Partial Redundancy Elimination (PRE)

Loop invariant code motion
- Move invariant evaluations of expressions out of loops
- Identify invariant statements, hoist them out of loop

Common subexpression elimination
- Remove redundant computations of expressions
- Compute available expressions, replace expressions that are available with already-computed expression

Removing total redundancies
- Both loop-invariant code motion and common subexpression elimination focus on removing total redundancy
- Focus on computations which are computed multiple times along every path
- Are these the only kinds of redundancies?

Partial redundancy
- An expression calculated once along one path, but twice along another
- Move code to remove partial redundancy

One optimization can cover all of these cases
- Partial redundancy elimination (PRE)
- One of the most complex dataflow analyses
- Subsumes common subexpression elimination and loop invariant code motion
- Originally proposed in 1979 by Morel and Renvoise
- Used a bi-directional dataflow analysis
- Reformulated by Knoop, Rüthing and Steffen in 1992
- Uses a backward dataflow analysis followed by a forward analysis
- We will discuss this latter formulation
Partial redundancy elimination

- High level picture:
 - Consider a single expression \((b + c)\)
 - Find CFG nodes where expression will be used before its result is invalidated (down-safety)
 - Find CFG nodes where expression has already been evaluated (up-safety)
 - Use this information to determine optimal location to evaluate expression

Some particulars

- Will consider just a single expression
- The flow functions presented operate over a 1-0 lattice
- Can easily extend this to multiple expressions by using a bit vector lattice
- Only one assignment per CFG node (no aliasing)
- Insert empty blocks before each join node (allowing code to be placed in block)

More particulars

- No edges from branch node directly to join node
- Must insert empty node

![Diagram](image.png)

Down-safety

- General idea in PRE: move computation earlier in the program to produce redundancy (which can later be eliminated)
- When can an expression be placed in a node?
 - If expression is calculated on all paths from the node
 - Do not want to evaluate an expression unnecessarily
 - If the operands of the expression are not changed before subsequent uses
 - Do not want to evaluate an expression only to have to re-evaluate it

Down-safety (II)

- \(Used(n)\) – true if expression \((b + c)\) is calculated in node \(n\)
- \(Transparent(n)\) – true if neither \(b\) nor \(c\) are defined in \(n\)
- Key insight: if \(transparent(n)\) and all successors of \(n\) are down-safe, then \(n\) is down-safe

\[
Dsafe(n) = Used(n) \lor (Transparent(n) \land \bigwedge_{s \in \text{succ}(n)} Dsafe(s))
\]

- This can be computed with a straightforward backward dataflow analysis
- \(Dsafe(\text{exit}) = false\)

Down-safety (III)

- Called anticipatable in the Drechsler and Stadel paper
- Also the same as very busy expressions
Very-busy expressions

- An expression is very busy at a node if it is computed on every path leading from a node.

\[
\begin{align*}
IN(s) &= \text{gen}(s) \cup (OUT(s) - \text{kill}(s)) \\
OUT(s) &= \bigcap_{t \in \text{succ}(s)} IN(t)
\end{align*}
\]

- \text{gen}(s): the expressions calculated in a statement
 - Same as used
- \text{kill}(s): the expressions whose operands are redefined in a statement
 - Same as \neg\text{transp}
- \text{IN}(s) is the same as \text{Dsafe}(n)

\[
\begin{align*}
\text{IN}(s) &= \text{gen}(s) \cup (\text{OUT}(s) - \text{kill}(s)) \\
\text{OUT}(s) &= \bigcap_{t \in \text{pred}(s)} \text{IN}(t)
\end{align*}
\]

Up-safety

- Where is it unnecessary to recompute an expression?
 - If the expression has already been calculated along every incoming path
 - Should just re-use results of previous computation, rather than re-computing

\[
\text{Usafe}(n) = \bigwedge_{p \in \text{pred}(n)} (\text{Transp}(p) \land (\text{Used}(p) \lor \text{Usafe}(p)))
\]

- Similar to available expressions

\[
\begin{align*}
\text{IN}(s) &= \bigcap_{t \in \text{pred}(s)} \text{OUT}(t) \\
\text{OUT}(s) &= (\text{IN}(s) \cup \text{gen}(s)) - \text{kill}(s)
\end{align*}
\]

Where to place expressions?

- Any downsafe node is a valid place for an expression
 - But clearly do not want to place expressions in all downsafe nodes
 - Want to minimize number of times expression is evaluated
 - Place expression in earliest downsafe position
 - Intuition
 - Definitely earliest if it's the start node
 - Earliest if a predecessor isn't transparent
 - Need to re-calculate expression along that path
 - Earliest if has a predecessor that is not downsafe
 - Predecessor isn't a valid place to place expression
 - Predecessor should also not be upsafe
 - Why?

Why no upsafety?

- Consider the example
 - Red nodes are downsafe
 - Blue node is upsafe
 - Shouldn’t place expression in bottom node because the expression has already been calculated by the first node

Earliest downsafe node

- Equation to capture conditions

\[
\text{Earliest}(n) = \text{Dsafe}(n) \land \bigvee_{p \in \text{pred}(n)} (\neg\text{Transp}(p) \lor (\neg\text{Usafe}(p) \land \neg\text{Dsafe}(p)))
\]

- Note: not recursive, so no need for fixpoint computation

- Can now transform code:
 - Place expression \(t = b + c \) at all nodes marked earliest
 - Replace all other uses of \(b + c \) with \(t \)

Delaying placement

- May want to place expressions later than earliest
 - Why? To minimize live ranges of temporaries
- Calculate \text{Delay}(n) to determine if placement can be delayed to this node

\[
\text{Delay}(n) = \text{Earliest}(n) \lor \bigwedge_{p \in \text{pred}(n)} (\neg\text{Used}(p) \land \text{Delay}(p))
\]

- Obviously can delay if the node is earliest
- Can also delay if expression is not used in any predecessor and can be delayed to all predecessors
Latest

- Find the latest node to which we can delay placement:

\[
\text{Latest}(n) = \text{Delay}(n) \land (\text{Used}(n) \lor \bigvee_{s \in \text{succ}(n)} \neg \text{Delay}(s))
\]

- Note: not recursive
- What is the purpose of each clause?

SSAPRE

A sparse version of PRE

- PRE as presented operates over the CFG
- Calculate downsafety and upsafety by looking at predecessors and successors in CFG
- Can we calculate PRE in a sparse manner, as we did for CP?
- Solution: SSAPRE
 - “Partial Redundancy Elimination in SSA Form,” Kennedy et al.

Factored Redundancy Graph

- Sparse representation that captures redundancy between expressions
- Intuition: like SSA form for expressions
- Problem: no notion of “uses” and “defs” for expressions
- Instead, track computations of expression \(E \)
- \(E \) is “defined” when it is computed
- \(E \) is “used” when it is computed in a redundant way
- There is a path leading from a previous computation to this one where the operands of \(E \) are not redefined

Factored Redundancy Graph

- Can construct “redundancy graph”
- Nodes for each computation of expression \(E \)
- Redundancy edge from node \(x \) to node \(y \) if computation in \(x \) is redundant with respect to \(y \)
- Factored redundancy graph is like SSA for redundancy relation
- \(\Phi \)-node for each merge point where two computations of \(E \) come together
- Also insert \(\Phi \)-nodes where \(E \) is only computed along one incoming path. Set other operand to \(\bot \)
- Edges (called “upward edges”) from a node to the computation-node or \(\Phi \)-node that dominates it

Central insight

- Suppose we perform optimal PRE for an expression \(E \), inserting computations of temporary \(t \) at some sites and replacing other computations with uses of \(t \)
- Every use-def relation for \(t \) corresponds directly to a redundancy edge for \(E \)
- If a redundancy edge is not captured by a use-def edge of \(t \), then this means either
 - Redundancy could not be safely exploited or
 - Expression has same value on both sides of redundancy edge (so no need to recalculate)
- Goal of SSEPRE: figure out which redundancy edges for \(E \) should turn into use-def edges for \(t \)
Constructing FRG

- Insert \(\Phi \) nodes
 - Just like in SSA
- Rename expressions
 - A “def” in the FRG and its corresponding “uses” represents a redundancy class
 - Give each redundancy class a unique name
- Perform PRE over FRG

\(\Phi \)-insertion

- Insert a \(\Phi \) node at the iterated dominance frontier of each occurrence of \(E \)
 - Because each occurrence of \(E \) represents a potential definition of \(t \)
- Insert a \(\Phi \) node at every block where there is a \(\phi \)-node for one of the expression's operands
 - Existence of \(\phi \)-node indicates result of \(E \) has changed by this merge point, and so may need to be recalculated

Renaming step

- Give each occurrence of \(E \) a name (similar to naming versions of variables in SSA)
- Three occurrences
 - \(\Phi \)-node: give occurrence a new class number
 - Real (original) occurrence: if current operands of \(E \) match versions of operands in previous use of \(E \), use appropriate class number, otherwise generate new one
 - Operand of \(\Phi \)-node: if current operands of \(E \) match versions of operands in previous use of \(E \), use appropriate class number, otherwise, use \(\perp \)
- Invariant: if two occurrences of \(E \) have same class number, they produce the same result. If not, then there must be an intervening redefinition of operand, or a \(\Phi \)-node

FRG example

\[
\begin{align*}
 a_1 &= a_2 = (a_1, a_4) \\
 a_3 &= a_4 = (a_2, a_3) \\
 s_1 &= a_1 + b_1 \\
 s_2 &= s_3 + b_1 \\
 s_4 &= s_3 + b_1 \\
\end{align*}
\]

Calculating down-safety

- Trick: Insertions of computation only necessary at \(\Phi \)-nodes, so only need to consider down-safety there
 - a \(\Phi \)-node isn’t downsafe if one of two cases is true
 - There is a path to the exit where \(\Phi \)-node’s redundancy class does not appear (which means expression is not calculated before the exit)
 - There is a path from \(\Phi \)-node to another \(\Phi \)-node which is not downsafe and there is no real occurrence of redundancy class (which means that expression is not actually calculated before we get to a non-downsafe node)
 - All downsafe \(\Phi \)-nodes are valid places to calculate an expression (i.e., by evaluating expression in predecessors)
Will be available

- Φ-nodes where expression will be available after PRE has happened are labeled WillBeAvailable
- Intuition:
 - WillBeAvailable is true if E can be made available (because there is some downsafe set of nodes which will make E available here) and E cannot be computed later instead

Inserting computation

- Insert additional evaluations of E to produce operands of Φ nodes where WillBeAvailable is true and:
 - operand is * (hasn’t been calculated yet) or
 - no actual computation of E on path to operand but Φ node leading to operand does not satisfy WillBeAvailable (E isn’t calculated along path and E won’t be available already)
 - Some occurrences of E will be reloaded from temporary
 - If E is dominated by a computation of E (incl. Φ nodes)
 - Other occurrences of E will be saved to the temporary
 - If E is the inserted operand of a Φ-node (but not other operands)
 - If E dominates a reloaded E

Generating code

- Walk over FRG
- At a real occurrence of E
 - If save is true, compute expression, save in new version of t
 - If reload is true, load result from appropriate t (from the computation of E that dominates this occurrence)
 - If insert is true, compute expression, save in new version of t
- At Φ-node
 - Replace with Φ-node for t