
�
�

�
�

Transformations and Dependences

�

�
�

�
�

Recall�

� Polyhedral algebra tools for

� determining emptiness of convex polyhedra

� enumerating integers in such a polyhedron�

� Central ideas�

� reduction of matrices to echelon form by unimodular

column operations�

� Fourier�Motzkin elimination

Let us use these tools to determine �i� legality of permutation and

�ii� generation of transformed code�
�

�
�

�
�

Organization of lecture�

� Using ILP to generate transformed code for loop permutation

� What is a dependence�

� Dependence abstractions �summaries�� distance	direction

� Computing dependence abstractions using ILP

� How to avoid calling the ILP calculator�

� ZIV�SIV subscripts and separability

� GCD test

� Caching of results

�

�
�

�
�

Questions:
 (1) How do we generate new loop bounds?
 (2) How do we modify the loop body?
 (3) How do we know when loop interchange is legal?

DO I = 1, N

X(I,J) = 5

DO U = 1, N

X(V,U) = 5

0 1
1 0

I
J

= U
V

DO J = I,N DO V = 1,U

Loop permutation can be modeled as a linear transformation on iteration space:

I

J

U

V

Permutation of loops in n-loop nest: nxn permutation matrix P

P I = U

�

�
�

�
�

Code Generation for Transformed Loop Nest

Two problems� �
� Loop bounds ��� Change of variables in body

�
� New bounds�

Original bounds� A � I � b where A is in echelon form

Transformation� U � T � I

Note� for loop permutation� T is a permutation matrix

�� inverse is integer matrix

So bounds on U can be written as A � T��U � b

Perform Fourier�Motzkin elimination on this system of

inequalities to obtain bounds on U �

��� Change of variables�

I � T��U

Replace old variables by new using this formula

�

�
�

�
�

Example�

-1 0

 1 -1
 0 1

 1 0
0 1
1 0

< -1
N
0
N

U
V

I

J

U

V

DO I = 1, N

X(I,J) = 5

DO U = 1, N

X(V,U) = 5

0 1
1 0

I
J

= U
V

DO J = I,N DO V = 1,U

-1 0

 1 -1
 0 1

J
I < -1

 1 0 N
0
N

 elimination
Fourier-Motzkin

�

�
�

�
�

< -1
N
0
N

U
V

<

< <

< <

-1 0

 1 -1
 0 1

 1 0
0 1
1 0

 -1
N
0
N

U
V

-1 1
 1 0

 0 1
 0 -1

Projecting out V from system gives

U 1 N

Bounds for V are

min(U,N) 1 V

These are loop bounds given by FM elimination.
With a little extra work, we can simplify the upper bound of V to U.

�

�
�

�
�

Key points�

� Loop bounds determination in transformed code is mechanical�

� Polyhedral algebra technology can handle very general bounds

with max
s in lower bounds and min
s in upper bounds�

� No need for pattern matching etc for triangular bounds and the

like�

�

�
�

�
�

When is permutation legal�

Position so far� if there is a dependence between iterations� then

permutation is illegal�

DO I � �� ���

DO J � �� ���

X��I�J� � 				 X��I
��J
��			

Is there a �ow dependence between di�erent iterations�

� � Iw� Ir� Jw� Jr � ���

�Iw� Jw� � �Ir� Jr�

	Iw
 	Ir � �

Jw
 Jr � �

ILP decision problem� is there an integer in union of two convex

polyhedra�

No
� permutation is legal�

	

�
�

�
�

Permutation is legal only if dependence does not exist� too

simplistic�

Example�

DO I � �� ���

DO J � �� ���

X�I�J� � 				 X�I
��J
��			

Only dependence is �ow dependence�

� � Iw� Jw� Ir� Jr � ���

�Iw� Jw� � �Ir� Jr�

Iw
 Ir � �

Jw
 Jr � �

ILP problem has solution� for example
 �Iw
 �� Jw
 �� Ir
 	� Jr
 	�

Dependence exists but loop interchange is legal�

�

�
�

�
�

Point� Existence of dependence is a very �coarse� criterion to

determine if interchange is legal�

Additional information about dependence may let us conclude that

a transformation is legal�

To get a handle on all this� let is �rst de�ne dependence precisely�

��

�
�

�
�

Consider single loop case �rst�

DO I � �� ���

X��I��� � 				X�I�			

Flow dependences between iterations�

Iteration � writes to X�
� which is read by iteration
	

Iteration � writes to X��� which is read by iteration �	

				

Iteration �� writes to X���� which is read by iteration ��	

If we ignore the array locations and just think about dependence

between iterations
 we can draw this geometrically as follows�

0 1 2 3 4 5 9 106 7 8
I

Dependence arrows always go forward in iteration space� �eg� there

cannot be a dependence from iteration � to iteration 	�

��

�
�

�
�

Intuitively� dependence arrows tell us constraints on

transformations�

0 1 2 3 4 5 9 106 7 8
I

Suppose a transformed program does iteration � before iteration
�

OK�

Transformed program does iteration � before iteration
� Illegal�

��

�
�

�
�

Formal view of a dependence� relation between points in the

iteration space�

DO I � �� ���

X��I��� � 				X�I�			

Flow dependence
 f�Iw� 	Iw � ��j� � Iw � ��g

�Note� this is a convex set�

0 1 2 3 4 5 9 106 7 8
I

In the spirit of dependence
 we will often write this as follows�

Flow dependence
 f�Iw � 	Iw � ��j� � Iw � ��g

��

�
�

�
�

�D loop nest

DO �� I � �����

DO �� J � �����

�� X�I�J� � X�I
��J��� � �

Dependence� relation of the form �I�� J��� �I�� J���

Picture in iteration space�

��
��
��
��

��
��
��
��

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���� ���� ������ ���� ���� ������

��
��
��
��

��
��
��
��

���
���
���
���

��
��
��
��

���� ������

��
��
��
��

��
��
��
��

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

����������������

I

J

source target

(I1,J1) (I2,J2)

1 2 3 54

1

2

3

4

5

��

�
�

�
�

Legal and illegal dependence arrows�

J

illegal dependence arrows

legal dependence arrows

If �A� B� is a dependence arrow� then A must be

lexicographically less than or equal to B�

��

�
�

�
�

Dependence relation can be computed using ILP calculator

DO �� I � �����

DO �� J � �����

�� X�I�J� � X�I
��J��� � �

Flow dependence constraints� �Iw� Jw�� �Ir � Jr�

� � � Iw� Ir� Jw� Jr � ���

� �Iw� Jw� � �Ir � Jr�

� Iw
 Ir � �

� Jw
 Jr � �

Use ILP calculator to determine the following relation�

D
 f�Iw� Jw�� �Iw � �� Jw � ��j�� � Iw � ��� � �	 � Jw � ����g

��

�
�

�
�

If we have the full dependence relation� can we determine when

permutation is legal�

Let us look at geometric picture to understand when permutation

is legal�

DO I = 1, N
 DO J = 1,N
 X(I,J) = X(I-1,J-1)......

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�� ��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�� ��

���� ���� ���� �� �
�
�
�

�
�
�
�

���� ���� ���� �� �
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�� ��

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

���� ��

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

���� ��

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

���� ��

�� �� ���� �� ��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

���� ��

I

J

1 2 3 54

1

2

3

4

5

I

J

1 2 3 54

1

2

3

4

5

DO I = 1,N
 DO J = 1,N
 X(I,J) = X(I-1,J+1)......

Permutation is illegal Permutation is legal

Intuitively� if an iteration is dependent on an iteration in its �upper

left hand corner�� permutation is illegal� How do we express this

formally�

��

�
�

�
�

Legality of permutation can be framed as an ILP problem�

DO �� I � �����

DO �� J � �����

�� X�I�J� � X�I
��J��� � �

Permutation is illegal if there exist iterations �I�� J��� �I�� J�� in source

program such that

� ��I�� J��� �I�� J��� � D �dependent iterations�

� �J�� I�� � �J�� I�� �iterations done in wrong order in transformed

program�

This can obviously be phrased as an ILP problem and solved�

One solution� �I�� J��
 ��� 	�
 �I�� J��
 �	� ���

Interchange is illegal�

�	

�
�

�
�

General picture�

Permutation is co�ordinate transformation� U � P � I where P is a

permutation matrix�

Conditions for legality of transformation�

For each dependence D in loop nest� check that there do not exist

iterations I� and I� such that

�I
�

� I
�
� � D

P �I
�
� � P �I
�
�

First condition� dependent iterations

Second condition� iterations are done in wrong order in

transformed program�

Legality of permutation can be determined by solving a bunch of

ILP problems�

�

�
�

�
�

Problems with using full dependence sets�

� Expensive �time	space� to compute full relations

� Need to solve ILP problems again to determine legality of

permutation

� Symbolic loop bounds �
N
� require parameterized sets �
N
 is

unbound variable in de�nition of dependence set�

Dependence abstractions� summary of dependence set D

� less information than full set of tuples in D

� more information than non�emptiness of D

� intuitively� �as much as is needed for transformations of

interest�

��

�
�

�
�

Distance�direction� Summarize dependence relation

Look at dependence relation from earlier slides�

f�
� �� � ���
�� �
� �� � ��� ��� ����� �� � ���
����g

������ ���� ���� ������ ���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

������ ������

������ ���� ���� ������ ���
���
���
���

���
���
���
���

������ ���� ���� ������ ���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

������ ������

���
���
���
���

���
���
���
���

I

J

source target

(I1,J1) (I2,J2)

1 2 3 54

1

2

3

4

5

Di�erence between dependent iterations � �
��
�� That is�

�Iw� Jw� � �Ir� Jr� � dependence relation� implies

Ir � Iw �

Jr � Jw � �

We will say that the distance vector is �
��
��

Note� From distance vector� we can easily recover the full relation�

In this case� distance vector is an exact summary of relation�

��

�
�

�
�

Set of dependent iterations usually is represented by many distance

vectors�

DO I � �� ���

X��I��� � 				X�I�			

Flow dependence
 f�Iw � 	Iw � ��j� � Iw � ��g

0 1 2 3 4 5 9 106 7 8
I

Distance vectors� f�	�
 ���
 ���
 ����
 ����g

Distance vectors can obviously never be negative �if ���� was a distance

vector for some dependence
 there is an iteration I� that depends on

iteration I� � � which is impossible��
��

�
�

�
�

Distance vectors are an approximation of a dependence�

�intuitively� we know the arrows but we do not know their sources��

Example� D � f�Iw� �Iw �
�j
 � Iw � ��g

Distance vectors� f���� ���� ���� ���� � ����g

D� � f�I�� I��j�
 � I� � ��� � ��� � I�� � I� � ��I� �
�g is a

�convex� superset of D that has the same distance vectors�

0 1 2 3 4 5 9 106 7 8
I

0 1 2 3 4 5 9 106 7 8
I

Both dependences have same set of distance vectors

��

�
�

�
�

Computing distance vectors for a dependence

DO I � �� ���

X��I��� � 				X�I�			

Flow dependence�

� � Iw � Ir � ���

	Iw � �
 Ir

Flow dependence
 f�Iw� 	Iw � ��j� � Iw � ��g

Computing distance vectors without computing dependence set�

Introduce a new variable �
 Ir � Iw and project onto �

� � Iw � Ir � ���

	Iw � �
 Ir

�
 Ir � Iw

Solution� �
 fdj	 � d � ��g

��

�
�

�
�

Example��D loop nest

DO �� I � �����

DO �� J � �����

�� X�I�J� � X�I
��J��� � �

Flow dependence constraints� �Iw� Jw�� �Ir � Jr�

Distance vector� �������
 �Ir � Iw� Jr � Jw�

� � � Iw� Ir� Jw� Jr � ���

� �Iw� Jw� � �Ir � Jr�

� Iw
 Ir � �

� Jw
 Jr � �

� �������
 �Ir � Iw� Jr � Jw�

Solution� �������
 ������

��

�
�

�
�

General approach to computing distance vectors�

Set of distance vectors generated from a dependence is itself a

polyhedral set�

Computing distance vectors without computing dependence set�

To the linear system representing the existence of the dependence�

add new variables corresponding to the entries in the distance

vector and project onto these variables�

��

�
�

�
�

Reality check�

In general� dependence is some complicated convex set�

In general� distance vectors of a dependence are also some

complicated convex set�

What is the point of �summarizing� one complicated set by

another equally complicated set���

Answer� We use distance vector summary of a dependence only

when dependence can be summarized by a single distance vector

�called a uniform dependence��

How do we summarize dependence when we do not have a uniform

dependence� Answer� use direction vectors�

��

�
�

�
�

Digression� When is a dependence a uniform dependence�

That is� when can a dependence be summarized by a single

distance vector�

Conjecture� subscripts are of the following form

DO I
DO J

X�I�a�J�b� � ���� X�I�c�J�d����

Check� �ow dependence equations are

Iw � a � Ir � c

Jw � b � Jr � d

So distance vector is �a� c� b� d��

Let us introduce some terminology to make the conjecture precise�

�	

�
�

�
�

ZIV�SIV�MIV Subscripts

Consider equalities for following dependence problem�

DO �	 I

DO �	 J

DO �	 K

�	 A�
�I���J� � ���A�N�I�K� � c

Subscripts in
st dimension of A do not involve loop variables

	 subscripts called Zero Index Variable �ZIV� subscripts

Subscripts in �nd dimension of A involve only one loop variable �I�

	 subscripts called Single Index Variable �SIV� subscripts

Subscripts in �rd dimension of A involve many loop variables �J�K�

	 subscripts called Multiple Index Variable �MIV� subscripts

�

�
�

�
�

Separable SIV Subscript

DO �	 I

DO �	 J

DO �	 K

�	 A�I�J�J� � ���A�I�J�K� � c

Subscripts in both the �rst and second dimensions are SIV�

However� index variable in �rst subscript �I� does not appear in

any other dimension

	 separable SIV subscript

Second subscript is also SIV� but its index variable J appears in

�rd dimension as well�

	 coupled SIV subscript
��

�
�

�
�

Conjecture� Consider the �ow dependence in following program

DO I
DO J

X�			�			�			� � 			 X�			�			�			�

Conjecture� If �ow dependence exists
 it can be summarized by a

distance vector i� each subscript is a separable SIV subscript�

This conjecture is false�

��

�
�

�
�

DO I
DO J

X�I��J
��
I�J��� � 			 X�I��J�
I�J�

Both subscripts are MIV� Dependence equations�

Ir � Iw � 	Jr � 	Jw
 ��

�Ir � �Iw � Jr � Jw
 	

Easy to verify that distance vector is ��
����

��

�
�

�
�

Another example�

DO I
DO J

X�I
J���I�J�I�J� � 			X�I
J�
I
�J�
I��J�			

Here
 subscripts are MIV and the subscripts of reads and writes look

quite di�erent�

Dependence equations�
	 � Iw � Jw
 Ir � Jr

Iw � Jw
 �Ir � 	Jr

Iw � Jw
 �Ir � �Jr

Easy to verify that dependence distance is ��
����

��

�
�

�
�

Modi�ed conjecture� Consider the program

DO I
X�A�I � a� � 			 X�B�I � b� 		

Here
 I is a vector
 A and B are matrices etc�

If A
 B
 columns of A �and of B� are linearly independent and

dependence exists
 then dependence is uniform dependence�

Proof� Equality system is A � Iw � a
 B � Ir � b�

A � Iw � a
 B � Ir � b

B � �Ir � Iw�
 a� b�sinceA
 B�

B ��
 a� b��isdistancevector�

Since null space of B contains only the � vector
 the equation has a

unique solution if it has a solution at all�

��

�
�

�
�

Two caveats

� You must check inequalities to make sure dependence actually

exists�

DO I � �� ���

X�I����� � 			X�I�

It is incorrect to conclude that distance vector is ����� since no

dependence exists�

� As we will see later
 separable SIV subscripts are very common�

MIV is very rare�

End of digression�

��

�
�

�
�

Direction vectors Example�

DO �	 I � ���		

�	 X��I��� � X�I� � �

Flow dependence equation� �Iw �
 � Ir�

Dependence relation� f�
 � ��� �� � ��� �� � ��� ���g �
��

No �xed distance between dependent iterations�

But all distances are �ve� so use direction vector instead�

Here� direction � ����

Intuition� ��� direction � some distances in range �
�
�

In general� direction � ��� or ��� or ����

Also written by some authors as ���� ���� or ����

Direction vectors are not exact�

�eg��if we try to recover dependence relation from direction ���� we

get bigger relation than �
��

f�
 � ��� �
 � ��� ���� �
 �
���� �� � ��� �� � ��� ���g

��

�
�

�
�

Directions for Nested Loops

Assume loop nest is �I�J��

If �I�� J�� � �I�� J�� � dependence relation� then

Distance � �I� � I�� J� � J��

Direction � �sign�I� � I��� sign�J� � J���

(0,+)

(0,0)
(+,-)

(+,+)

(+,0)

I

J

 (+,+)

 (+,0)
 (+,-)

 (0,+)
 (0,0)

 (0,-) (-,+)
 (-,0)
 (-,-)

The following direction vectors cannot exist:

Legal direction vectors:

Valid dependence vectors are lexicographically positive�

��

�
�

�
�

How to compute Directions� Use IP engine

DO �	 I � �� �		

X�f�I�� � ���

�	 � ���X�g�I����

Focus on �ow dependences�

f�Iw� � g�Ir�

 � Iw �
��

 � Ir �
��

First� use inequalities shown above to test if dependence exists in

any direction �called ��� direction��

If IP engine says there are no solutions� no dependence�

Otherwise� determine the direction�s� of dependence�

Test for direction ���� add inequality Iw � Ir

Test for direction ���� add inequality Iw � Ir

In a single loop� direction ��� cannot occur�

�	

�
�

�
�

Computing Directions� Nested Loops

Same idea as single loop� hierarchical testing

(+ , +) (+, -)(+ , 0) (0 , +) (0 , 0)

(+ , *) (0 , *)

(* , *)

(0 , -)

(- , *) illegal

directions

Figure
� Hierarchical Testing for Nested Loop

Key ideas�

�
� Re�ne direction vectors top down�

�eg��no dependence in ��� �� direction

	 no need to do more tests�

��� Do not test for impossible directions like ��� ���

�

�
�

�
�

It is also possible to compute direction vectors by projecting on the

variables in the �� the iteration di�erence vector�

Similar to what we did for distance vectors�

Left as an exercise for you�

��

�
�

�
�

Big hairy example� Compute dependences for following program�

DO I � ��N

DO J � ��N

X�I�J� � 			X�I�I�			

I

J

flow dependence

anti-dependence

0
+

0
0

0
+

anti flow
��

�
�

�
�

Linear system for anti�dependence�
Iw � Ir

Jw � Ir

 � Iw� Ir� Jw� Jr � N

�Ir� Jr� � �Iw� Jw�

�
 � �Iw � Ir�

�� � �Jw � Jr�

Projecting onto �
 and ��� we get
�
 � �

� � �� � �N �
�

So directions for anti�dependence are

	 and 	

	 �

��

�
�

�
�

Similarly� you can compute direction for �ow dependence

	
�

and also show that no output dependence exists�

��

�
�

�
�

Dependence matrix for a loop nest

Matrix containing all dependence distance	direction vectors for all

dependences of loop nest�

In our example� the dependence matrix is

	 	

	 �

��

�
�

�
�

Dependence direction	distance are adequate for testing legality of

permutation�

��

�
�

�
�

J2J1

Dependence distance = I2 - I1
J2 - J1

Distance between iterations =

= I2 - I1
J2 - J1

J2 - J1
I2 - I1

I2
J2

T T I1
J1

T I1
J1

I2
J2

T

 T- =

I

J

U

V

0 1
1 0

I
J

= U
V

I2I1

Check for legality: interchange positions in distance/direction vector & check for lex +ve

DO I = 1, N

DO J = I,N

DO U = 1, N
 DO V = 1,U

..........

If transformation P is legal and original dependence matrix is D, new dependence matrix is T*D.

��

�
�

�
�

Correctness of general permutation

Transformation matrix� T

Dependence matrix� D

Matrix in which each column is a distance	direction vector

Legality� T�D � �

Dependence matrix of transformed program� T�D

��

�
�

�
�

Examples�

DO I � ��N

DO J � ��N

X�I�J� � X�I
��J
��				

Distance vector
 ��
��
� permutation is legal

Dependence vector of transformed program
 ��
��

DO I � ��N

DO J � ��N

X�I�J� � X�I
��J���				

Distance vector
 ��
���
� permutation is not legal

�	

�
�

�
�

Remarks on dependence abstractions

A good dependence abstraction for a transformation should have

the following properties�

� Easy to compute

� Easy to test for legality�

� Easy to determine dependence abstractions for transformed

program�

Direction vectors are a good dependence abstraction for

permutation�

�

�
�

�
�

Engineering a dependence analyzer

In principle� we can use IP engine to compute all directions�

Reality� most subscripts and loop bounds are simple�

Engineering a dependence analyzer�

First check for simple cases�

Call IP engine for more complex cases�

��

�
�

�
�

Important optimization� splitting of linear systems

In practice� many dependence computations can be decomposed

into two or more smaller� independent problems�

DO �� I

DO �� J

DO �� K

�� A�I�J�J� � 			A�I�J�K� � c

I occurs only in �rst subscript and bounds on I are independent of other

variables
� inequalities�equalities for �Ir� Iw� for example can be

separated from rest of system and solved separately�

��

�
�

�
�

Special case of splitting� separable SIV subscripts

DO �	 I

DO �	 J

DO �	 K

�	 A�I�J�J� � ���A�I�J�K����

Equations for �ow dependence�

Iw � Ir

Jw � Jr

Jw � Kr

First equation can be solved separately from the other two�

If bounds on I are independent of J and K �as here��

st component of direction vectors can be computed independently

of �nd and �rd components�

In benchmarks� ��� of subscripts are separable SIV�

��

�
�

�
�

Separable�SIV subscript� Simple� precise tests exist�

DO �	 J

DO �	 I

DO �	 K

X�aI � b������� � ��X�cI � d���������

Equation for �ow dependence� a � Iw � b � c � Ir � d�

Strong SIV subscript� a � c

	 Ir � Iw � �b� d��a

If a divides �b� d�� and quotient is within loop bounds of I� there

is a dependence� and we have Ith component of the

direction	distance vector�

Otherwise� no need to check other dimensions � no dependence

exists�

In benchmarks� roughly ��� of subscripts are strong SIV�

��

�
�

�
�

Another important case�

DO �	 I

�	 X�aI � b������� � ��X�cI � d���������

Weak SIV subscript� Either a or c is ��

Say c is � 	 Iw � �d� b��a and Ir � Iw

If a divides �d� b�� and quotient is within loop bounds� then

dependence exists with all iterations beyond Iw�

Important loop transformation� Index�set splitting

It may be worth eliminating dependence by performing iterations

����d� b��a��
 in one loop� iteration �d� b��a by itself and then

the remaining iterations in another loop�

��

�
�

�
�

General SIV Test Equation� a � Iw � b � c � Ir � d �
�

We can use column operations to reduce to echelon form etc�

But usually� a and c are small integers �mag � ��� Exploit this�

Build a table indexed by �a� c� pairs for a and c between
 and ��

Two entries in each table position� �i� gcd�a� c�

�ii� one solution �Iw� Ir� � �s� t� to eqn a � Iw � c � Ir � gcd�a� c�

Given Equation �
�� if a and c are between
 and ��

�i� if gcd�a� c� does not divide �d� b�� no solution

�ii� otherwise� one solution is �s��t� � �d� b��gcd�a� c�

�iii� General solution�

�Iw� Ir� � n � �c� a��gcd�c� a� � �s��t� � �d� b��gcd�a� c�

�n is parameter�

Case when a or c in Equation �
� are �ve� minor modi�cation of

this procedure�

��

�
�

�
�

Implementation notes�

�I� Check for ZIV	separable SIV �rst before calling IP engine�

�II� In hierarchical testing for directions� solution to equalities

should be done only once�

�III� Output of equality solver may be useful to determine

distances and to eliminate some directions from consideration�

�eg� DO �	 I

DO �	 J

A�J� � A�J��� � �

Flow dependence equation� Jw � Jr �
 	 distance�J� � �

Direction vector cannot be ������ So only possibility is ������ test

only for this�

��

�
�

�
�

�IV� Same dependence problems occur in many places in program

�� it may be worth caching solutions to dependence systems and

looking up cache before calling dependence analyzer�

�V� Array aliasing introduces complications�

procedure f�X�Y�

DO I���

X�I� � ���

� ���Y�I�����

If X and Y may be aliased� there are may�dependences in the loop�

FORTRAN convention� aliased parameters may not be modi�ed in

procedure�

��

�
�

�
�

�VI� Negative loop step sizes� Loop normalization

DO �	 I � �	�����

�	 ����

If we use I to index into iteration space� dependence distances

become �ve�

Solution� Use trip counts ���
����� to index loop iterations�

DO �	 I � l�u�s

X�I� � X��I�
����

Flow dependence� from trip nw to nr 	

l � nw � s � ��l � nr � s�� ��

Distance vector � �nr � nw

Loop normalization� Transform all loops so low index is � and step

size is
� We are doing it implicitly�
�	

�
�

�
�

�VII�Imperfectly nested loops

Distance	direction not adequate for imperfectly nested loops�

Imperfectly nested loop� triangular solve	Cholesky	LU

DO �	 I � ��N

DO �	 J � �� I��

�	 B�I� � B�I� � L�I�J�
X�J�

�	 X�I� � B�I��L�I�I�

What is the analog of distance	direction vectors for imperfectly

nested loops�

�

�
�

�
�

One approach� Compute distance	direction only for common loops�

Not adequate for many applications like imperfect loop interchange�

�row triangular solve�

DO �	 I � ��N

DO �	 J � �� I��

�	 B�I� � B�I� � L�I�J�
X�J�

�	 X�I� � B�I��L�I�I�

��
�column triangular solve�

DO �	 I � ��N

X�I� � B�I��L�I�I�

DO �	 J � I��� N

�	 B�J� � B�J� � L�I�J�
X�I�
��

�
�

�
�

What is a good dependence abstraction for imperfectly nested

loops�

Some tests for a good dependence abstraction for imperfectly

nested loops

� Easy to see that both versions of triangular solve are legal

� Easy to see that all six versions of Cholesky factorization are

legal

� Easy to determine dependence abstraction for transformed

program

��

�
�

�
�

Conclusions

Traditional position� exact dependence testing �using IP engine� is

too expensive

Recent experience�

�i� exact dependence testing is OK provided we �rst check for easy

cases �ZIV�strong SIV� weak SIV�

�ii� IP engine is called for ���� of tests for direction vectors

�iii� Cost of exact dependence testing� ���� of compile time

��

