimizer that performs hot-spot detec-
tion, determining the most time-consuming code sections in
the application as it runs. The local optimizer will commu-
nicate with the remote optimizer, and dynamically link in
new code variants as they become available. The local opti-
mizer is a separate thread that runs on the same machine as
the application. The threading is implemented using posix
threads and no locking is required, allowing optimization
and execution to truly occur asynchronously.
ADAPT is able to track multiple contexts of each interval.

Currently these contexts are determined by loop bounds.
For example, if a loop in the application sometimes exe-
cutes with 100 iterations and sometimes with 10,000 iter-
ations, ADAPT will be able to track and optimize these
contexts independently of each other. Because of its de-
coupled structure, ADAPT relies on the repetitive behavior
of applications. The optimizer generates new code based
on previously seen behavior on a per-context basis. In or-
der for optimization to be pro�table, the same context of
an interval must be seen multiple times. Decoupling allows
optimization of a context to occur concurrently with execu-
tion, with the newly optimized code being used whenever it
becomes available.
Returning to the framework shown in Figure 2, when a

hot-spot is detected, the information about the interval is
sent to the remote optimizer using a remote procedure call
(RPC). The remote optimizer has available to it source code
for each of the candidate intervals, a description of the tar-

get machine, and stand-alone tools and compilers that can
be used to perform optimizations. The user-supplied heuris-
tics are transformed by the ADAPT compiler into state ma-
chines that are applied by the remote optimizer on a per
context and per interval basis.
The remote optimizer tunes the program by calling stand-

alone tools and optimizers, as well as by selecting new pa-
rameters for parameterized code variants. New code variants
are stored into shared libraries and provided to the local op-
timizer via NFS.
When the remote optimizer �nishes an optimization step,

the RPC invoked by the local optimizer returns, and if a
new code variant has been generated, the local optimizer
will then dynamically link the code into the target applica-
tion. This new code variant, depending on the message sent
from the remote optimizer, will be swapped in as a new best
known version or experimental version for a speci�c context
of an interval. At the next execution of this interval and
context, the new code will be available and executed.
In the next section, the ADAPT language is presented, as

well as an example of an AL heuristic that will make the
operation of the ADAPT framework more concrete.

3. ADAPT LANGUAGE (AL)
ADAPT Language (AL) is a domain speci�c language

with which optimization developers can specify optimiza-
tion heuristics to be applied to applications dynamically at
runtime. It is a C-like language with special statements,
some of which are described in Table 1. In addition, it de-
�nes reserved words that at runtime contain useful input
data set and machine parameter information. For exam-
ple, a heuristic can directly refer to the L2 cache size of the
machine through the use of l2 size, or to the number of
iterations in an innermost loop by use of innermost its.
AL uses an LL1 grammar, which allows a simple parser

to be used. It supports C-style expressions, which are tok-
enized by the ADAPT compiler but not fully parsed. Us-
ing these descriptions and a target application, the ADAPT
compiler generates a complete runtime system. A full de-
scription of ADAPT Language is beyond the scope of this
paper, but in this section we will present an example that
illustrates its basic elements.
Figure 3 shows the AL code for de�ning a simple unroller

technique. It begins by declaring variables used in the
heuristic, level and min time. It then uses constraint state-
ments to limit the intervals for which the runtime system will
apply this technique. This technique will only be applied to
intervals that are perfectly nested loops, and for which the
number of iterations in the innermost loop is known at the
entry to the interval.
Next, an apply spec statement de�nes the interface to the

tool that will be used to apply the optimization. The �rst
parameter determines when this interface will be used. If a
collect or mark as best statement is issued and level >

1, then a code variant generated using \-unroll=level" will
be created (or looked up, if it already exists). The second
parameter in the apply spec statement, bflag, identi�es
that the technique is a
ag that is added to a call to the
backend compiler. The last parameter de�nes the interface
itself. The
ag is \-unroll=level" where, at runtime, level
will be replaced by its value.
The phase block de�nes the heuristic, which is trans-

formed by the ADAPT compiler into a state machine used

95

Table 1: Special ADAPT Language Statements

Statement Description

constraint(compile-time constraint) Supplies a compile-time constraint. Only intervals that meet all
speci�ed constraints will be prepared for runtime optimization.

apply spec(condition,type,syntax [,params]) A description of a tool or
ag. Speci�es the runtime condition

under which it is applied, the type of tool, the syntax of the
tool interface and the runtime parameters that the generated code
will need to be passed.

collect (event list) execute; Initiates the monitoring of an experimental code version. The
event list speci�es what events are to be measured.

mark as best Speci�es that the code variant that would be generated under
the current runtime conditions is a new best known version

end phase Denotes the end of an optimization phase

technique simple_unroller {

int level;
float min_time;

constraint(is_perfect_nest);
constraint(inner_its_known);

apply_spec(level > 1, bflag,
-unroll=level);

phase {
level = 1;
min_time = FLT_MAX;
collect (time) { execute };
if (time < min_time) {
min_time = time;
mark_as_best;

}
while (level < innermost_its) {

level = level + 1;
collect (time) { execute; }
if (time < min_time) {
min_time = time;
mark_as_best;

}
}
end_phase;

}
}

Figure 3: The AL description of a simple dynamic
loop unroller.

by the remote optimizer. Essentially, all intervals will be
timed without being unrolled, and then timed after being
unrolled by all factors up to, and including, complete un-
rolling of the innermost loop. At each step, the code section
is unrolled by level and then swapped in as the experimen-
tal version.
Whenever a collect statement is executed by the state

machine, a message is sent from the remote optimizer to the
local optimizer that initiates monitoring of a code variant.
The application will then, at the next invocation of that
interval of the code section, use the experimental variant
described by the message. When executed in the applica-
tion, these variants are timed. At the collect statement,
the remote optimizer pauses the AL heuristic, knowing that
it must wait for the local optimizer to return information
about the behavior of the executed version. While it is wait-
ing, the remote optimizer is free to work on other contexts
and intervals. When the local optimizer sees that the exper-
imental version has been timed, and if this context of the

interval is still important (i.e. a hot-spot), it will again call
the remote optimizer, passing it the results of the monitor-
ing.
After each collection point in Figure 3, the heuristic checks

if the execution time for the experimental variant is lower
than any that has been previously measured for that con-
text of the interval. If indeed it is an improvement, this
new variant will be marked as the new best known version.
As with the collect statement, the mark as best statement
also causes a message to be passed back to the local opti-
mizer, informing it that a new variant should be moved into
the best known position for that context.
Finally, when the while loop �nishes, the end phase state-

ment will send a message to the local optimizer stating that
this context has been fully optimized by this technique. This
message will cause a timestamp to be kept by the local op-
timizer. Users can specify a time period after which best
known versions become stale, causing heuristics to be rerun.
When the local optimizer performs hot-spot detection, it ig-
nores all intervals that have been fully optimized, until the
time period since their full optimization exceeds this stal-
eness parameter. If the local optimizer determines that a
best known version has become stale, the AL heuristics will
be restarted to determine a new best version.
Dynamic compilation is implicit in AL heuristics. When

the remote optimizer needs to pass a message to the local
optimizer, it �rst determines if the code variant that it de-
scribes exists. If not, then the interfaces described by the
apply spec statements are invoked to create the new code
variant. For example, in Figure 3, a collect statement may
cause a \-unroll=4" variant to be timed and then the fol-
lowing mark as best statement may identify it as new best
known variant for that context. If this interval had not yet
been unrolled by a factor of 4, then the collect statement
would cause a \-unroll=4" variant to be compiled. Later,
when the mark as best statement is executed, it would see
that a variant matching its description already exists, and
simply pass its location to the local optimizer. Likewise,
if later for a di�erent context of the same interval, a \-
unroll=4" variant were needed, this same code variant could
again be used.
The \users" targeted by ADAPT Language are compiler

writers who wish to explore the possibilities for dynamic
program optimization. A compiler writer who experiments
with AL and �nds that a particular technique may be prof-
itably applied in a dynamic way, may then either continue
to use ADAPT as its mechanism of application, or design a
special purpose system around the technique.

96

4. EXPERIMENTAL SETUP
To demonstrate the e�ectiveness of the ADAPT frame-

work, we will present the results from six experiments run
on two di�erent architectures. The machines used for our
study are described in Table 2, and include a six processor
Sun UltraSPARC Enterprise 4000 (E4000) and a unipro-
cessor Pentium workstation running Linux. Currently, the
ADAPT framework and its compiler have been ported to
both Solaris and Linux. When using the E4000, the remote
optimizer is run on a free processor of the multiprocessor,
and when using the Pentium workstation, the remote op-
timizer is run on another identical workstation across the
network.

Table 2: Target machine con�gurations.
Sun E4000 Pentium II Workstation

OS Solaris 2.6 Red Hat Linux 6.2
Cpus 6 1
Cpu Type UltraSPARC II Pentium II
Cpu Clk 250 MHz 300 MHz
Mem 1 GB 128 MB
L1 Cache 16 KB 16 KB
L2 Cache 1 MB 512 KB
Compiler SunPro v 5.0 Gcc (egcs-2.91.66)

We evaluate ADAPT by performing the six experiments
described in Table 3. The �rst experiment Useless Copy-

ing aims at uncovering the overheads inherent in the sys-
tem. The remaining �ve experiments highlight the variety of
techniques that can be implemented in our framework. The
dynamic techniques we evaluate include loop-bound special-
ization, back-end
ag selection, loop unrolling, loop tiling
and automatic parallelization.
We apply these techniques and our framework to �ve pro-

grams: (1) Applu, (2) Mgrid, (3) Npow, (4) Pde and (5)
Swim. Applu, Mgrid and Swim are SPEC2000
oating point
benchmarks. Npow is a kernel that raises a matrix to a
power through repeated matrix multiplication. We include
this kernel as a reference point since matrix multiplication
is often used to evaluate optimization techniques in litera-
ture. Pde is a simple �nite di�erence solver. Pde performs
updates in place in the grid using the Gauss-Seidel method.
The number of lines, number of intervals identi�ed as candi-
dates for optimization, and the execution time of the original
code is shown for each benchmark in Table 4.

Table 4: Program Descriptions.
Program Lines Intervals Time Time

(Sun E4000) (Linux)

Applu 3890 32 2736 sec. 1123 sec.
Mgrid 489 13 4185 sec. 575 sec.
Npow 72 5 488 sec. 587 sec.
Pde 36 2 1531 sec. 533 sec.
Swim 429 14 467 sec. 872 sec.

5. EXPERIMENTAL RESULTS
The results of the experiments described in Table 3 are

shown in Figure 4. The execution time of each application
optimized by ADAPT is shown as a percentage of the exe-
cution time of the original, statically optimized code. These
times are the wall-clock times for the entire execution of the
application. For some of the experiments the performance of

code generated by statically applying the same optimization
technique is presented. We will discuss each experiment in
detail below.

Useless Copying
The Useless Copying technique was designed to uncover the
overheads associated with the ADAPT framework. The \op-
timization" generates an identical program. Since no im-
provement is to be expected from this transformation, the
changes in performance are due to the impact of the frame-
work itself.
Overheads on all applications on both target machines

are always less than 5% as shown in Figure 4.a. In many
cases, especially on the Pentium II Linux workstation, there
is a negative overhead, or improvement, seen by applying
ADAPT. The reason for these improvements are due to the
restructuring performed by the ADAPT compiler. While
transforming the applications and generating the runtime
system, the ADAPT compiler performs inter-procedural
constant propagation and applies some simpli�cations that
may lead to improved performance.
From Figure 4.a, it is clear that the overheads incurred

by the ADAPT infrastructure are minimal. On average,
the applications slowdown by 0.2% on the Sun E4000 and
improve by 1.6% on the Pentium II Linux workstation.

Loop-Bound Specialization
In loop-bound specialization, the variables that determine
loop bounds are replaced in each context by their runtime
constant value, and then the code is recompiled by the back-
end compiler. All improvements are due to the backend
compiler exploiting this new input data set knowledge.
While in Figure 4.b there is little improvement in many

applications, Npow shows a dramatic improvement of al-
most 70% on the Sun E4000. When given the loop-bound
information for Npow, the Sun compiler performs aggres-
sive loop unrolling and is able to remove many branches by
knowing the exact number of iterations executed in the ma-
trix multiply. On average, loop-bound specialization leads
to an improvement of 13.6% on the Sun E4000 and 2.2% on
the Pentium II Linux workstation.

Back-End Flag Selection
Figure 4.c shows the improvements made when ADAPT was
used to select the best collection of backend compiler
ags
for compiling each interval. The
ag choices available vary
across the two architectures due to the use of two di�erent
compilers.
On the E4000, the base case is compiled using the SunPro

compiler with the -fast
ag. This
ag expands into what
the compiler writers decided was the best collection of
ags
for the target machine. These
ags provide much machine
speci�c information, including the type of chip and the sizes
of the memory hierarchy.
The
ag selection experiment uses ADAPT to simply tog-

gle the
ags that are implied by the -fast switch. For ex-
ample, -fast implies -prefetch=no. ADAPT will therefore
compare the performance of code sections compiled with
both -prefetch=no and -prefetch=yes, selecting as best
the version that shows the shortest execution time.
The -fast switch implies eight compiler
ags. We de�ned

AL heuristics for each of these
ags and combined them us-
ing a linear search. On average ADAPT was able to improve

97

Table 3: Overview of experiments
Experiment Description
Useless Copying Six identical copies of each interval are made and the timed. The copy with the smallest

execution time will be selected as best. This experiments shows the overheads inherent in
the framework, since no improvement should be expected through copying.

Specialization The variables that determine the loop bounds in each interval are replaced as constants by
their runtime values. Any improvement will be due to the backend compilers ability to exploit
this added information.

Flag Selection The application begins with highly optimized code. On Solaris, the -fast compiler
ag is
used and on Linux the -O2
ag is used. Additional
ags available in the backend compilers
are then experimented with by doing a linear search on their settings and �nding the sets
that show the smallest execution time. On Sun we look at 8
ags and on Linux we look at 9
ags.

Loop Unrolling Loop nests that contain a single innermost loop are unrolled. First the original code is
timed. Then the loop is unrolled by factors that evenly divide the number of iterations of the
innermost loop to a maximum unroll factor of 10. At each step the unrolled variant is timed.
As soon as the execution time of a monitored variant is larger than the best known version,
optimization is halted and the best known version is assumed to be best.

Loop Tiling Loops nests that are tilable, and for which exploitable temporal locality exists will be
optimized. First the original code is timed. The the nest is tiled for 1=2 of the L2 cache size
and timed. The code is then tiled to exploit (1=2)n of the cache size down to 1/16th.
This attempts to �nd the e�ective cache size of the machine. The version that shows the
lowest execution time is selected as best.

Parallelization For each loop nest that is determined to be parallel by the Polaris compiler, both a parallel
and serial version is executed and timed. The version that shows the lowest execution time for
that context will be chosen as best.

overall program performance by 35% due to its runtime se-
lection of
ags as shown in Figure 4.c.
Table 5 shows an example of an execution trace for one of

the code sections in Mgrid when optimized by ADAPT on
the Sun E4000. This table shows the code versions gener-
ated and monitored by the AL heuristics in the order that
they were executed. The leftmost column provides the code
version number and the rightmost column provides the ex-
ecution time of that variant. The
ags with the greatest
impact on the code section were prefetching (PF), which
when turned on, decreased the execution time by 66%, and

oating point simpli�cation (FP) which, when raised to a
higher level, improved performance by an additional 19%.
Overall, on this context of the interval, the dynamic selec-
tion of
ags beats the manufacturer's selection by 73%.

Table 5: Flags Trace in Mgrid on Sun.
Ver PF XV O FP Dp Ca Ch Tr XTime

1 N N 4 1 Y Y Y N 1.05 s
2 Y N 4 1 Y Y Y N 0.36 s
3 Y Y 4 1 Y Y Y N 0.36 s
4 Y Y 5 1 Y Y Y N 0.37 s
5 Y Y 4 2 Y Y Y N 0.29 s

6 Y Y 4 2 N Y Y N 0.28 s

7 Y Y 4 2 N N Y N 0.28 s
8 Y Y 4 2 N Y N N 0.29 s
9 Y Y 4 2 N Y Y Y 0.28 s

On the Pentium II Linux workstation, the base versions
were compiled with gcc using the -O2
ag. Gcc also provides
several other optimization
ags. We selected nine of these

ags, including -O, and as in the Sun E4000 experiment,
performed a linear search of their settings for each context
of each interval. On average, ADAPT was able to improve
performance over the statically optimized code by 9.2%. An
example execution trace for one of the code sections in Swim
is shown in Table 6. Interestingly in this example, non-
intuitive choices have large impacts. For example, moving
from -O2 down to -O improves performance by 23%.

Table 6: Flags Trace in Swim on Linux.
Ver O Ur Ma Db FS Ex Me St CSE XTime

1 2 N N N N N N N N 0.158 s
2 0 N N N N N N N N 0.122 s
3 0 Y N N N N N N N 0.144 s
4 0 N Y N N N N N N 0.123 s
5 0 N N Y N N N N N 0.122 s
6 0 N N N Y N N N N 0.124 s
7 0 N N N N Y N N N 0.123 s

8 0 N N N N N Y N N 0.118 s

9 0 N N N N N Y Y N 0.162 s
10 0 N N N N N Y N Y 0.118 s

Loop Unrolling
In Figure 4.d, the dynamic loop unrolling technique imple-
mented using ADAPT is compared to two static approaches.
First, on the Sun E4000 the applications are compiled by the
Sun compiler with -unroll=2, and on the Pentium II Linux
workstation, the applications are compiled with gcc using
-funroll loops. In Figure 4.d, these application variants
are labeled f77-Sun and g77-Linux, respectively. Both the
Sun compiler and gcc take these
ags as hints, and unroll
loops only if their built-in heuristics determine that the un-
rolling may be pro�table.
To force an unrolled static version for comparison, we

modi�ed the Polaris compiler to perform loop unrolling.
Statically optimized versions were generated for each ap-
plication using Polaris with -unroll=2. The unroll factor of
2 was used for both Polaris and the Sun compiler since this
level was most often selected as the best unrolling factor by
ADAPT in these benchmark codes.
Figure 4.d shows that only in Applu on the Pentium II

Linux workstation is ADAPT not close to, or better than,
the best statically generated code variant. This is due to a
sheltering mechanism that is included in the runtime system.
ADAPT will not optimize intervals that have very short ex-
ecution times, since it is likely that the framework overheads
will dominate. Applu contains small loops, many of which

98

(a) Useless Copying (b) Loop-bound Specialization

(c) Flag Selection (d) Loop Unrolling

(e) Loop Tiling (f) Parallelization

Figure 4: Experimental results on both the Sun E4000 and the Pentium II Linux Workstation

are sheltered by ADAPT. In Applu, the static compiler is
able to also unroll these loops, while the runtime system
ignores them to avoid potential degradation.
On the Sun E4000, the backend compiler is able to im-

prove performance through unrolling by an average of -0.4%
and Polaris by -1.8%, while ADAPT sees an average im-
provement of 18%. On the Pentium II Linux workstation,
gcc is able to improve performance on average by 4.4%, Po-
laris by -3.2%, and ADAPT by 5%.

Loop Tiling
In the loop tiling experiment, ADAPT's performance is com-
pared to Polaris when given exact knowledge of the target

machine's L2 cache size. Polaris will tile loops to exploit 1/2
of the L2 cache size if either (1) the number of accesses prov-
ably exceeds the tile size or (2) the number of iterations, and
hence the number of accesses, is unknown at compile-time.
Unlike Polaris, ADAPT has exact knowledge of loop-

bound information, and will tile loops only when the number
of accesses truly exceed the tile size. ADAPT will try tile
sizes ranging from 1/2 the L2 cache size to 1/16 of the L2
cache size.
As shown in Figure 4.e, even without input data set

knowledge, Polaris is able to perform nearly as well as
ADAPT. On the Sun E4000, Polaris improves performance
on average by 13.4% and ADAPT by 13.5%. While on

99

the Pentium II Linux workstation, Polaris improves perfor-
mance on average by 5.8% and ADAPT by 9.8%.

Parallelization
The �nal experiment is automatic parallelization. Since only
the E4000 is a multiprocessor, results are not shown for the
Pentium workstation. Data is shown in Figure 4.f for both
the code as parallelized by Polaris, and for the code as par-
allelized by ADAPT.
The AL heuristics fed to ADAPT yields a system that

times each code section that is found to be parallel by Po-
laris. It times the intervals both when run in parallel and
when run sequentially. It then chooses the variant with the
shortest execution time as best. This experiment is not run-
time data dependence testing, but instead is a technique for
parallelizing only those pieces of the code that have enough
work to mitigate the overheads associated with their parallel
execution.
It is clear from the results in Figure 4.f, that Polaris

chooses unwisely in Applu, degrading performance signi�-
cantly. By identifying those code sections that show im-
provements through parallelization, ADAPT not only re-
moves the degradation, but improves the performance of
Applu by 25%. A similar removal of overheads is seen in
Pde. On average, when run with its default settings, Polaris
degrades performance by 41% on the E4000, while ADAPT
improves performance by 52.8%.

Summary of Results
The average improvement for the various techniques as ap-
plied on the Sun Enterprise are shown in Figure 5.a, and
as applied on the Pentium workstation in Figure 5.b. It is
clear that on average, ADAPT o�ers a better solution than
the static optimization tools.
In addition, the biggest slowdowns and biggest speedups

obtained through unrolling, tiling and parallelization are
shown in Table 7. ADAPT always shows the least degrada-
tion, and only in two cases does it not also have the largest
improvement. ADAPT through its ability to exploit input
data set and machine parameters, as well as its ability to
verify its choices through runtime sampling, o�ers the best
performance with the least risk for degradation.

6. RELATED WORK
One of the earliest methods proposed for performing

runtime optimization was multiple version loops [4]. In
this technique, several variants of a loop are generated at
compile-time and the best version is selected based on run-
time information. Many compilers still employ this tech-
nique. As discussed previously, multiversioning can lead to
code explosion since it cannot make use of runtime informa-
tion to specialize the code that is generated.
Gupta and Bodik [6] proposed adaptive loop transforma-

tions to allow the application of many standard loop trans-
formations at runtime using parameterization. They argue
that the applicability and usefulness of many of these trans-
formations cannot be determined at compile-time. Although
they do not give criteria for selecting transformations at run-
time, they provide a framework for applying loop fusion,
loop �ssion, loop interchange, loop alignment and loop re-
versal e�ciently.
Diniz and Rinard [5] proposed dynamic feedback, a tech-

nique for dynamically selecting code variants based on mea-

sured execution times. In their scheme, a program has al-
ternating sampling and production phases. In the sampling
phase, code variants, generated at compile-time using di�er-
ent optimization strategies, are executed and timed. This
phase continues for a user-de�ned interval. After the interval
expires, the code variant that exhibited the best execution
time is used.
Like dynamic feedback, Saavedra and Park [14] propose

adaptive execution, which dynamically adapts program ex-
ecution to changes in program and machine conditions. In
addition to execution time, they use performance informa-
tion collected from hardware monitors.
A dynamic technique often discussed in relation to par-

allel processing is runtime data dependence testing. In [15,
16, 17], runtime tests are performed to uncover parallelism
undetectable at compile-time. The authors discuss schedule
reuse, a phenomenon which can be exploited to reduce the
number of times a test needs to be applied. Work has also
been done by Hall and Martonosi [18] to dynamically select
the best number of processors to use for a parallel applica-
tion when run in a multiprogram environment. The work in
[18] was aimed at increasing throughput by allowing applica-
tions to cooperate, yielding and taking processors according
to their parallel behavior.
The approaches discussed above selected from previously

generated code, or modi�ed program execution through pa-
rameterization. Much work has also been done on dynamic
compilation and code generation [19, 20, 21, 7, 8, 9, 10].
This work has primarily focused on e�cient runtime gener-
ation and specialization of code sections that are identi�ed
through user-inserted code or directives. Dynamic compila-
tion usually falls directly in the application's critical path.
To reduce the time spent in code generation, optimizations
are staged by using compilers that are specialized to the part
of the program being optimized [19].
Work has also been done to collect binary program traces

and to optimize these traces during program execution. The
HP Dynamo project [11] has shown signi�cant results using
such a scheme. The traces collected by Dynamo extend
beyond basic blocks and subroutine boundaries, allowing
the runtime compiler to be less restricted by control
ow
and even �le boundaries. These approaches create larger
blocks with simpli�ed control
ow, facilitating many tra-
ditional compilation techniques. Dynamo operates on the
runtime stream of assembly-level instructions and, its over-
head being in the critical path, is constrained by runtime
overhead. It is therefore primarily constrained to peephole-
like optimizations, since at the low-level at which it operates,
knowledge of high-level constructs is unavailable. The Dy-
namo approach can been seen as complementary to ADAPT
which is aimed at higher-level techniques.
ADAPT attempts to minimize runtime overhead by re-

moving code generation from the critical path. Therefore
it obviates the need for specialized compilers. Plezbert and
Cytron [22] have proposed continuous compilation to over-
lap the \just-in-time" compilation of Java applications with
their interpretation. Compilation occurs in the background
as the program continues to be executed through interpre-
tation. They also order the code section to be compiled by
targeting hot-spots �rst. This is also the approach taken
by the Java HotSpot Performance Engine [23]. Unlike our
approach, these approaches may make use of machine pa-
rameter information, but do not specialize code using input
data set knowledge, and provide no feedback mechanisms.

100

(a) (b)

Figure 5: Average performance on (a) the Sun E4000 and (b) the Pentium Workstation.

Table 7: The best and worst performance for Unrolling, Tiling and Parallelization.
Biggest Slowdown Biggest Speedup

Unroll Tile Parallel Unroll Tile Parallel
(Sun,Linux) (Sun, Linux) (Sun) (Sun,Linux) (Sun, Linux) (Sun)

Backend 2%, 8% NA NA 0.9%, 17% NA NA
Polaris 12%, 20% 8%,5% 418% 19%, 9% 53.7%, 32% 76%
ADAPT 1.8%, none 3%,none 1.1% 64%, 9% 62.8%, 29% 87%

The IBM Jalapeno JVM, on the other hand, does provide
a feedback mechanism. In [12], they discuss their feedback-
directed optimization and show its application to function
inlining. While they discuss a general framework, currently
only inlining has been evaluated in the literature. Hence,
direct comparison with ADAPT is di�cult. Like the other
Java optimizers, Jalapeno does allow overlap of optimization
and execution. However, unlike ADAPT, where optimiza-
tion and execution is truly asynchronous, the Jalapeno op-
timizer must hold the master JVM lock during compilation,
potentially introducing contention between the compilation
and application threads.
In [24], we presented an early version of the ADAPT

framework. Our current implementation is di�erent in ap-
proach. In [24], ADAPT was not context sensitive, but in-
stead viewed applications as phase oriented. Not being con-
text based, the early version of ADAPT could not support
statically unsafe optimizations, such as specialization. In
addition, there was also no support for parameterization,
which we used in this paper to implement tiling. In [24], ad-
dition of new techniques required the writing of a C++ class
that was then compiled into the ADAPT compiler. With
the AL heuristic language we now support, the types of op-
timization paradigms that can be implemented are much
more diverse.

7. CONCLUSION
With converging technologies that allow applications to be

run portably across increasingly diverse systems, adaptive
and dynamic program optimization is clearly an important
emerging technology. Coping with these new and dynamic
environments will be a true challenge for developers of both
scienti�c and mainstream applications. In this paper, we
presented ADAPT, a framework that allows researchers to
meet these new challenges, to experiment with the adaptive

application of both traditional and new techniques, and to
develop a better understanding of the options involved in
dynamic and adaptive optimization.
ADAPT is a generic compiler-supported framework for

high-level adaptive program optimization. Using ADAPT
Language (AL), users can easily construct adaptive opti-
mizations by leveraging existing stand-alone optimization
tools and compilers. The ADAPT compiler reads user-
supplied heuristics and a target application. It then gener-
ates a complete runtime system for applying these heuristics
dynamically. The heuristic-based approach and the use of a
domain-speci�c language is unique to our framework.
Using a decoupled structure, ADAPT removes optimiza-

tion overheads from the application's critical path. All op-
timization decisions can be performed on a free processor if
executing on a multiprocessor, or on a remote system when
executing on a networked uniprocessor.
ADAPT is applicable to both serial and parallel programs.

However, given the many options and the importance of high
performance for parallel applications, ADAPT is particu-
larly well suited to these types of applications. Being based
on a decoupled approach that overlaps optimization and exe-
cution, this system also relies on repetitive behavior, which
is often found in parallel science and engineering applica-
tions. We evaluated ADAPT by performing six experiments
on two target machines. These experiments demonstrated
the ability of ADAPT to apply a wide range of techniques
e�ectively on both a multiprocessor UltraSPARC Enterprise
server and on a uniprocessor Pentium workstation.
On average, ADAPT was able to signi�cantly outperform

static optimization alternatives, showing improvements as
large as 70%. In a
ag selection experiment, it was able to
signi�cantly outperform a compiler manufacturers choice of
the best collection of compiler
ags for the given architec-
ture. It was also able to identify non-intuitive choices that a

101

user would be unlikely to try. ADAPT showed the least risk
for degradation across the various experiments and target
machines. Since compiler writers are aware of the potential
for slowdown from \optimization", techniques are often ap-
plied conservatively, or not all. With ADAPT, degradation
is minimized, allowing optimizations to be performed more
aggressively, and with accurate input data set and machine
parameter knowledge available.

8. REFERENCES
[1] M. Litzkow, M. Livny, and M. W. Mutka. Condor - a

hunter of idle workstations. In Proc. of the 8th Int'l

Conf. of Distributed Computing Systems, pages
104{111, June 1988.

[2] Nirav H. Kapadia and Jos�e A.B. Fortes. On the Design
of a Demand-Based Network-Computing System: The
Purdue University Network Computing Hubs. In Proc.

of IEEE Symposium on High Performance Distributed

Computing, pages 71{80, Chicago, IL, 1998.
[3] Ian Foster and Carl Kesselmann. Globus: A

Metacomputing Infrastructure Toolkit. International
Journal of Supercomputing Applications,
11(2):115{128, January 1997.

[4] M. Byler, J.R.B. Davies, C. Huson, B. Leasure, and
M. Wolfe. Multiple version loops. In International

Conf. on Parallel Processing, pages 312{318, August
1987.

[5] Pedro Diniz and Matrin Rinard. Dynamic feedback:
An e�ective technique for adaptive computing. In
Proc. of the ACM SIGPLAN '97 Conf. on

Programming Language Design and Implementation,
pages 71{84, Las Vegas, NV, May 1997.

[6] Rajiv Gupta and Rastislav Bodik. Adaptive loop
transformations for scienti�c programs. In IEEE

Symposium on Parallel and Distributed Processing,
pages 368{375, San Antonio, Texas, October 1995.

[7] J. Auslander, M. Philipose, C. Chambers, S. Eggers,
and B. Bershad. Fast, e�ective dynamic compilation.
In Proc. of the SIGPLAN '96 Conf. on Programming

Language Design and Implementation, pages 149{159,
Philedelphia, PA, May 1996.

[8] Charles Consel and Francois Noel. A general approach
for run-time specialization and its application to C. In
Proc. of the SIGPLAN '96 Conf. on Principles of

Programming Languages, January 1996.

[9] D. Engler. VCODE: a retargetable, extensible, very
fast dynamic code generation system. In Proc. of the

SIGPLAN '96 Conf. on Programming Language

Design and Implementation, pages 160{170,
Philedelphia, PA, May 1996.

[10] P. Lee and M. Leone. Optimizing ML with run-time
code generation. In Proc. of the SIGPLAN '96 Conf.

on Programming Language Design and

Implementation, pages 137{148, Philedelphia, PA,
May 1996.

[11] Vasanth Bala, Evelyn Duesterwald, and Sanjeev
Banerjia. Dynamo: A transparent runtime
optimization system. In Proc. of the ACM SIGPLAN

2000 Conf. on Programming Language Design and

Implementation, Vancouver, British Columbia,
Canada, June 2000.

[12] Matthew Arnold, Stephen Fink, David Grove, Michael
Hind, and Peter F. Sweeney. Adaptive optimization in

the jalapeno jvm. In Proc. of the ACM SIGPLAN

2000 Conf. on Object-Oriented Programming Systems,

Languages and Applications, Minneapolis, MN,
October 2000.

[13] William Blume, Ramon Doallo, Rudolf Eigenmann,
John Grout, Jay Hoe
inger, Thomas Lawrence, Jaejin
Lee, David Padua, Yunheung Paek, Bill Pottenger,
Lawrence Rauchwerger, and Peng Tu. Parallel
Programming with Polaris. IEEE Computer, pages
78{82, December 1996.

[14] R. Saavedra and D. Park. Improving the e�ectiveness
of software prefetching with adaptive execution. In
Proc. of the 1996 Conf. on Parallel Algorithms and

Compilation Techniques, Boston, MA, October 1996.

[15] J. Saltz, R. Mirchandaney, and K. Crowley. Run time
parallelization and scheduling of loops. IEEE
Transactions on Computers, 40(5):603{612, May 1991.

[16] Lawrence Rauchwerger and David Padua. The
PRIVATIZING DOALL Test: A Run-Time Technique
for DOALL Loop Identi�cation and Array
Privatization . Proceedings of the 8th ACM

International Conference on Supercomputing,

Manchester, England, pages 33{43, July 1994.
[17] L. Rauchwerger and D. Padua. The LRPD Test:

speculative run-time parallelization of loops with
privatization and reduction parallelization. In
Proceedings of the SIGPLAN 1995 Conference on

Programming Languages Design and Implementation,
pages 218{232, June 1995.

[18] Mary W. Hall and Margaret Martonosi. Adaptive
parallelism in compiler-parallelized code. In Proc. of

the 2nd SUIF Compiler Workshop, August 1997.
[19] Brian Grant, Matthai Philipose, Markus Mock, Craig

Chambers, and Susan J. Eggers. An evaluation of
staged run-time optimizations in DyC. In Proc. of the

SIGPLAN '99 Conf. on Programming Language

Design and Implementation, pages 293{304, Atlanta,
GA, May 1999.

[20] Renaud Marlet, Charles Consel, and Philippe Boinot.
E�cient incremental run-time specialization for free.
In Proc. of the SIGPLAN '99 Conf. on Programming

Language Design and Implementation, pages 281{292,
Atlanta, GA, May 1999.

[21] Massimiliano Polettto, Wilson C Hsieh, Dawson R
Engler, and M. Frans Kaashoek. 'C and tcc: A
language and compiler for dynamic code generation.
ACM Transactions on Programming Languages and

Systems, 21(2):324{369, March 1999.
[22] Michael P. Plezbert and Ron K. Cytron. Does \just in

time" = \better late than never"? In Proc. of the

ACM SIGPLAN-SIGACT '97 Symposium on

Principles of Programming Languages, pages 120{131,
Paris, France, January 1997.

[23] Sun Microsystems. The Java HotSpot Performance
Engine Architecture. Technical White Paper,
http://java.sun.com/products/hotspot/whitepaper.html,
April 1999.

[24] Michael Voss and Rudolf Eigenmann. ADAPT:
Automated De-Coupled Adaptive Program
Transformation. In Proc. of the International Conf. on

Parallel Processing, Toronto, Ontario, August 2000.

102

