Control flow graphs and loop optimizations
Agenda

• Building control flow graphs
• Low level loop optimizations
 • Code motion
 • Strength reduction
 • Unrolling
• High level loop optimizations
 • Loop fusion
 • Loop interchange
 • Loop tiling
Moving beyond basic blocks

• Up until now, we have focused on single basic blocks
• What do we do if we want to consider larger units of computation
 • Whole procedures?
 • Whole program?
• Idea: capture control flow of a program
 • How control transfers between basic blocks due to:
 • Conditionals
 • Loops
Representation

• Use standard three-address code
• Jump targets are labeled
• Also label beginning/end of functions
• Want to keep track of targets of jump statements
 • Any statement whose execution may immediately follow
 execution of jump statement
 • *Explicit* targets: targets mentioned in jump statement
 • *Implicit* targets: statements that follow conditional jump
 statements
 • The statement that gets executed if the branch is not taken
A = 4
\[t_1 = A \times B \]
repeat {
 \[t_2 = t_1 / C \]
 if (t2 ≥ W) {
 \[M = t_1 \times k \]
 \[t_3 = M + I \]
 }
 H = I
 M = t_3 - H
} until (T3 ≥ 0)
A = 4

\[t_1 = A \times B \]

\[t_2 = t_1 / C \]

if \(t_2 < W \) goto L2

\[M = t_1 \times k \]

\[t_3 = M + I \]

H = I

\[M = t_3 - H \]

if \(t_3 \geq 0 \) goto L3

goto L1

L3: halt
Control flow graphs

• Divides statements into basic blocks

• Basic block: a maximal sequence of statements $l_0, l_1, l_2, ..., l_n$ such that if l_j and l_{j+1} are two adjacent statements in this sequence, then
 • The execution of l_j is always immediately followed by the execution of l_{j+1}
 • The execution of l_{j+1} is always immediately preceded by the execution of l_j

• Edges between basic blocks represent potential flow of control
CFG for running example

A = 4
\(t_1 = A \times B \)

L1:
\(t_2 = \frac{t_1}{c} \)
if \(t_2 < W \) goto L2

M = \(t_1 \times k \)
t3 = M + I

L2:
H = I
M = \(t_3 - H \)
if \(t_3 \geq 0 \) goto L3

goto L1

L3:
halt

How do we build this automatically?
Constructing a CFG

- To construct a CFG where each node is a basic block
 - Identify *leaders*: first statement of a basic block
 - In program order, construct a block by appending subsequent statements up to, but not including, the next leader
- Identifying leaders
 - First statement in the program
 - Explicit target of any conditional or unconditional branch
 - Implicit target of any branch
Partitioning algorithm

- Input: set of statements, $\text{stat}(i) = i^{th}$ statement in input
- Output: set of leaders, set of basic blocks where $\text{block}(x)$ is the set of statements in the block with leader x
- Algorithm

\[
\text{leaders} = \{1\} \quad \text{//Leaders always includes first statement}
\]
\[
\text{for } i = 1 \text{ to } |n| \quad \text{//}|n| = \text{number of statements}
\]
\[
\quad \text{if } \text{stat}(i) \text{ is a branch, then}
\]
\[
\quad \quad \text{leaders} = \text{leaders} \cup \text{all potential targets}
\]
\[
\text{end for}
\]
\[
\text{worklist} = \text{leaders}
\]
\[
\text{while } \text{worklist} \text{ not empty do}
\]
\[
\quad x = \text{remove earliest statement in worklist}
\]
\[
\quad \text{block}(x) = \{x\}
\]
\[
\text{for } (i = x + 1; i \leq |n| \text{ and } i \notin \text{leaders}; i++)
\]
\[
\quad \text{block}(x) = \text{block}(x) \cup \{i\}
\]
\[
\text{end for}
\]
\[
\text{end while}
\]
Running example

1 A = 4
2 t1 = A * B
3 t2 = t1 / C
4 if t2 < W goto L2
5 M = t1 * k
6 t3 = M + I
7 H = I
8 M = t3 - H
9 if t3 ≥ 0 goto L3
10 goto L1
11 L3: halt
Running example

1 A = 4
2 t1 = A * B
3 L1: t2 = t1 / C
4 if t2 < W goto L2
5 M = t1 * k
6 t3 = M + I
7 L2: H = I
8 M = t3 - H
9 if t3 ≥ 0 goto L3
10 goto L1
11 L3: halt

Leaders = {1, 3, 5, 7, 10, 11}
Basic blocks = { {1, 2}, {3, 4}, {5, 6}, {7, 8, 9}, {10}, {11} }
Putting edges in CFG

• There is a directed edge from B_1 to B_2 if
 • There is a branch from the last statement of B_1 to the first
 statement (leader) of B_2
 • B_2 immediately follows B_1 in program order and B_1 does not end
 with an unconditional branch

• Input: $block$, a sequence of basic blocks

• Output: The CFG

```plaintext
for i = 1 to |block|
  x = last statement of block(i)
  if stat(x) is a branch, then
    for each explicit target y of stat(x)
      create edge from block i to block y
  end for
  if stat(x) is not unconditional then
    create edge from block i to block i+1
  end for
end for
```
A = 4
t1 = A * B

L1: t2 = t1/c
if t2 < W goto L2

M = t1 * k
t3 = M + I

L2: H = I
M = t3 - H
if t3 ≥ 0 goto L3

L3: halt

go to L1
Discussion

• Some times we will also consider the statement-level CFG, where each node is a statement rather than a basic block.

• Either kind of graph is referred to as a CFG.

• In statement-level CFG, we often use a node to explicitly represent merging of control.

• Control merges when two different CFG nodes point to the same node.

• Note: if input language is structured, front-end can generate basic block directly.

• “GOTO considered harmful”
A = 4

t1 = A * B

L1: t2 = t1/c

if t2 < W goto L2

M = t1 * k

t3 = M + I

L2: H = I

M = t3 - H

if t3 ≥ 0 goto L3

L3: halt
Loop optimization

- Low level optimization
 - Moving code around in a single loop
 - Examples: loop invariant code motion, strength reduction, loop unrolling

- High level optimization
 - Restructuring loops, often affects multiple loops
 - Examples: loop fusion, loop interchange, loop tiling
Low level loop optimizations

- Affect a single loop
- Usually performed at three-address code stage or later in compiler
- First problem: identifying loops
 - Low level representation doesn’t have loop statements!
Identifying loops

- First, we must identify *dominators*
 - Node a dominates node b if every possible execution path that gets to b *must* pass through a
 - Many different algorithms to calculate dominators – we will not cover how this is calculated
 - A *back edge* is an edge from b to a when a dominates b
 - The target of a back edge is a *loop header*
Natural loops

- Will focus on natural loops – loops that arise in structured programs
- For a node \(n \) to be in a loop with header \(h \)
 - \(n \) must be dominated by \(h \)
 - There must be a path in the CFG from \(n \) to \(h \) through a back-edge to \(h \)
- What are the back edges in the example to the right? The loop headers? The natural loops?
Loop invariant code motion

- Idea: some expressions evaluated in a loop never change; they are *loop invariant*
- Can move loop invariant expressions outside the loop, store result in temporary and just use the temporary in each iteration
- Why is this useful?
Identifying loop invariant code

• To determine if a statement

\[s: t = a \text{ op } b \]

is loop invariant, find all definitions of \(a \) and \(b \) that reach \(s \)

• \(s \) is loop invariant if both \(a \) and \(b \) satisfy one of the following

 • it is constant

 • all definitions that reach it are from outside the loop

 • only one definition reaches it and that definition is also loop invariant
Moving loop invariant code

- Just because code is loop invariant doesn’t mean we can move it!

- We can move a loop invariant statement \(t = a \text{ op } b \) if
 - The statement dominates all loop exits where \(t \) is live
 - There is only one definition of \(t \) in the loop
 - \(T \) is not live before the loop

- Move instruction to a \textit{preheader}, a new block put right before loop header
Strength reduction

- Like strength reduction peephole optimization
- Peephole: replace expensive instruction like a * 2 with a << 1
- Replace expensive instruction, multiply, with a cheap one, addition
- Applies to uses of an induction variable
- Opportunity: array indexing

```c
for (i = 0; i < 100; i++)
    A[i] = 0;
```

```c
i = 0;
L2: if (i >= 100) goto L1
    j = 4 * i + &A
    *j = 0;
    i = i + 1;
    goto L2
L1:
```
Strength reduction

- Like strength reduction peephole optimization
- Peephole: replace expensive instruction like a * 2 with a << 1
- Replace expensive instruction, multiply, with a cheap one, addition
- Applies to uses of an induction variable
- Opportunity: array indexing

```c
for (i = 0; i < 100; i++)
    A[i] = 0;

i = 0; k = &A;
L2: if (i >= 100) goto L1
    j = k;
    *j = 0;
    i = i + 1; k = k + 4;
    goto L2
L1:
```
Induction variables

• A *basic induction variable* is a variable j

 • whose only definition within the loop is an assignment of the form $j = j \pm c$, where c is loop invariant

 • Intuition: the variable which determines number of iterations is usually an induction variable

• A *mutual induction variable* i may be

 • defined once within the loop, and its value is a linear function of some other induction variable j such that

 $i = c_1 \cdot j \pm c_2$ or $i = j / c_1 \pm c_2$

 where c_1, c_2 are loop invariant

• A *family* of induction variables include a basic induction variable and any related mutual induction variables
Strength reduction algorithm

- Let i be an induction variable in the family of the basic induction variable j, such that $i = c_1 \times j + c_2$
- Create a new variable i'
- Initialize in preheader
 $$i' = c_1 \times j + c_2$$
- Track value of j. After $j = j + c_3$, perform
 $$i' = i' + (c_1 \times c_3)$$
- Replace definition of i with
 $$i = i'$$
- Key: c_1, c_2, c_3 are all loop invariant (or constant), so computations like $(c_1 \times c_3)$ can be moved outside loop
Linear test replacement

- After strength reduction, the loop test may be the only use of the basic induction variable.
- Can now eliminate induction variable altogether.
- Algorithm
 - If only use of an induction variable is the loop test and its increment, and if the test is always computed.
 - Can replace the test with an equivalent one using one of the mutual induction variables.

```
i = 2
for (; i < k; i++)
j = 50*i
... = j
```

Strength reduction

```
i = 2; j' = 50 * i
for (; i < k; i++, j' += 50)
... = j'
```

Linear test replacement

```
i = 2; j' = 50 * i
for (; j' < 50*k; j' += 50)
... = j'
```
Loop unrolling

- Modifying induction variable in each iteration can be expensive
- Can instead *unroll* loops and perform multiple iterations for each increment of the induction variable
- What are the advantages and disadvantages?

```plaintext
for (i = 0; i < N; i++)
  A[i] = ...  
```

Unroll by factor of 4

```plaintext
for (i = 0; i < N; i += 4)
  A[i] = ...
  A[i+1] = ...
  A[i+2] = ...
  A[i+3] = ...
```
High level loop optimizations

- Many useful compiler optimizations require restructuring loops or sets of loops
 - Combining two loops together (*loop fusion*)
 - Switching the order of a nested loop (*loop interchange*)
 - Completely changing the traversal order of a loop (*loop tiling*)
- These sorts of high level loop optimizations usually take place at the AST level (where loop structure is obvious)
Cache behavior

- Most loop transformations target cache performance
- Attempt to increase \textit{spatial} or \textit{temporal} locality
- Locality can be exploited when there is \textit{reuse} of data (for temporal locality) or recent access of nearby data (for spatial locality)
- Loops are a good opportunity for this: many loops iterate through matrices or arrays
- Consider matrix-vector multiply example
 - Multiple traversals of vector: opportunity for spatial and temporal locality
 - Regular access to array: opportunity for spatial locality

```c
for (i = 0; i < N; i++)
  for (j = 0; j < N; j++)
    y[i] += A[i][j] * x[j]
```
Loop fusion

- Combine two loops together into a single loop
- Why is this useful?
- Is this always legal?
Loop interchange

- Change the order of a nested loop
- This is not always legal – it changes the order that elements are accessed!
- Why is this useful?
- Consider matrix-matrix multiply when A is stored in column-major order (i.e., each column is stored in contiguous memory)

```c
for (i = 0; i < N; i++)
  for (j = 0; j < N; j++)
    y[i] += A[i][j] * x[j]
```
Loop interchange

- Change the order of a nested loop
- This is not always legal – it changes the order that elements are accessed!
- Why is this useful?
 - Consider matrix-matrix multiply when A is stored in column-major order (i.e., each column is stored in contiguous memory)

```plaintext
for (j = 0; j < N; j++)
  for (i = 0; i < N; i++)
    y[i] += A[i][j] * x[j]
```
Loop tiling

- Also called “loop blocking”
- One of the more complex loop transformations
- Goal: break loop up into smaller pieces to get spatial and temporal locality
- Create new inner loops so that data accessed in inner loops fit in cache
- Also changes iteration order, so may not be legal

```plaintext
for (i = 0; i < N; i++)
  for (j = 0; j < N; j++)
    y[i] += A[i][j] * x[j]

for (ii = 0; ii < N; ii += B)
  for (jj = 0; jj < N; jj += B)
    for (i = ii; i < ii+B; i++)
      for (j = jj; j < jj+B; j++)
        y[i] += A[i][j] * x[j]
```

![Diagram showing loop tiling with indices i, j, and indices for loop blocking]
Loop tiling

• Also called “loop blocking”
• One of the more complex loop transformations
• Goal: break loop up into smaller pieces to get spatial and temporal locality
• Create new inner loops so that data accessed in inner loops fit in cache
• Also changes iteration order, so may not be legal

\[
\begin{align*}
\text{for } (i = 0; i < N; i++) \\
&\hspace{1em} \text{for } (j = 0; j < N; j++) \\
&\hspace{2em} y[i] += A[i][j] \times x[j]
\end{align*}
\]

\[
\begin{align*}
\text{for } (ii = 0; ii < N; ii += B) \\
&\hspace{1em} \text{for } (jj = 0; jj < N; jj += B) \\
&\hspace{2em} \text{for } (i = ii; i < ii+B; i++) \\
&\hspace{3em} \text{for } (j = jj; j < jj+B; j++) \\
&\hspace{4em} y[i] += A[i][j] \times x[j]
\end{align*}
\]
In a real (Itanium) compiler

GFLOPS relative to -O2; bigger is better

92% of Peak Performance
Loop transformations

- Loop transformations can have dramatic effects on performance
- Doing this legally and automatically is very difficult!
- Researchers have developed techniques to determine legality of loop transformations and automatically transform the loop
 - Techniques like unimodular transform framework and polyhedral framework
 - These approaches will get covered in more detail in advanced compilers course