Modeling loop performance

Loop transformations
- Many kinds of loop transformations
- Loop permutation/interchange
- Loop blocking/tiling
- Loop reversal
- Loop fusion
- Want to understand the effects of these transformations
- How does a transformation impact performance?
- Can we predict this impact?
- Focus on a case study: matrix-matrix multiply and loop interchange

Matrix-matrix multiply
- Key kernel in linear algebra
- How much data? How much computation?
- Significant data reuse
- Important factor in performance: miss ratio
- Does miss ratio depend on problem size?
- Interesting fact: can execute loops in any order
- Does miss ratio depend on loop order?
- Can we predict miss ratio?

\[
\begin{align*}
 &\text{for } i \in [0:1:N-1] \\
 &\text{for } j \in [0:1:M-1] \\
 &\text{for } k \in [0:1:K-1] \\
 &C_{ij} = C_{ij} + A_{ik} * B_{kj} \\
\end{align*}
\]

Miss ratios
- When matrices are small, everything fits in cache
- Only get cold misses, no capacity misses
- Misses: \(3N^2/b\), accesses: \(4N^3\) (why?)
- Miss rate: \(3/(4bN)\)
- Miss rate goes down as problem size goes up!
- How long does this happen?
- Naive guess: happens as long as all three matrices fit in cache (\(N \leq \text{sqrt}(C/3)\))
- On Itanium: should happen when \(N \leq 104\)
Miss-rate regimes

- When a matrix fits entirely in cache, it experiences temporal and spatial locality
- Misses: N^3/b
- If a matrix is being walked in row-major order, it may experience spatial locality but not temporal locality
- Only get a miss 1 out of b accesses
- Misses: N^3/b
- Other times, a matrix experiences no locality
 - Every access misses
 - Misses: N^3
 - (What about a matrix that only experiences temporal locality?)

Predicting miss rates

- To predict a miss rate, we need to determine, for each matrix:
 - Whether it experiences no locality, spatial locality, or both spatial and temporal locality
 - At which point the matrix transitions between the various regimes

Stack distance

- Introduced by Mattson et al. in 1970
- The stack distance of a memory location is the number of distinct cache lines touched between successive accesses to that location
- Called stack distance because it can be calculated with a reuse stack
- Also called reuse distance

Stack distance

- We introduce two types of stack distance:
 - $d_i(M)$: the stack distance between successive accesses to a given element of M
 - $d_i(M)$: the minimum stack distance between successive accesses to distinct elements of M that lay on the same cache line
- If $C < b^d_i(M)$, matrix does not have temporal locality
- By the time we touch the same element again, we’ve brought in too many other elements into cache
- If $C < b^d_i(M)$, matrix does not have spatial locality

Computing d_t and d_s

- A is walked in row major order in inner loop
- $d_i(A) = 3$ (why?)
- Note: d_i is not dependent on N \rightarrow A always has spatial locality
- How many iterations does it take to return to the same element of A?
- What is $d_i(A)$?

Miss rates for B and C

- What is $d_i(B)$?
- What is $d_i(B)$?
- What about for C?
Putting it all together

\[
\begin{align*}
\text{miss}_{ijk,A}(N, b, C) &= \begin{cases}
N^2/b & bN + N \leq C \\
N^2/b & N^3/b \leq C \\
N^3/b & \text{otherwise}
\end{cases} \\
\text{miss}_{ijk,B}(N, b, C) &= \begin{cases}
N^2/b & (N^2 + 2N) \leq C \\
N^2/b & bN + N \leq C \\
N^3/b & \text{otherwise}
\end{cases} \\
\text{miss}_{ijk,C}(N, b, C) &= N^2/b
\end{align*}
\]

Miss ratios for other orders

\[
\begin{align*}
\text{ratio}_{ijk}(N, b, C) &= \begin{cases}
3/(4bN) & N \leq \sqrt{(C)} \\
1/(4b) & N \leq C/(b+1) \\
(b+1)/(4b) & \text{otherwise}
\end{cases} \\
\text{ratio}_{jki}(N, b, C) &= \begin{cases}
3/(4bN) & N \leq \sqrt{(C)} \\
1/(4b) & N \leq C/(2b) \\
1/2 & \text{otherwise}
\end{cases} \\
\text{ratio}_{kij}(N, b, C) &= \begin{cases}
3/(4bN) & N \leq \sqrt{(C)} \\
1/(4b) & N \leq C/2 \\
1/(2b) & \text{otherwise}
\end{cases}
\end{align*}
\]

Performance regimes

- **Large-cache regime**
 - All matrices exhibit temporal and spatial locality
 - Miss rate decreases as matrix size gets larger
 - For all orders, occurs until \(N \leq \sqrt{(C)}\)
- **Medium-cache regime**
 - One matrix starts incurring capacity misses
 - Others still enjoy locality
- **Small-cache regime**
 - Two matrices start suffering capacity misses

Predicting performance

- Itanium 2 architecture:
 - Line size: 16 doubles
 - Cache size (L2): 32K doubles
- Predicted miss rates:
 - decrease while \(N \leq 181\)
 - 1.5625% while \(N \leq 1927\)
 - 26.5625% afterwards

Miss ratios

\[
\begin{align*}
\text{miss}_{ijk}(N, b, C) &= \begin{cases}
3N^2/b & (N^2 + 2N) \leq C \\
N^3/b + 2N^2/b & bN + N \leq C \\
N^3/b & \text{otherwise}
\end{cases} \\
\text{ratio}_{ijk}(N, b, C) &= \begin{cases}
3/(4bN) & N \leq \sqrt{(C)} \\
1/(4b) & N \leq C/(b+1) \\
(b+1)/(4b) & \text{otherwise}
\end{cases}
\end{align*}
\]
Loop permutation

- Loop permutation clearly an important transformation
- Can lead to massive performance improvements
- How do we determine when loop permutation is legal?
- How do we automatically generate permuted code?
- Straightforward for some loops (like MMM)
- Much harder for other loops
- How do we know if loop permutation will be useful?
- Don’t want to change ijk loop into jki loop!
- Are there other transformations we might want to perform?
- The next set of lectures will answer these questions