Partial Redundancy Elimination (PRE)

Loop invariant code motion

- Move invariant evaluations of expressions out of loops
- Identify invariant statements, hoist them out of loop

Common subexpression elimination

- Remove redundant computations of expressions
- Compute available expressions, replace expressions that are available with already-computed expression

Partial redundancy

- An expression calculated once along one path, but twice along another
- Move code to remove partial redundancy

One optimization can cover all of these cases

- Partial redundancy elimination (PRE)
- One of the most complex dataflow analyses
- Subsumes common subexpression elimination and loop invariant code motion
- Originally proposed in 1979 by Morel and Renvoise
- Used a bi-directional dataflow analysis
- Reformulated by Knoop, Rüthing and Steffen in 1992
- Uses a backward dataflow analysis followed by a forward analysis
- We will discuss this latter formulation

Partial redundancy elimination

- High level picture:
- Consider a single expression $(b+c)$
- Find CFG nodes where expression will be used before its result is invalidated (down-safety)
- Find CFG nodes where expression has already been evaluated (up-safety)
- Use this information to determine optimal location to evaluate expression

More particulars

- No edges from branch node directly to join node
- Must insert empty node

Some particulars

- Will consider just a single expression
- The flow functions presented operate over a I-0 lattice
- Can easily extend this to multiple expressions by using a bit vector lattice
- Only one assignment per CFG node (no aliasing)
- Insert empty blocks before each join node (allowing code to be placed in block)

Down-safety

- General idea in PRE: move computation earlier in the program to produce redundancy (which can later be eliminated)
- When can an expression be placed in a node?
- If expression is calculated on all paths from the node
- Do not want to evaluate an expression unnecessarily
- If the operands of the expression are not changed before subsequent uses
- Do not want to evaluate an expression only to have to re-evaluate it

Down-safety (III)

- Called anticipatable in the Drechsler and Stadel paper
- Also the same as very busy expressions

Very-busy expressions

- An expression is very busy at a node if it is computed on every path leading from a node

$$
\begin{aligned}
I N(s) & =\operatorname{gen}(s) \cup(O U T(s)-\operatorname{kill}(s)) \\
O U T(s) & =\bigcap_{t \in \operatorname{succ}(s)} I N(t)
\end{aligned}
$$

- gen(s): the expressions calculated in a statement
- Same as used
- kill(s): the expressions whose operands are redefined in a statement
- Same as \neg transp
- $\operatorname{IN}(\mathrm{s})$ is the same as Dsafe(n)

Up-safety

- Where is it unnecessary to recompute an expression?
- If the expression has already been calculated along every incoming path
- Should just re-use results of previous computation, rather than re-computing
$U \operatorname{safe}(n)=\bigwedge_{p \in \operatorname{pred}(n)}(\operatorname{Transp}(p) \wedge(U \operatorname{sed}(p) \vee U \operatorname{safe}(p)))$
- Similar to available expressions
$I N(s)=\bigcap_{t \in \operatorname{pred}(s)} \operatorname{OUT}(t)$
$\operatorname{OUT}(s)=(I N(s) \cup \operatorname{gen}(s))-\operatorname{kill}(s)$

Why no upsafety?

- Consider the example

$$
a=b+c
$$

- Red nodes are downsafe
- Blue node is upsafe
- Shouldn't place expression in bottom node because the expression has already been calculated by the first node

Earliest downsafe node

- Equation to capture conditions
$\operatorname{Earliest}(n)=\operatorname{Dsafe}(n) \wedge$
$\bigvee_{\text {pred }(n)}(\neg \operatorname{Transp}(p) \vee(\neg \operatorname{Usafe}(p) \wedge \neg \operatorname{Dsafe}(p)))$
- Note: not recursive, so no need for fixpoint computation
- Can now transform code:
- Place expression $\mathrm{t}=\mathrm{b}+\mathrm{c}$ at all nodes marked earliest
- Replace all other uses of $b+c$ with t

Delaying placement

- May want to place expressions later than earliest
- Why? To minimize live ranges of temporaries
- Calculate Delay(n) to determine if placement can be delayed to this node
$\operatorname{Delay}(n)=\operatorname{Earliest}(n) \vee$

$$
\bigwedge_{p \in \operatorname{pred}(n)}(\neg U \operatorname{sed}(p) \wedge \operatorname{Delay}(p))
$$

- Obviously can delay if the node is earliest
- Can also delay if expression is not used in any predecessor and can be delayed to all predecessors

Latest

- Find the latest node to which we can delay placement:
$\operatorname{Latest}(n)=\operatorname{Delay}(n) \wedge(U \operatorname{sed}(n) \vee \underset{s \in \operatorname{succ}(n)}{ } \neg \operatorname{Delay}(s))$
- Note: not recursive
- What is the purpose of each clause?

A sparse version of PRE

- PRE as presented operates over the CFG
- Calculate downsafety and upsafety by looking at predecessors and successors in CFG
- Can we calculate PRE in a sparse manner, as we did for CP?
- Solution: SSAPRE
- "Partial Redundancy Elimination in SSA Form," Kennedy et al.

Factored Redundancy Graph

- Sparse representation that captures redundancy between expressions
- Intuition: like SSA form for expressions
- Problem: no notion of "uses" and "defs" for expressions
- Instead, track computations of expression E
- E is "defined" when it is computed
- E is "used" when it is computed in a redundant way
- There is a path leading from a previous computation to this one where the operands of E are not redefined

Factored Redundancy Graph

- Can construct "redundancy graph"
- Nodes for each computation of expression E
- Redundancy edge from node x to node y if computation in x is redundant with respect to y
- Factored redundancy graph is like SSA for redundancy relation
- Φ-node for each merge point where two computations of E come together
- Also insert Φ-nodes where E only computed along one incoming path. Set other operand to \perp
- Edges (called "upward edges") from a node to the computation-node or Φ node that dominates it

Central insight

- Suppose we perform optimal PRE for an expression E, inserting computations of temporary t at some sites and replacing other computations with uses of t
- Every use-def relation for t corresponds directly to a redundancy edge for E
- If a redundancy edge is not captured by a use-def edge of t, then this means either
- Redundancy could not be safely exploited or
- Expression has same value on both sides of redundancy edge (so no need to recalculate)
- Goal of SSEPRE: figure out which redundancy edges for E should turn into use-def edges for t

Constructing FRG

- Insert Φ nodes
- Just like in SSA
- Rename expressions
- A "def" in the FRG and its corresponding "uses" represents a redundancy class
- Give each redundancy class a unique name
- Perform PRE over FRG

Ф-insertion

- Insert a Φ node at the iterated dominance frontier of each occurrence of E
- Because each occurrence of E represents a potential definition of t
- Insert a Φ node at every block where there is a φ-node for one of the expression's operands
- Existence of φ-node indicates result of E has changed by this merge point, and so may need to be recalculated

Thursday, January 28, 2010

Renaming step

- Give each occurrence of E a name (similar to naming versions of variables in SSA)
- Three occurrences
- Ф-node: give occurrence a new class number
- Real (original) occurrence: if current operands of E match versions of operands in previous use of E, use appropriate class number, otherwise generate new one
- Operand of Ф-node: if current operands of E match versions of operands in previous use of E, use appropriate class number, otherwise, use \perp
- Invariant: if two occurrences of E have same class number, they produce the same result. If not, then there must be an intervening redefinition of operand, or a Φ-node

Calculating down-safety

- Trick: Insertions of computation only necessary at Φ-nodes, so only need to consider downsafety there
- a Ф-node isn't downsafe if one of two cases is true
- There is a path to the exit where Φ-node's redundancy class does not appear (which means expression is not calculated before the exit)
- There is a path from Φ-node to another Φ-node which is not downsafe and there is no real occurrence of redundancy class (which means that expression is not actually calculated before we get to a non-downsafe node)
- All downsafe Ф-nodes are valid places to calculate an expression (i.e., by evaluating expression in predecessors)

Will be available

- Ф-nodes where expression will be available after PRE has happened are labeled WillBeAvailable
- Intuition:
- WillBeAvailable is true if E can be made available (because there is some downsafe set of nodes which will make E available here) and E cannot be computed later instead

Inserting computation

- Insert additional evaluations of E to produce operands of Φ nodes where WillBeAvailable is true and:
- operand is \perp (E hasn't been calculated yet) or
- no actual computation of E on path to operand but Φ node leading to operand does not satisfy WillBeAvailable (E isn't calculated along path and E won't be available already)
- Some occurrences of E will be reloaded from temporary
- If E is dominated by a computation of E (incl. Φ nodes)
- Other occurrences of E will be saved to the temporary
- If E is the inserted operand of a Φ-node (but not other operands)
- If E dominates a reloaded E

Generating code

- Walk over FRG
- At a real occurrence of E
- If save is true, compute expression, save in new version of t
- If reload is true, load result from appropriate t (from the computation of E that dominates this occurrence)
- If insert is true, compute expression, save in new version of t
- At Φ-node
- Replace with φ-node for t

