
Global Register Allocation

(Slides from Andrew Myers)

Monday, October 17, 2011

Main idea

• Want to replace temporary variables with
some fixed set of registers

• First: need to know which variables are
live after each instruction
– Two simultaneously live variables cannot be

allocated to the same register

Monday, October 17, 2011

Register allocation

• For every node n in CFG, we have out[n]
– Set of temporaries live out of n

• Two variables interfere if
– both initially live (ie: function args), or
– both appear in out[n] for any n

• How to assign registers to variables?

Monday, October 17, 2011

Interference graph

• Nodes of the graph = variables
• Edges connect variables that interfere with

one another
• Nodes will be assigned a color

corresponding to the register assigned to
the variable

• Two colors can’t be next to one another in
the graph

Monday, October 17, 2011

Interference graph

Instructions Live vars

b = a + 2

c = b * b

b = c + 1

return b * a

Monday, October 17, 2011

Interference graph

Instructions Live vars

b = a + 2

c = b * b

b = c + 1
 b,a
return b * a

Monday, October 17, 2011

Interference graph

Instructions Live vars

b = a + 2

c = b * b
 a,c
b = c + 1
 b,a
return b * a

Monday, October 17, 2011

Interference graph

Instructions Live vars

b = a + 2
 b,a
c = b * b
 a,c
b = c + 1
 b,a
return b * a

Monday, October 17, 2011

Interference graph

Instructions Live vars
 a
b = a + 2
 b,a
c = b * b
 a,c
b = c + 1
 b,a
return b * a

Monday, October 17, 2011

Interference graph

Instructions Live vars
 a
b = a + 2
 a,b
c = b * b
 a,c
b = c + 1
 a,b
return b * a

a

cb

eax

ebx

color register

Monday, October 17, 2011

Interference graph

Instructions Live vars
 a
b = a + 2
 a,b
c = b * b
 a,c
b = c + 1
 a,b
return b * a

a

cb

eax

ebx

color register

Monday, October 17, 2011

Graph coloring

• Questions:
– Can we efficiently find a coloring of the graph

whenever possible?
– Can we efficiently find the optimum coloring of

the graph?
– How do we choose registers to avoid move

instructions?
– What do we do when there aren’t enough

colors (registers) to color the graph?

Monday, October 17, 2011

Coloring a graph

• Kempe’s algorithm [1879] for finding a K-
coloring of a graph

• Assume K=3
• Step 1 (simplify): find a node with at most

K-1 edges and cut it out of the graph.
(Remember this node on a stack for later
stages.)

Monday, October 17, 2011

Coloring a graph

• Once a coloring is found for the simpler
graph, we can always color the node we
saved on the stack

• Step 2 (color): when the simplified
subgraph has been colored, add back the
node on the top of the stack and assign it
a color not taken by one of the adjacent
nodes

Monday, October 17, 2011

Coloring

b

ed

eax

ebx

color register

a

c

stack:

Monday, October 17, 2011

Coloring

b

ed

eax

ebx

color register

a

stack:

c

c

Monday, October 17, 2011

Coloring

b

ed

eax

ebx

color register

a

stack:

e
c

c

Monday, October 17, 2011

Coloring

b

ed

eax

ebx

color register

a

stack:

a
e
c

c

Monday, October 17, 2011

Coloring

b

ed

eax

ebx

color register

a

stack:
b
a
e
c

c

Monday, October 17, 2011

Coloring

b

ed

eax

ebx

color register

a

stack:
d
b
a
e
c

c

Monday, October 17, 2011

Coloring

b

ed

eax

ebx

color register

a

stack:

b
a
e
c

c

Monday, October 17, 2011

Coloring

b

ed

eax

ebx

color register

a

stack:

a
e
c

c

Monday, October 17, 2011

Coloring

b

ed

eax

ebx

color register

a

stack:

e
c

c

Monday, October 17, 2011

Coloring

b

ed

eax

ebx

color register

a

stack:

c

c

Monday, October 17, 2011

Coloring

b

ed

eax

ebx

color register

a

stack:

c

Monday, October 17, 2011

Failure

• If the graph cannot be colored, it will
eventually be simplified to graph in which
every node has at least K neighbors

• Sometimes, the graph is still K-colorable!
• Finding a K-coloring in all situations is an

NP-complete problem
– We will have to approximate to make register

allocators fast enough

Monday, October 17, 2011

Coloring

b

ed

eax

ebx

color register

a

c

stack:

Monday, October 17, 2011

Coloring

b

ed

eax

ebx

color register

a

c

stack:
d

all nodes have
2 neighbours!

Monday, October 17, 2011

Coloring

b

ed

eax

ebx

color register

a

c

stack:

b
d

Monday, October 17, 2011

Coloring

b

ed

eax

ebx

color register

a

c

stack:
c
e
a
b
d

Monday, October 17, 2011

Coloring

b

ed

eax

ebx

color register

a

c

stack:

e
a
b
d

Monday, October 17, 2011

Coloring

b

ed

eax

ebx

color register

a

c

stack:

a
b
d

Monday, October 17, 2011

Coloring

b

ed

eax

ebx

color register

a

c

stack:

b
d

Monday, October 17, 2011

Coloring

b

ed

eax

ebx

color register

a

c

stack:

d

Monday, October 17, 2011

Coloring

b

ed

eax

ebx

color register

a

c

stack:

We got lucky!

Monday, October 17, 2011

Coloring

b

ed

eax

ebx

color register

a

c

stack:

c
b
e
a
d

Some graphs can’t be colored
in K colors:

Monday, October 17, 2011

Coloring

b

ed

eax

ebx

color register

a

c

stack:

b
e
a
d

Some graphs can’t be colored
in K colors:

Monday, October 17, 2011

Coloring

b

ed

eax

ebx

color register

a

c

stack:

e
a
d

Some graphs can’t be colored
in K colors:

Monday, October 17, 2011

Coloring

b

ed

eax

ebx

color register

a

c

stack:

e
a
d

Some graphs can’t be colored
in K colors:

no colors left for e!

Monday, October 17, 2011

Spilling

• Step 3 (spilling): once all nodes have K or
more neighbors, pick a node for spilling
– Storage on the stack

• There are many heuristics that can be
used to pick a node
– not in an inner loop

Monday, October 17, 2011

Spilling code

• We need to generate extra instructions to load
variables from stack and store them

• These instructions use registers themselves.
What to do?
– Stupid approach: always keep extra registers handy

for shuffling data in and out: what a waste!
– Better approach: rewrite code introducing a new

temporary; rerun liveness analysis and register
allocation

• Intuition: you were not able to assign a single register to the
variable that was spilled but there may be a free register
available at each spot where you need to use the value of
that variable

Monday, October 17, 2011

Rewriting code

• Consider: add t1 t2
– Suppose t2 is selected for spilling and

assigned to stack location [ebp-24]
– Invent new temporary t35 for just this

instruction and rewrite:
• mov t35, [ebp – 24];
• add t1, t35

– Advantage: t35 has a very short live range
and is much less likely to interfere.

– Rerun the algorithm; fewer variables will spill

Monday, October 17, 2011

Precolored Nodes

• Some variables are pre-assigned to
registers
– Eg: mul on x86/pentium

• uses eax; defines eax, edx
– Eg: call on x86/pentium

• Defines (trashes) caller-save registers eax, ecx,
edx

• Treat these registers as special
temporaries; before beginning, add them
to the graph with their colors

Monday, October 17, 2011

Precolored Nodes

• Can’t simplify a graph by removing a
precolored node

• Precolored nodes are the starting point of
the coloring process

• Once simplified down to colored nodes
start adding back the other nodes as
before

Monday, October 17, 2011

Optimizing Moves

• Code generation produces a lot of extra
move instructions
– mov t1, t2
– If we can assign t1 and t2 to the same

register, we do not have to execute the mov
– Idea: if t1 and t2 are not connected in the

interference graph, we coalesce into a single
variable

Monday, October 17, 2011

Coalescing
• Problem: coalescing can increase the number of interference edges

and make a graph uncolorable

• Solution 1 (Briggs): avoid creation of high-degree (>= K) nodes
• Solution 2 (George): a can be coalesced with b if every neighbour t

of a:
– already interferes with b, or
– has low-degree (< K)

t1 t2 t1/t2
coalesce

Monday, October 17, 2011

Simplify & Coalesce
• Step 1 (simplify): simplify as much as possible

without removing nodes that are the source or
destination of a move (move-related nodes)

• Step 2 (coalesce): coalesce move-related
nodes provided low-degree node results

• Step 3 (freeze): if neither steps 1 or 2 apply,
freeze a move instruction: registers involved are
marked not move-related and try step 1 again

Monday, October 17, 2011

Overall Algorithm

Simplify, freeze
and coalesce

Mark possible
spills

Color
& detect actual

spills

Rewrite code
to implement
actual spills

Liveness

Monday, October 17, 2011

