Announcements

• I’m back!

• Office Hours
 • 11:30–12:30, Monday and Wednesday
 • Also by appointment
 • EE 324A
Static Single Assignment (SSA)
Use-def chains

- Structure which shows, for each use of a variable, which definitions could reach it

- A use may be reached by multiple definitions

- Example:
 - \(a_5 \rightarrow \)
 - \(b_5 \rightarrow \)
 - \(a_8 \rightarrow \)

- Can also build def-use chains

```plaintext
1: a = 7;
2: b = 2;
3: if (c)
4:   b = 8;
5:   d = a + b;
6: a = 9;
7: while (...) {
8:   d = a + 1;
9:   a = a + 1;
10:}
```
Calculating use-def chains

• Easy!
 • Perform a reaching-definitions dataflow analysis
 • At each variable use, look for definitions of that variable that reach the statement
 • Construct use-def chains
Why use-def chains?

- Capture dependence information
 - Use-def chains represent flow of data through program
- Can speed up optimizations
 - Consider constant propagation
Sparse constant propagation

- Consider what happens when a variable gets updated during constant propagation using worklist algorithm
 - e.g., process $x = 2$; x moves from $\perp \rightarrow 2$
- Put all successors of CFG node into worklist
- But what if x isn’t used in immediate successor nodes?
 - Spend a lot of time propagating data and processing nodes for no reason
- Update of x only matters at last node
Using use-def chains

- Instead of propagating data along CFG edges, what if we just propagate data along use-def edges?
 - When \(x \) is updated, propagate data directly to last node, bypassing all the intermediate nodes!
- Can we run same CP algorithm?
 - Originally initialize with just start node. No uses of definitions → Algorithm terminates early
 - Need to change initialization: Add all statements with constant RHS to initial worklist
- Upshot: original CP algorithm \(O(EV^2) \); sparse algorithm \(O(N^2V) \)
 - \(N \) is number of CFG nodes
Problems with u/d chains

- Can be very expensive to represent

- CFG with N nodes can have N^2 u/d chains

- Each use can have multiple definitions associated with it

- Can make it difficult to keep u/d information accurate as optimizations are performed and code is transformed

- Multiple defs can make optimizations harder (will see this when we return to CP)
Solution: SSA

- Static Single Assignment form
- Compact representation of use/def information
- Key feature: No variable is defined more than once (single assignment)
 - Eliminates anti/output dependences → more optimizations possible
- SSA enables more efficient versions of optimizations
- Used in many compilers
 - e.g., LLVM
SSA for straight line code

- Each assignment to a variable is given a unique name
- All of the uses reached by that assignment are renamed to match
- Easy for straight line code:

```plaintext
a = 4;
... = a + 5;
a = 7;
... = a + 6;
```

```plaintext
a_1 = 4;
... = a_1 + 5;
a_2 = 7;
... = a_2 + 6;
```
SSA for control flow

- Easy when only one definition reaches a use
- What do we do for code with branches/loops?
 - Multiple definitions reach a single use

```plaintext
define x = 5
if ( ... )
define x = 7
y = x
```
\(\varphi \) functions

- Dummy function that represents merging of two values
- Part of IR, but not actually emitted as code
- Inserted at merge points to combine two definitions into one

\[
\begin{align*}
\text{if } (\ldots) \\
x_{-1} &= 5 \\
x_{-2} &= 7 \\
x_{-3} &= (x_{-1}, x_{-2}) \\
y &= x_{-3}
\end{align*}
\]
Loops

- How would you put this loop into SSA form?
Loops

- How would you put this loop into SSA form?
Converting to SSA form

- Two steps to convert a program to SSA form
 - \(\varphi \) function placement
 - Where do we place the \(\varphi \) functions?
 - Variable renaming
 - Rename variable definitions and uses to satisfy single-assignment property
φ function placement

• Need to place φ functions wherever two definitions of a variable might merge

• Safe: place a φ function at every join point in CFG

• Clearly too many functions
φ function placement

• Condition:

 • If \(\exists \) CFG nodes X, Y, Z such that there are paths \(X \rightarrow^+ Z \) and \(Y \rightarrow^+ Z \) which converge at Z, and X and Y contain assignments to some variable \(v \) (in the original program), then a \(φ \)-node must be inserted in Z (in the new program)

• Options:

 • minimal: As few \(φ \)-nodes as possible subject to condition

 • Briggs-minimal: Do not insert \(φ \)-nodes if \(V \) is not live across basic blocks

 • pruned: Remove “dead” \(φ \)-nodes
Minimal placement

• Condition:

 • If \exists CFG nodes X, Y, Z such that there are paths $X \rightarrow^+ Z$ and $Y \rightarrow^+ Z$ which *converge* at Z, and X and Y contain assignments to some variable v (in the original program), then a φ-node must be inserted in Z (in the new program)

• Only want to place φ-nodes wherever the placement condition is true

 • Will be at join points, but not all points

 • Want to trace paths from definitions and find *earliest* place those paths merge.
Example

Red nodes represent nodes which satisfy condition
Finding minimal placement

- Could trace every path from assignments to find convergence points
 - This is *expensive*!
- Intuition: what if, for each assignment, we can find the set of nodes which *could* result in a convergence of definitions?
 - Then only need to place φ-nodes there!
Detour: dominance

- Recall some terms from CFG analysis
- A node X dominates a node Y if X appears on all paths from entry to Y
 - $X \in \text{DOM}(Y)$
- A node X strictly dominates Y if $X \text{ DOM} Y$ and $X \neq Y$
 - $X \in \text{DOM}!(Y)$
- A node X is the immediate dominator of Y if X is the closest dominator of Y
 - $X = \text{IDOM}(Y)$
 - Note: $X = \text{IDOM}(Y) \Rightarrow \forall X' \in \text{DOM}(Y), X' \in \text{DOM}(X)$
Dominance trees

- *Dominance tree* induced by IDOM
- If $X = \text{IDOM}(Y)$, X is Y’s parent in dominance tree
Dominance trees

- Dominance tree induced by IDOM
- If $X = \text{IDOM}(Y)$, X is Y’s parent in dominance tree
Dominance frontier

- The *dominance frontier* of a node X is the set of nodes $DF(X)$ such that for all $Y \in DF(X)$, X dominates a *predecessor* of Y, but does not *strictly* dominate Y.

- What are the dominance frontiers for the nodes in this CFG?
Finding dominance frontiers

• Start by building dominance tree (see algorithm in Cooper et al.), then run algorithm:

\[
\text{forall } v \\
\quad \text{if (number of predecessors of } v \geq 2) \text{ then} \\
\quad \quad \text{forall predecessors } p \text{ of } v \\
\quad \quad \quad \text{ runner } = p \\
\quad \quad \quad \quad \text{while (runner } \neq \text{ IDOM}(v)) \\
\quad \quad \quad \quad \quad \text{add } v \text{ to DF(runner)} \\
\quad \quad \quad \quad \quad \text{runner } = \text{ IDOM}(\text{runner}) \\
\]

• Intuition:

• \(v \) can only be in a DF if it has 2 or more preds
• Predecessors must have \(v \) in DF, unless they dominate \(v \) (by definition).
• Dominators of predecessors must have \(v \) in DF, unless they dominate \(v \)
Example
Iterated dominance frontier

\[DF(\mathcal{L}) = \bigcup_{X \in \mathcal{L}} DF(X) \]

\[DF^+(\mathcal{L}) = \text{limit of sequence} \]
\[DF_1 = DF(\mathcal{L}) \]
\[DF_{i+1} = DF(\mathcal{L} \cup DF_i) \]

Theorem:
The set of nodes that need \(\varphi \)-nodes for a variable \(v \)
is the iterated dominance frontier \(DF^+(\mathcal{L}) \) where \(\mathcal{L} \) is
the set of nodes with assignments to \(v \)
Inserting φ-nodes

\begin{verbatim}
foreach variable v
 HasAlready = \{\}
 EverOnWorklist = \{\}
 Worklist = \{\}
foreach node X containing assignment to v
 EverOnWorklist = EverOnWorklist \cup \{X\}
 Worklist = Worklist \cup \{X\}
while Worklist not empty
 remove X from Worklist
 foreach $Y \in$ DF(X)
 if $Y \not\in$ HasAlready
 insert φ-node for v at \{Y\}
 HasAlready = HasAlready \cup \{Y\}
 if $Y \not\in$ EverOnWorklist
 Worklist = Worklist \cup \{Y\}
 EverOnWorklist = EverOnWorklist \cup \{Y\}
\end{verbatim}
Converting to SSA form

• Two steps to convert a program to SSA form
 • φ function placement
 • Where do we place the φ functions?
 • Variable renaming
 • Rename variable definitions and uses to satisfy single-assignment property
Variable renaming

- At this point, φ-nodes are of the form $v = \varphi(v, v)$
- Need to rename each variable to satisfy SSA criteria
- High level idea:
 - At every φ-node, rename “target” of φ, then replace all names in the block with new name
 - Change names in successor blocks to match new name, unless successor block has a φ-node
 - In which case, generate new name for target, and continue
Algorithms

Stacks: an array of stacks, one for each variable
Counters: an array of counters, one for each variable

Procedure **Rename**(Block X)

- **if** X visited, **return**
- **foreach** ϕ-node P in X
 - **GenName**(LHS(P))
- **foreach** statement A in X
 - **foreach** Variable v ∈ RHS(A)
 - replace v with v_i where $i = \text{Top}(\text{Stacks}[v])$
 - **foreach** Variable v ∈ LHS(A) **GenName**(v)
- **foreach** Y ∈ successors(X)
 - **foreach** ϕ-node P in Y
 - replace operands of P according to vars in X
- **foreach** Y ∈ successors(X) **Rename**(Y)
- **foreach** ϕ-node or statement A in X
 - **foreach** v_i ∈ LHS(A)
 - Pop(Stacks[v])

Procedure **GenName**(Variable v)

- $i = \text{Counters}[v]++$
- replace v with v_i
- Push i onto Stacks[v]

Start by calling **Rename**(Entry)
Pruning φ-nodes

- Can eliminate φ-nodes that occur because of variables that are not live across basic blocks
 - These “block local” variables won’t be used later, so do not need to be merged
- Can eliminate φ-nodes that are dead
 - Merged variable isn’t used again
Translating out of SSA form

• Cannot just remove φ-nodes and restore variables to original names

• Can mess up optimizations that assume variables use separate storage

while (...) do
 read v
 w = v + w
 v = 6
 w = v + w
end

while (...) do
 $w_3 = \varphi(w_0, w_2)$
 $v_3 = \varphi(v_0, v_2)$
 read v_1
 $w_1 = v_1 + w_3$
 $v_2 = 6$
 $w_2 = v_2 + w_1$
end

$v_2 = 6$

while (...) do
 $w_3 = \varphi(w_0, w_2)$
 $v_3 = \varphi(v_0, v_2)$
 read v_1
 $w_1 = v_1 + w_3$
 $w_2 = v_2 + w_1$
Translating out of SSA form

- Eliminate φ-nodes
- Replace with copies in predecessor nodes
- But doesn’t this add a lot of extra copies?

Solution:
- Graph coloring with copy/move coalescing!
- Allows most renamed variables to revert to original name by coalescing with each other
- If not legal, graph coloring will prevent coalescing
Returning to CP

Use-def chains: 16
In SSA form: place φ node in middle
Problems with u/d CP

- What happens if we know which way a branch will resolve?
 - Do not need to propagate information from that branch
 - Easy to do with CFGs
- What does this mean when we’re using u/d chains?
 - Can be very hard to tell which definitions to ignore!
Use/def CP with SSA

- SSA form shortens u/d chains
- Chains terminate at merge points, rather than crossing them
- Can simply ignore information merged from un-taken branches
- Much easier to account for irrelevant information
- Complexity: $O(EV)$