
Partial Redundancy
Elimination (PRE)

Thursday, January 28, 2010

Loop invariant code motion

• Move invariant evaluations of expressions out of loops

• Identify invariant statements, hoist them out of loop

a = b + c

t = b + c

a = t

Thursday, January 28, 2010

Common subexpression
elimination

• Remove redundant computations of expressions

• Compute available expressions, replace expressions that
are available with already-computed expression

a = b + c

d = b + c

t = b + c

a = t

d = t

Thursday, January 28, 2010

Removing total redundancies

• Both loop-invariant code motion and common
subexpression elimination focus on removing total
redundancy

• Focus on computations which are computed multiple
times along every path

• Are these the only kinds of redundancies?

Thursday, January 28, 2010

Partial redundancy

• An expression calculated once along one path, but twice
along another

• Move code to remove partial redundancy

a = b + c

d = b + c

t = b + c

a = t
t = b + c

d = t

Thursday, January 28, 2010

One optimization can cover all
of these cases

• Partial redundancy elimination (PRE)

• One of the most complex dataflow analyses

• Subsumes common subexpression elimination and loop
invariant code motion

• Originally proposed in 1979 by Morel and Renvoise

• Used a bi-directional dataflow analysis

• Reformulated by Knoop, Rüthing and Steffen in 1992

• Uses a backward dataflow analysis followed by a forward
analysis

• We will discuss this latter formulation

Thursday, January 28, 2010

Partial redundancy elimination

• High level picture:

• Consider a single expression (b + c)

• Find CFG nodes where expression will be used before
its result is invalidated (down-safety)

• Find CFG nodes where expression has already been
evaluated (up-safety)

• Use this information to determine optimal location to
evaluate expression

Thursday, January 28, 2010

Some particulars

• Will consider just a single expression

• The flow functions presented operate over a 1-0 lattice

• Can easily extend this to multiple expressions by using a
bit vector lattice

• Only one assignment per CFG node (no aliasing)

• Insert empty blocks before each join node (allowing code
to be placed in block)

Thursday, January 28, 2010

More particulars

• No edges from branch node directly to join node

• Must insert empty node

Thursday, January 28, 2010

Down-safety

• General idea in PRE: move computation earlier in the
program to produce redundancy (which can later be
eliminated)

• When can an expression be placed in a node?

• If expression is calculated on all paths from the node

• Do not want to evaluate an expression unnecessarily

• If the operands of the expression are not changed before
subsequent uses

• Do not want to evaluate an expression only to have
to re-evaluate it

Thursday, January 28, 2010

Down-safety (II)

• Used(n) – true if expression (b + c) is calculated in node n

• Transparent(n) – true if neither b nor c are defined in n

• Key insight: if transparent(n) and all successors of n are
down-safe, then n is down-safe

• This can be computed with a straightforward backward
dataflow analysis

• Dsafe(exit) = false

Dsafe(n) = Used(n) ∨ (Transp(n) ∧
∧

s∈succ(n)

Dsafe(s))

Thursday, January 28, 2010

Down-safety (III)

• Called anticipatable in the Drechsler and Stadel paper

• Also the same as very busy expressions

Thursday, January 28, 2010

Very-busy expressions

• An expression is very busy at a node if it is computed on
every path leading from a node

• gen(s): the expressions calculated in a statement

• Same as used

• kill(s): the expressions whose operands are redefined in a
statement

• Same as ¬transp

• IN(s) is the same as Dsafe(n)

IN(s) = gen(s) ∪ (OUT (s)− kill(s))
OUT (s) =

⋂
t∈succ(s) IN(t)

Thursday, January 28, 2010

Up-safety

• Where is it unnecessary to recompute an expression?

• If the expression has already been calculated along every
incoming path

• Should just re-use results of previous computation,
rather than re-computing

• Similar to available expressions

IN(s) =
⋂

t∈pred(s) OUT (t)
OUT (s) = (IN(s) ∪ gen(s))− kill(s)

Usafe(n) =
∧

p∈pred(n)

(Transp(p) ∧ (Used(p) ∨ Usafe(p)))

Thursday, January 28, 2010

Where to place expressions?

• Any downsafe node is a valid place for an expression

• But clearly do not want to place expressions in all downsafe nodes

• Want to minimize number of times expression is evaluated

• Place expression in earliest downsafe position

• Intuition

• Definitely earliest if it’s the start node

• Earliest if a predecessor isn’t transparent

• Need to recalculate expression along that path

• Earliest if has a predecessor that is not downsafe

• Predecessor isn’t a valid place to place expression

• Predecessor should also not be upsafe

• Why?

Thursday, January 28, 2010

Why no upsafety?

• Consider the example

• Red nodes are downsafe

• Blue node is upsafe

• Shouldn’t place expression
in bottom node because
the expression has already
been calculated by the
first node

a = b + c

d = b + c

Thursday, January 28, 2010

Earliest downsafe node

• Equation to capture conditions

• Note: not recursive, so no need for fixpoint computation

• Can now transform code:

• Place expression t = b + c at all nodes marked earliest

• Replace all other uses of b + c with t

Earliest(n) = Dsafe(n)∧∨
pred(n)(¬Transp(p) ∨ (¬Usafe(p) ∧ ¬Dsafe(p)))

Thursday, January 28, 2010

Delaying placement

• May want to place expressions later than earliest

• Why? To minimize live ranges of temporaries

• Calculate Delay(n) to determine if placement can be delayed
to this node

• Obviously can delay if the node is earliest

• Can also delay if expression is not used in any predecessor
and can be delayed to all predecessors

Delay(n) = Earliest(n) ∨
∧

p∈pred(n)

(¬Used(p) ∧Delay(p))

Thursday, January 28, 2010

Latest

• Find the latest node to which we can delay placement:

• Note: not recursive

• What is the purpose of each clause?

Latest(n) = Delay(n) ∧ (Used(n) ∨
∨

s∈succ(n)

¬Delay(s))

Thursday, January 28, 2010

SSAPRE

Thursday, January 28, 2010

A sparse version of PRE

• PRE as presented operates over the CFG

• Calculate downsafety and upsafety by looking at
predecessors and successors in CFG

• Can we calculate PRE in a sparse manner, as we did for CP?

• Solution: SSAPRE

• “Partial Redundancy Elimination in SSA Form,” Kennedy
et al.

Thursday, January 28, 2010

Factored Redundancy Graph

• Sparse representation that captures redundancy between
expressions

• Intuition: like SSA form for expressions

• Problem: no notion of “uses” and “defs” for expressions

• Instead, track computations of expression E

• E is “defined” when it is computed

• E is “used” when it is computed in a redundant way

• There is a path leading from a previous computation
to this one where the operands of E are not
redefined

Thursday, January 28, 2010

Factored Redundancy Graph

• Can construct “redundancy graph”

• Nodes for each computation of
expression E

• Redundancy edge from node x to node
y if computation in x is redundant with
respect to y

• Factored redundancy graph is like SSA for
redundancy relation

• !-node for each merge point where
two computations of E come together

• Also insert !-nodes where E only
computed along one incoming path.
Set other operand to !

• Edges (called “upward edges”) from a
node to the computation-node or !-
node that dominates it

a + b a + b

a + b a + b

a + b [1] a + b [2]

(1, 2) [3]

a + b [3] a + b [3]

Thursday, January 28, 2010

Central insight

• Suppose we perform optimal PRE for an expression E,
inserting computations of temporary t at some sites and
replacing other computations with uses of t

• Every use-def relation for t corresponds directly to a
redundancy edge for E

• If a redundancy edge is not captured by a use-def edge of t,
then this means either

• Redundancy could not be safely exploited or

• Expression has same value on both sides of redundancy
edge (so no need to recalculate)

• Goal of SSEPRE: figure out which redundancy edges for E
should turn into use-def edges for t

Thursday, January 28, 2010

Constructing FRG

• Insert ! nodes

• Just like in SSA

• Rename expressions

• A “def” in the FRG and its corresponding “uses”
represents a redundancy class

• Give each redundancy class a unique name

• Perform PRE over FRG

Thursday, January 28, 2010

!-insertion

• Insert a ! node at the iterated dominance frontier of each
occurrence of E

• Because each occurrence of E represents a potential
definition of t

• Insert a ! node at every block where there is a "-node for
one of the expression’s operands

• Existence of "-node indicates result of E has changed by
this merge point, and so may need to be recalculated

Thursday, January 28, 2010

Renaming step

• Give each occurrence of E a name (similar to naming versions of
variables in SSA)

• Three occurrences

• !-node: give occurrence a new class number

• Real (original) occurrence: if current operands of E match
versions of operands in previous use of E, use appropriate class
number, otherwise generate new one

• Operand of !-node: if current operands of E match versions of
operands in previous use of E, use appropriate class number,
otherwise, use !

• Invariant: if two occurrences of E have same class number, they
produce the same result. If not, then there must be an intervening
redefinition of operand, or a !-node

Thursday, January 28, 2010

FRG example
a_1 =

a_2 = !(a_1, a_4)

... = a_2 + b_1
a_3 =

a_4 = !(a_2, a_3)
... = a_4 + b _1

Thursday, January 28, 2010

FRG example
a_1 =

[1] (2 , !)

a_2 = (a_1, a_4)

... = a_2 + b_1 [1]
a_3 =

[2] (1 , !)

a_4 = (a_2, a_3)
... = a_4 + b _1 [2]

Thursday, January 28, 2010

Calculating down-safety

• Trick: Insertions of computation only necessary at !-nodes,
so only need to consider downsafety there

• a !-node isn’t downsafe if one of two cases is true

• There is a path to the exit where !-node’s redundancy
class does not appear (which means expression is not
calculated before the exit)

• There is a path from !-node to another !-node which is
not downsafe and there is no real occurrence of
redundancy class (which means that expression is not
actually calculated before we get to a non-downsafe node)

• All downsafe !-nodes are valid places to calculate an
expression (i.e., by evaluating expression in predecessors)

Thursday, January 28, 2010

Will be available

• !-nodes where expression will be available after PRE has
happened are labeled WillBeAvailable

• Intuition:

• WillBeAvailable is true if E can be made available
(because there is some downsafe set of nodes which will
make E available here) and E cannot be computed later
instead

Thursday, January 28, 2010

Inserting computation

• Insert additional evaluations of E to produce operands of ! nodes
where WillBeAvailable is true and:

• operand is ! (E hasn’t been calculated yet) or

• no actual computation of E on path to operand but ! node
leading to operand does not satisfy WillBeAvailable (E isn’t
calculated along path and E won’t be available already)

• Some occurrences of E will be reloaded from temporary

• If E is dominated by a computation of E (incl. ! nodes)

• Other occurrences of E will be saved to the temporary

• If E is the inserted operand of a !-node (but not other operands)

• If E dominates a reloaded E

Thursday, January 28, 2010

Generating code

• Walk over FRG

• At a real occurrence of E

• If save is true, compute expression, save in new version
of t

• If reload is true, load result from appropriate t (from the
computation of E that dominates this occurrence)

• If insert is true, compute expression, save in new version
of t

• At !-node

• Replace with "-node for t

Thursday, January 28, 2010

a_1 =

[1] !(2 , !)

a_2 = "(a_1, a_4)

... = a_2 + b_1 [1]
a_3 =

[2] !(1 , !)

a_4 = "(a_2, a_3)
... = a_4 + b _1 [2]

a_1 =
[3] = ...

[1] !(2 , 3)
a_2 = "(a_1, a_4)

... = a_2 + b_1 [1]
a_3 =
[4] = ...

[2] !(1 , 4)
a_4 = "(a_2, a_3)
... = a_4 + b _1 [2]

a_1 =
t_1 = a_1 + b_1

t_2 = !(t_4, t_1)
a_2 = !(a_1, a_4)

t_2
a_3 =
t_3 = a_3 + b_1

t_4 = !(t_2, t_3)
a_4 = !(a_2, a_3)
... = t_4

Thursday, January 28, 2010

