Program Verification

Plus: “Program Verification with Probabilistic Inference” by Sumit Gulwani and Nebojsa Jojic
What is Program Verification?

• Simple idea: Prove that a program behaves correctly, given some specification

• What kinds of specifications?

 Invariants: precondition and postcondition

• **Hoare Triple** – \{A\} P \{B\}
What is Program Verification?

• Simple idea: Prove that a program behaves correctly, given some specification

• What kinds of specifications?

 Invariants: precondition and postcondition

• Hoare Triple – \{A\} P \{B\}
What is Program Verification?

- Simple idea: Prove that a program behaves correctly, given some specification
- What kinds of specifications?
 - Invariants: precondition and postcondition
- Hoare Triple – \{A\} P \{B\}
What is Program Verification?

• Simple idea: Prove that a program behaves correctly, given some specification

• What kinds of specifications?

 Invariants: precondition and postcondition

• **Hoare Triple** – \{A\} P \{B\}
Invariants and Program State

- Precondition and postcondition are special cases of program invariants, denoted ϕ.
- A program state σ is a mapping of variables in the program to values.
- Invariants restrict the set of valid program states at a specific point in execution.

$\sigma \models \phi$ means “σ is a valid state given ϕ” or “σ satisfies ϕ.”
Validity of Hoare Triple

• A program is correct w.r.t. invariants if the Hoare triple is valid

\[\models \{A\} \mathbf{P} \{B\} \]

“For all \(\sigma \), if \(\sigma \models A \) then \(\sigma' \) is the state after executing \(\mathbf{P} \), and \(\sigma' \models B \).”

• Not feasible to look at every state. Can we prove this another way?
Proof of Validity

- Find φs such that each individual statement + invariants forms a valid Hoare triple
- Require $pre \Rightarrow \varphi_0$ and $\varphi_4 \Rightarrow post$
- How can we find these invariants?
- One option: backwards analysis “pushes” invariants backwards past statements.

$pre: x = 0$

\[\varphi_0\]

\[\varphi_1\]

\[\varphi_3\]

while $(x < 5)$

\[\varphi_3\]

φ_4

$\varpost: x = 5$

$pre: x = 0$

φ_0

φ_1

φ_3

$x++$

φ_4

$\varpost: x = 5$
Pushing Invariants
(the first one’s always free)

• Given postcondition(s) for a statement s, find an invariant s.t. all states satisfying the invariant prior s satisfy the postcondition(s) after s

• Many possible invariants (e.g. \textbf{false} trivially suffices). Choose the \textit{weakest} one

What does it mean for an invariant to be “\textbf{weak}” or “\textbf{strong}”?
Strengths and Weaknesses

• \(\varphi' \) is weaker than \(\varphi \) if \(\varphi \Rightarrow \varphi' \)

• What does \(\varphi \Rightarrow \varphi' \) mean?
 - For all \(\sigma \models \varphi \), \(\sigma \models \varphi' \)
 - Matches our natural understanding of \(\Rightarrow \)

• Intuition: the more valid program states an invariant allows, the weaker it is.
Example

• φ_0 must be chosen so φ_1 is valid after assignment

• Many options (e.g. \{x \geq 3\}). We choose the one which has the most valid states:

 $\varphi_0: x \geq 1$

• Note, for all other φ that work, $\varphi \Rightarrow \varphi_0$

• We call φ_0 the “weakest precondition”
Backwards analysis

• Initialize all invariants to true
• Push invariants back until convergence
• Produces φ_0 at beginning of program. Must prove that precondition $\implies \varphi_0$

• This is undecidable! (Thanks, Gödel...)
• Solution: restrict domain of invariants
Underapproximation

- When domain of invariants is restricted, we must **underapproximate** invariant
 - Precondition we *want* may not be expressible in domain
 - **We must choose stronger invariant** (i.e. fewer valid states)
 - This may preclude finding proof
 - Precondition may not imply φ_0
Example

- Domain: conjunctions of inequalities (i.e. convex polyhedra)

\[\varphi_0 \]

\[\text{if } (x > 0) \]

\[\varphi_1 \]

\[\varphi_2 \]

\[\varphi_2: y \geq 2 \land y \leq 4 \]

\[\varphi_1: y \geq 0 \land y \leq 2 \]
Example

- Weakest φ_0: $((x > 0) \land \varphi_1) \lor (x \leq 0) \land \varphi_2)$
Example

\[\varphi_0: (x > 0 \land y \geq 0 \land y \leq 2) \lor (x \leq 0 \land y \geq 2 \land y \leq 4) \]

- This can’t be expressed in abstract domain! Must choose different invariant
- Underapproximation sound, but loses precision
- Some valid preconditions can’t be verified
 - e.g. \(\{x = 1 \land y = 1\} \)
Wrapping up

• Similar procedure for forward analysis
 • Initialize to false, push forward using strongest postcondition
 • Show that final $\varphi \Rightarrow$ program’s postcondition
 • May overapproximate

• Analysis produces correctness proof: $\vdash \{A\} P \{B\}$
• This is sound, but not complete:

 $\vdash \{A\} P \{B\} \Rightarrow \vdash \{A\} P \{B\}$
On to the Paper!
Program Verification: Rethought

• Recall: a program is verified when a proof is found establishing the postconditions given the preconditions

• This is a global condition

• Alternate formulation: a proof is valid when all φs are locally consistent
Local Consistency

• Consider a program point \(\pi_k \)

• Weakest precondition of successors: \(\text{pre}(\pi_k) \)

• Strongest postcondition of predecessors: \(\text{post}(\pi_k) \)

• Define \(\text{pre}(\pi_{\text{exit}}) \) to be postcondition of program and \(\text{post}(\pi_{\text{entry}}) \) to be its precondition.

• \(\varphi_k \) is **locally consistent** when:

\[
\text{post}(\pi_k) \Rightarrow \varphi_k \land \varphi_k \Rightarrow \text{pre}(\pi_k)
\]
Main Idea of Paper

- Randomly choose \(\varphi \)s until all are locally consistent!
- Deciding if \(\varphi \) is locally consistent does not require global knowledge
- But may take unbounded time
- Apply *probabilistic inference* to converge on \(\varphi \)s faster!
Quick Detour:
Need to Climb a Hill
Probabilistic Inference

• Given a probability density function (pdf) of K variables:

\[p(x_1, x_2, \ldots, x_K) \]

Can we find values for all \(x_i \)s such that \(p \) is maximized?
Gibbs Sampling

• Pick arbitrary \(x_i \) and consider \textbf{conditional distribution function} (cdf):

\[
p(x_i \mid x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_k)
\]

• Choose a value for \(x_i \) according to probabilities of cdf ("Draw a sample from cdf")

• Choose another \(x_i \) and continue

• Will converge to optimal values for variables
Analogy with Hill Climbing

• Classic AI search technique:
 • Pick a variable x_i and change it to improve target function
 • With some (small) probability, choose something other than best value for x_i
 • Avoids local maxima
Now back to your regularly scheduled program verification
Inconsistency Measure

• Define an inconsistency measure, M for invariants φ and φ'

 • Intuition: The closer φ is to being stronger than φ', the more consistent the two invariants are

 • $M(\varphi, \varphi') = 0$ iff $\varphi \Rightarrow \varphi'$ (no inconsistency)

 • As φ gets stronger, consistency increases

 • As φ' gets stronger, consistency decreases
Local Consistency as a Function

• Local inconsistency for a given \(\varphi \) at program point \(\pi_k \)

\[
L(\varphi, \pi_k) = M(\text{post}(\pi_k), \varphi) + M(\varphi, \text{pre}(\pi_k))
\]

• Note that when \(L(\varphi, \pi_k) = 0 \)

\[
\text{post}(\pi_k) \Rightarrow \varphi \land \varphi \Rightarrow \text{pre}(\pi_k)
\]

so \(\varphi \) is locally consistent
Verification as Optimization

• Now have a real-valued measure of local consistency at each program point

• Construct function f

 $$f(\varphi_0, \varphi_1, \ldots \varphi_K)$$

 using $L(\varphi_i, \pi_i)$ such that f is maximized when all φs are locally consistent

• Can apply Gibbs sampling to this function!
Operation of algorithm

• Initialize all φs to \bot

• Pick a random program point π_k whose invariant φ_k is not locally consistent

• Choose φ to minimize inconsistency at π_k
 • But with some probability, choose other φ

• Update $\varphi_k = \varphi$

• Continue until no local inconsistency
Key Algorithm Features

- Only local decisions made at any point
 - Local inconsistency only related to small number of program points
- Uses both forward and backward information
 - L involves both predecessors and successors
- Avoids precision issues of standard analyses
Example, take two

• Consider choosing appropriate invariant for φ_0

\[
\text{if } (x > 0) \quad \begin{align*}
\varphi_1 & : y \geq 0 \land y \leq 2 \\
\varphi_2 & : y \geq 2 \land y \leq 4 \\
\varphi_p & : y = 1 \land x = 1
\end{align*}
\]
Example, take two

- Consider choosing appropriate invariant for \(\varphi_0 \)

\[
\text{post}(\pi_0) = \varphi_p
\]

\[
\text{pre}(\pi_0) = ((x > 0) \land \varphi_1) \lor (x \leq 0) \land \varphi_2)
\]
Example, take two

- Consider choosing appropriate invariant for φ_0

 $\text{post}(\pi_0) = \varphi_p$

 $\text{pre}(\pi_0) = ((x > 0) \land \varphi_1) \lor (x \leq 0) \land \varphi_2$)

- Desire to minimize inconsistency with both post and pre leads to correct choice of φ_0

\[
\begin{align*}
\varphi_p & : y = 1 \land x = 1 \\
\varphi_0 & : (x > 0 \land y \geq 0 \land y \leq 2) \\
\varphi_1 & : y \geq 0 \land y \leq 2 \\
\varphi_2 & : y \geq 2 \land y \leq 4
\end{align*}
\]
Forward + Backward > Standing Still

• Essentially, analysis uses information from predecessors to “guide” its underapproximation (equivalently, uses information from successors to guide overapproximation)

• Produces better results than many existing analyses
Random Choices are Good

- Random choices

- Which program point to update: Finding the proper invariants may require very specific sequence of updates. This is almost impossible to determine normally.

- What invariant to use: Given a set of equally inconsistent choices, random selection will eventually choose the right invariant.

- Upshot: Randomness leads to proper result when there is no clear strategy.
Some Results

• Abstract domain: Boolean combinations of difference constraints with \((m \times n)\) template

 • \(m\) conjuncts, each with at most \(n\) disjuncts

• \(M(\varphi, \varphi')\) where \(\varphi'\) is the conjunction of several clauses:

\[
M(\phi, \bigwedge_{i=1}^{m} C_i) = \sum_{i=1}^{m} \frac{1}{m} \times M(\phi, C_i) \quad M(\bigvee_{j=1}^{k} D_j, C_i) = \sum_{j=1}^{k} \frac{1}{k} \times M(D_j, C_i)
\]
Test Program and Proof

\[\phi_{pre}: x = 0 \]

\[\pi_{entry} \]

\[y := 50; \]

\[\pi_1 \]

\[x < 100 \]

\[\pi_2 \]

\[\pi_{exit} \]

\[\pi_3 \]

\[x < 50 \]

\[\phi_{post}: y = 100 \]

\[x := x+1; \]

\[\pi_4 \]

\[\pi_5 \]

\[\pi_6 \]

\[x := x+1; \]

\[y := y+1; \]

\[\pi_7 \]

\[\pi_8 \]

<table>
<thead>
<tr>
<th>Program Point</th>
<th>Invariant</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi_0)</td>
<td>(x = 0)</td>
</tr>
<tr>
<td>(\pi_1)</td>
<td>((y = 50) \land (x = 0))</td>
</tr>
<tr>
<td>(\pi_2)</td>
<td>((y = 50 \lor x \geq 50) \land (y = x \lor x < 50) \land (y = 100 \lor x < 100))</td>
</tr>
<tr>
<td>(\pi_3)</td>
<td>((y = 50 \lor x \geq 50) \land (y = x \lor x < 50) \land (y = 99 \lor x < 99))</td>
</tr>
<tr>
<td>(\pi_4)</td>
<td>((y = 50) \land (x < 50))</td>
</tr>
<tr>
<td>(\pi_5)</td>
<td>((y = 50) \land (x < 51))</td>
</tr>
<tr>
<td>(\pi_6)</td>
<td>((x \geq 50) \land (y = x \lor x < 50) \land (y = 99 \lor x < 99))</td>
</tr>
<tr>
<td>(\pi_7)</td>
<td>((x > 50) \land (y = x \lor x < 51) \land (y = 100 \lor x < 100))</td>
</tr>
<tr>
<td>(\pi_8)</td>
<td>((y = 50 \lor x \geq 50) \land (y = x \lor x < 50) \land (y = 100 \lor x < 100))</td>
</tr>
<tr>
<td>(\pi_9)</td>
<td>(y = 100)</td>
</tr>
</tbody>
</table>

Existing techniques unable to verify this program!
How long does it take?

- Performed multiple runs of prover
- Histogram of tests which took a certain number of updates per π
- Black bar: all πs initialized to \perp
- Gray bar: use previously found proof on slightly modified program
Discussion

• Could there be some benefit to a more directed search? (e.g. choosing which program point to update in a more systematic way)

• Is this randomized approach useful in other domains? Can it be applied to any dataflow/abstract interpretation problem?