Dataflow Analysis
Program optimizations

- So far we have talked about different kinds of optimizations
 - Peephole optimizations
 - Local common sub-expression elimination
 - Loop optimizations
- What about *global optimizations*
 - Optimizations across multiple basic blocks (usually a whole procedure)
 - Not just a single loop
Useful optimizations

- Common subexpression elimination (global)
 - Need to know which expressions are available at a point

- Dead code elimination
 - Need to know if the effects of a piece of code are never needed, or if code cannot be reached

- Constant folding
 - Need to know if variable has a constant value

- Loop invariant code motion
 - Need to know where and when variables are live

- So how do we get this information?
Dataflow analysis

• Framework for doing compiler analyses to drive optimization
• Works across basic blocks
• Examples
 • Constant propagation: determine which variables are constant
 • Liveness analysis: determine which variables are live
 • Available expressions: determine which expressions are have valid computed values
 • Reaching definitions: determine which definitions could “reach” a use
Example: constant propagation

- Goal: determine when variables take on constant values
- Why? Can enable many optimizations

- Constant folding

\[
\begin{align*}
x &= 1; \\
y &= x + 2; \\
\text{if} \ (x > z) \ \text{then} \ y &= 5 \\
\ldots \ y \ldots
\end{align*}
\]

- Create dead code

\[
\begin{align*}
x &= 1; \\
y &= x + 2; \\
\text{if} \ (y > x) \ \text{then} \ y &= 5 \\
\ldots \ y \ldots
\end{align*}
\]
Example: constant propagation

- Goal: determine when variables take on constant values
- Why? Can enable many optimizations
 - Constant folding

    ```
    x = 1;
y = x + 2;
if (x > z) then y = 5
... y ...
    ```

 - Create dead code

    ```
    x = 1;
y = x + 2;
if (y > x) then y = 5
... y ...
    ```
Example: constant propagation

• Goal: determine when variables take on constant values

• Why? Can enable many optimizations

 • Constant folding

 \[
 \begin{align*}
 x &= 1; \\
 y &= x + 2; \\
 \text{if} \ (x > z) \ \text{then} \ y &= 5 \\
 \ldots \ y \ \ldots
 \end{align*}
 \]

 \[
 \begin{align*}
 x &= 1; \\
 y &= 3; \\
 \text{if} \ (x > z) \ \text{then} \ y &= 5 \\
 \ldots \ y \ \ldots
 \end{align*}
 \]

 • Create dead code

 \[
 \begin{align*}
 x &= 1; \\
 y &= x + 2; \\
 \text{if} \ (y > x) \ \text{then} \ y &= 5 \\
 \ldots \ y \ \ldots
 \end{align*}
 \]

 \[
 \begin{align*}
 x &= 1; \\
 y &= 3; \ //\text{dead code} \\
 \text{if} \ (\text{true}) \ \text{then} \ y &= 5 \ //\text{simplify!} \\
 \ldots \ y \ \ldots
 \end{align*}
 \]
How can we find constants?

• Ideal: run program and see which variables are constant
 • Problem: variables can be constant with some inputs, not others – need an approach that works for all inputs!
 • Problem: program can run forever (infinite loops?) – need an approach that we know will finish

• Idea: run program symbolically
 • Essentially, keep track of whether a variable is constant or not constant (but nothing else)
Overview of algorithm

• Build control flow graph
 • We’ll use statement-level CFG (with merge nodes) for this
• Perform symbolic evaluation
 • Keep track of whether variables are constant or not
• Replace constant-valued variable uses with their values, try to simplify expressions and control flow
Build CFG

\[
x = 1; \\
y = x + 2; \\
if (y > x) \text{ then } y = 5; \\
... y ... \\
\]
Symbolic evaluation

- Idea: replace each value with a symbolic constant (specify which), maybe constant, definitely not constant
- Can organize these possible values in a lattice (will formalize this later)
Symbolic evaluation

- Evaluate expressions symbolically: `eval(e, V_{in})`
 - If `e` evaluates to a constant, return that value. If any input is `⊤` (or `⊥`), return `⊤` (or `⊥`)
 - Why?
- Two special operations on lattice
 - `meet(a, b)` – highest value less than or equal to both `a` and `b`
 - `join(a, b)` – lowest value greater than or equal to both `a` and `b`

Join often written as `a \sqcup b`
Meet often written as `a \sqcap b`
Putting it together

- Keep track of the symbolic value of a variable at every program point (on every CFG edge)
- State vector
- What should our initial value be?
 - Starting state vector is all \top
 - Can’t make any assumptions about inputs – must assume not constant
 - Everything else starts as \bot, since we don’t know if the variable is constant or not at that point

\[
\begin{align*}
\text{start} & \quad x \quad y \\
x = 1 & \quad \bot \quad \bot \\
y = x + 2 & \quad \bot \quad \bot \\
y > x ? & \quad \bot \quad \bot \quad \bot \\
y = 5 & \quad \bot \quad \bot \quad \bot \\
\text{merge} & \quad \bot \quad \bot \quad \bot \\
\ldots y \ldots & \quad \bot \quad \bot \quad \bot \\
\text{end} & \quad \bot \quad \bot \quad \bot
\end{align*}
\]
Executing symbolically

- For each statement $t = e$
 evaluate e using V_{in}, update value for t and propagate state vector to next statement

- What about switches?
 - If e is true or false, propagate V_{in} to appropriate branch

- What if we can’t tell?
 - Propagate V_{in} to both branches, and symbolically execute both sides

- What do we do at merges?
Handling merges

- Have two different V_{in}s coming from two different paths
- Goal: want new value for V_{in} to be safe (shouldn’t generate wrong information), and we don’t know which path we actually took
- Consider a single variable. Several situations:
 - $V_1 = \perp, V_2 = * \rightarrow V_{\text{out}} = *$
 - $V_1 = \text{constant } x, V_2 = x \rightarrow V_{\text{out}} = x$
 - $V_1 = \text{constant } x, V_2 = \text{constant } y \rightarrow V_{\text{out}} = T$
 - $V_1 = T, V_2 = * \rightarrow V_{\text{out}} = T$
- Generalization:
 - $V_{\text{out}} = V_1 \sqcup V_2$
Result: worklist algorithm

- Associate state vector with each edge of CFG, initialize all values to ⊥, worklist has just start edge

- While worklist not empty, do:

 Process the next edge from worklist
 Symbolically evaluate target node of edge using input state vector
 If target node is assignment (x = e), propagate $V_{in}[\text{eval(e)}/x]$ to output edge
 If target node is branch (e?)
 If eval(e) is true or false, propagate V_{in} to appropriate output edge
 Else, propagate V_{in} along both output edges
 If target node is merge, propagate join(all V_{in}) to output edge
 If any output edge state vector has changed, add it to worklist
Running example

start

\[x = 1 \]

\[y = x + 2 \]

\[y > x? \]

\[y = 5 \]

merge

... y ...

down

end
Running example

```
x = 1
y = x + 2
y > x?
```

```
y = 5
... y ...
end
```
What do we do about loops?

- Unless a loop never executes, symbolic execution looks like it will keep going around to the same nodes over and over again.

- Insight: if the input state vector(s) for a node don’t change, then its output doesn’t change.

- If input stops changing, then we are done!

- Claim: input will eventually stop changing. Why?
Loop example

First time through loop, $x = 1$
Subsequent times, $x = \top$
Complexity of algorithm

- \(V = \# \text{ of variables}, \ E = \# \text{ of edges} \)
- Height of lattice = 2 \(\rightarrow \) each state vector can be updated at most \(2 \times V \) times.
- So each edge is processed at most \(2 \times V \) times, so we process at most \(2 \times E \times V \) elements in the worklist.
- Cost to process a node: \(O(V) \)
- Overall, algorithm takes \(O(EV^2) \) time
Question

- Can we generalize this algorithm and use it for more analyses?
- First, let’s lay the theoretical foundation for dataflow analysis.
Lattice Theory
First, something interesting

• Brouwer Fixpoint Theorem
 • Every continuous function f from a closed disk into itself has at least one fixed point

• More formally:
 • Domain D: a convex, closed, bounded subspace in a plane (generalizes to higher dimensions)
 • Function $f : D \rightarrow D$
 • There exists some x such that $f(x) = x$
Intuition

• Consider the one-dimensional case: mapping a line segment onto itself

• $x \in [0, 1]$

• $f(x) \in [0, 1]$

• There must exist some x for which $f(x) = x$

• Examples (in 2D)
 • A mall directory
 • Crumpling up a piece of graph paper
Back to dataflow

- Game plan:
 - Finite partially ordered set with least element: D
 - Function $f : D \rightarrow D$
 - Monotonic function $f : D \rightarrow D$
 - \exists fixpoint of f
 - \exists least fixpoint of f
 - Generalization to case when D has a greatest element, \top
 - \exists greatest fixpoint of f
 - Generalization to systems of equations
Partially ordered set (poset)

- Set D with a relation \sqsubseteq that is
 - Reflexive: $x \sqsubseteq x$
 - Anti-symmetric: $x \sqsubseteq y$ and $y \sqsubseteq x \Rightarrow y = x$
 - Transitive: $x \sqsubseteq y, y \sqsubseteq z \Rightarrow x \sqsubseteq z$
- Example: set of integers and \leq
- Graphical representation of poset
 - Graph in which nodes are elements of D and relation \sqsubseteq is indicated by arrows
 - Usually omit reflexive and transitive arrows for legibility
 - Not counting reflexive edges, graph is always a DAG (why?)
Another example

- Powerset of any set, ordered by \(\subseteq \) is a poset
- In the example, poset elements are \(\{\}, \{a\}, \{a, b\}, \{a, b, c\}, \text{etc.} \)
- \(X \subseteq Y \) iff \(X \subseteq Y \)
Finite poset with least element

- Poset in which
 - Set is finite
 - There is a least element that is below all other elements in poset
- Examples
 - Set of integers ordered by \leq is not a finite poset with least element (no least element, not finite)
 - Set of natural numbers ordered by \leq has a least element (0), but not finite
 - Set of factors of 12, ordered by \leq has a least element as is finite
 - Powerset example from before is finite (how many elements?) with a least element ($\{\}$)
Domains

- “Finite poset with least element” is a mouthful, so we will abbreviate this to domain

- Later, we will add additional conditions to domains that are of interest to us in the context of dataflow analysis

- (Goal: what is a lattice?)
Functions on domains

• If D is a domain, we can define a function $f : D \to D$

• Function maps each element of domain on to another element of the domain

• Example: for $D =$ powerset of $\{a, b, c\}$
 • $f(x) = x \cup \{a\}$
 • $g(x) = x - \{a\}$
 • $h(x) = \{a\} - x$
Monotonic functions

• A function \(f : D \rightarrow D \) on a domain \(D \) is monotonic if

• \(x \sqsubseteq y \Rightarrow f(x) \sqsubseteq f(y) \)

• Note: this is not the same as \(x \sqsubseteq f(x) \)

• This means that \(x \) is extensive

• Intuition: think of \(f \) as an electrical circuit mapping input to output

• If \(f \) is monotonic, raising the input voltage raises the output voltage (or keeps it the same)

• If \(f \) is extensive, the output voltage is always the same or more than the input voltage
Examples

- Domain D is the powerset of \{a, b, c\}
- Monotonic functions:
 - \(f(x) = \{ \} \) (why?)
 - \(f(x) = x \cup \{a\} \)
 - \(f(x) = x - \{a\} \)
- Not monotonic
 - \(f(x) = \{a\} - x \) (why?)
- Extensivity
 - \(f(x) = x \cup \{a\} \) is monotonic and extensive
 - \(f(x) = x - \{a\} \) is monotonic but not extensive
 - \(f(x) = \{a\} - x \) is neither
- What is a function that is extensive, but not monotonic?
Fixpoints

• Suppose $f : D \rightarrow D$.
 • A value x is a fixpoint of f if $f(x) = x$
 • f maps x to itself

• Examples: D is a powerset of $\{a, b, c\}$
 • Identity function: $f(x) = x$
 • Every element is a fixpoint
 • $f(x) = x \cup \{a\}$
 • Every set that contains a is a fixpoint
 • $f(x) = \{a\} - x$
 • No fixpoints
Fixpoint theorem

• One form of *Knaster-Tarski Theorem*:

 If D is a domain and $f : D \to D$ is monotonic, then f has at least one fixpoint

• More interesting consequence:

 If \bot is the least element of D, then f has a *least fixpoint*, and that fixpoint is the largest element in the chain

 $\bot, f(\bot), f(f(\bot)), f(f(f(\bot))), \ldots f^n(\bot)$

• Least fixpoint: a fixpoint of f, x such that, if y is a fixpoint of f, then $x \sqsubseteq y$
Examples

- For domain of powersets, \{ \} is the least element
- For identity function, \(f^n(\{ \}) \) is the chain
 \{ \}, \{ \}, \{ \}, ... so least fixpoint is \{ \}, which is correct
- For \(f(x) = x \cup \{a\} \), we get the chain
 \{ \}, \{a\}, \{a\}, ... so least fixpoint is \{a\}, which is correct
- For \(f(x) = \{a\} - x \), function is not monotonic, so not guaranteed to have a fixpoint!
- Important observation: as soon as the chain repeats, we have found the fixpoint (why?)
Proof of fixpoint theorem

• First, prove that largest element of chain $f^n(\bot)$ is a fixpoint

• Second, prove that $f^n(\bot)$ is the least fixpoint
Solving equations

• If \(D \) is a domain and \(f : D \rightarrow D \) is a monotone function on that domain, then the equation \(f(x) = x \) has a least fixpoint, given by the largest element in the sequence

\[\bot, f(\bot), f(f(\bot)), f(f(f(\bot))), \ldots \]

• Proof follows directly from fixpoint theorem
Adding a top

• Now let us consider domains with an element \top, such that for every point x in the domain, $x \sqsubseteq \top$

• New theorem: if D is a domain with a greatest element \top and $f : D \to D$ is monotonic, then the equation $x = f(x)$ has a greatest solution, and that solution is the smallest element in the sequence

 $\top, f(\top), f(f(\top)), ...$

• Proof?
Multi-argument functions

- If D is a domain, a function $f : D \times D \rightarrow D$ is monotonic if it is monotonic in each argument when the other is held constant.
- Intuition:
 - Electrical circuit has two inputs
 - If you raise either input while holding the other constant, the output either goes up or stays the same.
Fixpoints of multi-arg functions

• Can generalize fixpoint theorem in a straightforward way

• If \(D \) is a domain and \(f, g : D \times D \to D \) are monotonic, the following system of equations has a least fixpoint solution, calculated in the obvious way

\[x = f(x, y) \text{ and } y = g(x, y) \]

• Can generalize this to more than two variables and domains with greatest elements easily
Lattices

• A bounded lattice is a partially ordered set with a \(\bot \) and \(\top \), with two special functions for any pair of points \(x \) and \(y \) in the lattice:

 • A join: \(x \sqcup y \) is the least element that is greater than \(x \) and \(y \) (also called the least upper bound)

 • A meet: \(x \sqcap y \) is the greatest element that is less than \(x \) and \(y \) (also called the greatest lower bound)

• Are \(\sqcup \) and \(\sqcap \) monotonic?
More about lattices

- Bounded lattices with a finite number of elements are a special case of domains with \top (why are they not the same?)
- Systems of monotonic functions (including \sqcap and \sqcup) will have fixpoints
- But some lattices are infinite! (example: the lattice for constant propagation)
 - It turns out that you can show a monotonic function will have a least fixpoint for any lattice (or domain) of finite height
 - Finite height: any totally ordered subset of domain (this is called a chain) must be finite
- Why does this work?
Solving system of equations

• Consider

\[x = f(x, y, z) \]
\[y = g(x, y, z) \]
\[z = h(x, y, z) \]

• Obvious iterative solution: evaluate every function at every step:

\[\bot \quad f(\bot, \bot, \bot) \quad \ldots \]
\[\bot \quad g(\bot, \bot, \bot) \quad \ldots \]
\[\bot \quad h(\bot, \bot, \bot) \quad \ldots \]
Worklist algorithm

• Obvious point: only necessary to re-evaluate functions whose inputs have changed

• Worklist algorithm
 • Initialize worklist with all equations
 • Initialize solution vector S to all \bot
 • While worklist not empty
 • Get equation from worklist
 • Re-evaluate equation based on S, update entry corresponding to lhs in S
 • Put all equations which use this lhs on their rhs in the worklist

• Claim: the worklist algorithm for constant propagation is an instance of this approach
Mapping worklist algorithm

- Careful: the “variables” in constant propagation are not the individual variable values in a state vector. Each variable (from a fixpoint perspective) is an entire state vector – there are as many variables as there are edges in the CFG

- Functions:
 - Program statements: eval(e, V_{in})
 - These are called *transfer functions*
 - Need to make sure this is monotonic

- Branches
 - Propagates input state vector to output – trivially monotonic

- Merges
 - Use join or meet to combine multiple input variables – monotonic by definition
Constant propagation

- Step 1: choose lattice
 - Use constant lattice (infinite, but finite height)
- Step 2: choose direction of dataflow
 - Run forward through program
- Step 3: create monotonic transfer functions
 - If input goes from \bot to constant, output can only go up. If input goes from constant to \top, output goes to \top
- Step 4: choose confluence operator
 - What do do at merges? For constant propagation, use join