Dataflow Analysis

Thursday, April 14, 2011

Program optimizations

- So far we have talked about different kinds of optimizations
- Peephole optimizations
- Local common sub-expression elimination
- Loop optimizations
- What about global optimizations
 - Optimizations across multiple basic blocks (usually a whole procedure)
 - Not just a single loop

Thursday, April 14, 2011

Useful optimizations

- Common subexpression elimination (global)
 - Need to know which expressions are available at a point
- Dead code elimination
 - Need to know if the effects of a piece of code are never needed, or if code cannot be reached
- Constant folding
 - Need to know if variable has a constant value
- Loop invariant code motion
 - Need to know where and when variables are live
- So how do we get this information?

Thursday, April 14, 2011

Dataflow analysis

- Framework for doing compiler analyses to drive optimization
- Works across basic blocks
- Examples
 - Constant propagation: determine which variables are constant
 - Liveness analysis: determine which variables are live
 - Available expressions: determine which expressions are have valid computed values
 - Reaching definitions: determine which definitions could "reach" a use

Thursday, April 14, 2011

Example: constant propagation

- Goal: determine when variables take on constant values
- Why? Can enable many optimizations
 - Constant folding

 \[
 \begin{align*}
 x &= 1; \\
 y &= x + 2; \\
 \text{if } (x > z) \text{ then } y &= 5 \\
 \ldots \quad y \ldots
 \end{align*}
 \]

 \[
 \begin{align*}
 x &= 1; \\
 y &= 3; \\
 \text{if } (x > z) \text{ then } y &= 5 \\
 \ldots \quad y \ldots
 \end{align*}
 \]

 - Create dead code

 \[
 \begin{align*}
 x &= 1; \\
 y &= x + 2; \\
 \text{if } (y > x) \text{ then } y &= 5 \\
 \ldots \quad y \ldots
 \end{align*}
 \]

 - Create dead code

Thursday, April 14, 2011
Example: constant propagation

- Goal: determine when variables take on constant values
- Why? Can enable many optimizations
 - Constant folding

 \[
 \begin{align*}
 x &= 1; \\
 y &= x + 2; \\
 \text{if } (x > z) \text{ then } y &= 5 \\
 \ldots \ y \ldots
 \end{align*}
 \]

 \[
 \begin{align*}
 x &= 1; \\
 y &= 3; \\
 \text{if } (x > z) \text{ then } y &= 5 \\
 \ldots \ y \ldots
 \end{align*}
 \]

 • Create dead code

 \[
 \begin{align*}
 x &= 1; \\
 y &= x + 2; \\
 \text{if } (y > x) \text{ then } y &= 5 \\
 \ldots \ y \ldots
 \end{align*}
 \]

 \[
 \begin{align*}
 x &= 1; \\
 y &= 3; \text{//dead code} \\
 \text{if } (\text{true}) \text{ then } y &= 5 \text{//simplify!} \\
 \ldots \ y \ldots
 \end{align*}
 \]

How can we find constants?

- Idea: run program and see which variables are constant
- Ideal: run program and see which variables are constant

- Why?
 - Program can run forever (infinite loops?) – need an approach that we know will finish

- Problem: variables can be constant with some inputs, not others – need an approach that works for all inputs!

- Problem: variables can be constant with some inputs, not others – need an approach that works for all inputs!

- Idea: run program symbolically
 - Essentially, keep track of whether a variable is constant or not constant (but nothing else)

Overview of algorithm

- Build control flow graph
 - We’ll use statement-level CFG (with merge nodes) for this
 - Perform symbolic evaluation
 - Keep track of whether variables are constant or not
 - Replace constant-valued variable uses with their values, try to simplify expressions and control flow

Build CFG

\[
\begin{align*}
\text{start} \\
x &= 1 \\
y &= x + 2 \\
\text{if } (y > x) \text{ then } y &= 5 \\
\ldots \ y \ldots \\
\text{merge} \\
y &= 5 \\
\text{end}
\end{align*}
\]

Symbolic evaluation

- Idea: replace each value with a symbolic
 - constant (specify which), maybe constant, definitely not constant
 - Can organize these possible values in a lattice (will formalize this later)

- Evaluate expressions symbolically:
 - eval(e; V)
 - If e evaluates to a constant, return that value. If any input is T (or 1), return T (or 1)
 - Why?
 - Two special operations on lattice
 - meet(a, b) – highest value less than or equal to both a and b
 - join(a, b) – lowest value greater than or equal to both a and b

Symbolic evaluation

Join often written as a \(\# \) b
Meet often written as a \(\& \) b
Putting it together

- Keep track of the symbolic value of a variable at every program point (on every CFG edge)
- State vector
- What should our initial value be?
 - Starting state vector is all \(_ _ _ \)
 - Can't make any assumptions about inputs – must assume not constant
 - Everything else starts as \(_ _ _ \), since we don't know if the variable is constant or not at that point

Executing symbolically

- For each statement \(t = e \) evaluate \(e \) using \(V_\text{in} \), update value for \(t \) and propagate state vector to next statement
- What about switches?
 - If \(e \) is true or false, propagate \(V_\text{in} \) to appropriate branch
 - What if we can't tell?
 - Propagate \(V_\text{in} \) to both branches, and symbolically execute both sides
- What do we do at merges?

Handling merges

- Have two different \(V_\text{in} \)s coming from two different paths
- Goal: want new value for \(V_\text{in} \) to be safe (shouldn't generate wrong information), and we don't know which path we actually took
- Consider a single variable. Several situations:
 - \(V_1 = _ _ _ \), \(V_2 = _ _ _ \) \(\Rightarrow V_\text{out} = _ _ _ \)
 - \(V_1 = \text{constant } x \), \(V_2 = x \) \(\Rightarrow V_\text{out} = x \)
 - \(V_1 = \text{constant } x \), \(V_2 = \text{constant } y \) \(\Rightarrow V_\text{out} = _ _ _ \)
 - \(V_1 = _ _ _ \), \(V_2 = _ _ _ \) \(\Rightarrow V_\text{out} = _ _ _ \)
- Generalization:
 - \(V_\text{out} = V_1 \text{ } \& \text{ } V_2 \)

Result: worklist algorithm

- Associate state vector with each edge of CFG, initialize all values to \(_ _ _ \), worklist has just start edge
- While worklist not empty, do:
 - Process the next edge from worklist
 - Symbolically evaluate target node of edge using input state vector
 - If target node is assignment \((x = e) \), propagate \(V_\text{in} = \text{eval}(e)/x \) to output edge
 - If target node is branch \((e?) \)
 - If \(\text{eval}(e) \) is true or false, propagate \(V_\text{in} \) to appropriate output edge
 - Else, propagate \(V_\text{in} \) along both output edges
 - If target node is merge, propagate \(\text{join}(\text{all } V_\text{in}) \) to output edge
 - If any output edge state vector has changed, add it to worklist

Running example
What do we do about loops?

• Unless a loop never executes, symbolic execution looks like it will keep going around to the same nodes over and over again
• Insight: if the input state vector(s) for a node don’t change, then its output doesn’t change
• If input stops changing, then we are done!
• Claim: input will eventually stop changing. Why?

Complexity of algorithm

• V = # of variables, E = # of edges
• Height of lattice = 2 → each state vector can be updated at most 2^V times.
• So each edge is processed at most 2^V times, so we process at most $2^V E V$ elements in the worklist.
• Cost to process a node: $O(V)$
• Overall, algorithm takes $O(EV^2)$ time

Question

• Can we generalize this algorithm and use it for more analyses?
• First, let's lay the theoretical foundation for dataflow analysis.

First, something interesting

• Brouwer Fixpoint Theorem
 • Every continuous function f from a closed disk into itself has at least one fixed point
 • More formally:
 • Domain D: a convex, closed, bounded subspace in a plane (generalizes to higher dimensions)
 • Function $f: D \rightarrow D$
 • There exists some x such that $f(x) = x$
Intuition
- Consider the one-dimensional case: mapping a line segment onto itself
 - \(x \in [0, 1] \)
 - \(f(x) \in [0, 1] \)
 - There must exist some \(x \) for which \(f(x) = x \)
- Examples (in 2D)
 - A mall directory
 - Crumpling up a piece of graph paper

Partially ordered set (poset)
- Set \(D \) with a relation \(\sqsubseteq \) that is
 - Reflexive: \(x \sqsubseteq x \)
 - Anti-symmetric: \(x \sqsubseteq y \) and \(y \sqsubseteq x \) \(\Rightarrow x = y \)
 - Transitive: \(x \sqsubseteq y, y \sqsubseteq z \Rightarrow x \sqsubseteq z \)
- Example: set of integers and \(\leq \)
- Graphical representation of poset
 - Graph in which nodes are elements of \(D \) and relation \(\sqsubseteq \) is indicated by arrows
 - Usually omit reflexive and transitive arrows for legibility
 - Not counting reflexive edges, graph is always a DAG (why?)

Finite poset with least element
- Poset in which
 - Set is finite
 - There is a least element that is below all other elements in poset
- Examples
 - Set of integers ordered by \(\leq \) is not a finite poset with least element (no least element, not finite)
 - Set of natural numbers ordered by \(\leq \) has a least element (0), but not finite
 - Set of factors of 12, ordered by \(\leq \) has a least element as is finite
 - Powerset example from before is finite (how many elements?) with a least element (\(\{\} \))

Back to dataflow
- Game plan:
 - Finite partially ordered set with least element \(D \)
 - Function \(f: D \rightarrow D \)
 - Monotonic function \(f: D \rightarrow D \)
 - \(\exists \) fixpoint of \(f \)
 - \(\exists \) least fixpoint of \(f \)
 - Generalization to case when \(D \) has a greatest element, \(T \)
 - \(\exists \) greatest fixpoint of \(f \)
 - Generalization to systems of equations

Domains
- “Finite poset with least element” is a mouthful, so we will abbreviate this to **domain**
- Later, we will add additional conditions to domains that are of interest to us in the context of dataflow analysis
 - (Goal: what is a lattice?)
Functions on domains

- If D is a domain, we can define a function $f : D \rightarrow D$
- Function maps each element of domain on to another element of the domain
- Example: for $D = \text{powerset of } \{a, b, c\}$
 - $f(x) = x \cup \{a\}$
 - $g(x) = x - \{a\}$
 - $h(x) = \{a\} - x$

Monotonic functions

- A function $f : D \rightarrow D$ on a domain D is **monotonic** if
 - $x \subseteq y \Rightarrow f(x) \subseteq f(y)$
- Note: this is not the same as $x \subseteq f(x)$
- This means that x is **extensive**
- Intuition: think of f as an electrical circuit mapping input to output
 - If f is monotonic, raising the input voltage raises the output voltage (or keeps it the same)
 - If f is extensive, the output voltage is always the same or more than the input voltage

Examples

- Domain D is the powerset of $\{a, b, c\}$
- Monotonic functions:
 - $f(x) = \emptyset$ (why?)
 - $f(x) = x \cup \{a\}$
 - $f(x) = x - \{a\}$
- Not monotonic
 - $f(x) = \{a\} - x$ (why?)
- Extensivity
 - $f(x) = x \cup \{a\}$ is monotonic and extensive
 - $f(x) = x - \{a\}$ is monotonic but not extensive
 - $f(x) = \{a\} - x$ is neither
- What is a function that is extensive, but not monotonic?

Fixpoints

- Suppose $f : D \rightarrow D$.
- A value x is a **fixpoint** of f if $f(x) = x$
- f maps x to itself
- Examples: D is a powerset of $\{a, b, c\}$
 - Identity function: $f(x) = x$
 - Every element is a fixpoint
 - $f(x) = x \cup \{a\}$
 - Every set that contains a is a fixpoint
 - $f(x) = \{a\} - x$
 - No fixpoints

Fixpoint theorem

- One form of Knaster-Tarski Theorem:
 - If D is a domain and $f : D \rightarrow D$ is monotonic, then f has at least one fixpoint
 - More interesting consequence:
 - If \bot is the least element of D, then f has a **least fixpoint**, and that fixpoint is the largest element in the chain
 - $\bot, f(\bot), f(f(\bot)), f(f(f(\bot))), \ldots, f^n(\bot)$
 - Least fixpoint: a fixpoint of f, x such that, if y is a fixpoint of f, then $x \subseteq y$

Examples

- For domain of powersets, \emptyset is the least element
- For identity function, $f^\omega(\emptyset)$ is the chain
 - $\emptyset, \emptyset, \emptyset, \ldots$ so least fixpoint is \emptyset, which is correct
- For $f(x) = x \cup \{a\}$, we get the chain
 - $\emptyset, \{a\}, \{a\}, \ldots$ so least fixpoint is $\{a\}$, which is correct
- For $f(x) = \{a\} - x$, function is not monotonic, so not guaranteed to have a fixpoint!
- Important observation: as soon as the chain repeats, we have found the fixpoint (why?)
Proof of fixpoint theorem

• First, prove that largest element of chain \(f^n(\bot) \) is a fixpoint

• Second, prove that \(f(\bot) \) is the least fixpoint

Solving equations

• If \(D \) is a domain and \(f : D \to D \) is a monotone function on that domain, then the equation \(f(x) = x \) has a least fixpoint, given by the largest element in the sequence

\[\bot, f(f(\bot)), f(f(f(\bot))), \ldots \]

• Proof follows directly from fixpoint theorem

Adding a top

• Now let us consider domains with an element \(T \), such that for every point \(x \) in the domain, \(x \leq T \)

• New theorem: if \(D \) is a domain with a greatest element \(T \) and \(f : D \to D \) is monotonic, then the equation \(x = f(x) \) has a greatest solution, and that solution is the smallest element in the sequence

\[T, f(T), f(f(T)), \ldots \]

• Proof?

Multi-argument functions

• If \(D \) is a domain, a function \(f : D \times D \to D \) is monotonic if it is monotonic in each argument when the other is held constant

• Intuition:

 • Electrical circuit has two inputs
 • If you raise either input while holding the other constant, the output either goes up or stays the same

Fixpoints of multi-arg functions

• Can generalize fixpoint theorem in a straightforward way

• If \(D \) is a domain and \(f, g : D \times D \to D \) are monotonic, the following system of equations has a least fixpoint solution, calculated in the obvious way

\[x = f(x, y) \text{ and } y = g(x, y) \]

• Can generalize this to more than two variables and domains with greatest elements easily

Lattices

• A bounded lattice is a partially ordered set with a \(\bot \) and \(T \), with two special functions for any pair of points \(x \) and \(y \) in the lattice:

 • A join: \(x \lor y \) is the least element that is greater than \(x \) and \(y \) (also called the least upper bound)
 • A meet: \(x \land y \) is the greatest element that is less than \(x \) and \(y \) (also called the greatest lower bound)

• Are \(\lor \) and \(\land \) monotonic?
More about lattices

- Bounded lattices with a finite number of elements are a special case of domains with \top (why are they not the same?)
- Systems of monotonic functions (including \cup and \cap) will have fixpoints
- But some lattices are infinite! (example: the lattice for constant propagation)
- It turns out that you can show a monotonic function will have a least fixpoint for any lattice (or domain) of finite height
- Finite height: any totally ordered subset of domain (this is called a chain) must be finite
- Why does this work?

Solving system of equations

- Consider
 \begin{align*}
 x &= f(x, y, z) \\
 y &= g(x, y, z) \\
 z &= h(x, y, z)
 \end{align*}
- Obvious iterative solution: evaluate every function at every step:
 \begin{align*}
 \vdash f(\perp, \perp, \perp) \quad &\vdash \\
 \vdash g(\perp, \perp, \perp) \quad &\vdash \\
 \vdash h(\perp, \perp, \perp) \quad &\vdash
 \end{align*}

Worklist algorithm

- Obvious point: only necessary to re-evaluate functions whose inputs have changed
- Worklist algorithm
 - Initialize worklist with all equations
 - Initialize solution vector S to all \perp
 - While worklist not empty
 - Get equation from worklist
 - Re-evaluate equation based on S, update entry corresponding to lhs in S
 - Put all equations which use this lhs on their rhs in the worklist
 - Claim: the worklist algorithm for constant propagation is an instance of this approach

Mapping worklist algorithm

- Careful: the “variables” in constant propagation are not the individual variable values in a state vector. Each variable (from a fixpoint perspective) is an entire state vector – there are as many variables as there are edges in the CFG
- Functions:
 - Program statements: $\text{eval}(e, V_e)$
 - These are called transfer functions
 - Need to make sure this is monotonic
- Branches
 - Propagates input state vector to output – trivially monotonic
- Merges
 - Use join or meet to combine multiple input variables – monotonic by definition

Constant propagation

- Step 1: choose lattice
 - Use constant lattice (infinite, but finite height)
- Step 2: choose direction of dataflow
 - Run forward through program
- Step 3: create monotonic transfer functions
 - If input goes from \perp to constant, output can only go up. If input goes from constant to \top, output goes to \top
- Step 4: choose confluence operator
 - What do do at merges? For constant propagation, use join