Control flow graphs and loop optimizations

Moving beyond basic blocks
- Up until now, we have focused on single basic blocks
- What do we do if we want to consider larger units of computation
 - Whole procedures?
 - Whole program?
- Idea: capture control flow of a program
 - How control transfers between basic blocks due to:
 - Conditionals
 - Loops

Representation
- Use standard three-address code
- Jump targets are labeled
- Also label beginning/end of functions
- Want to keep track of targets of jump statements
 - Any statement whose execution may immediately follow execution of jump statement
 - Explicit targets: targets mentioned in jump statement
 - Implicit targets: statements that follow conditional jump statements
 - The statement that gets executed if the branch is not taken

Running example

```
A = 4
t1 = A * B
repeat {
t2 = t1/C
  if (t2 <= W) {
    M = t1 * k
    t3 = M + I
  }
  H = I
  M = t3 - H
} until (T3 <= 0)
```
Control flow graphs

- Divides statements into basic blocks
- Basic block: a maximal sequence of statements \(I_0, I_1, I_2, \ldots, I_n \) such that if \(I_i \) and \(I_{i+1} \) are two adjacent statements in this sequence, then
 - The execution of \(I_i \) is always immediately followed by the execution of \(I_{i+1} \)
 - The execution of \(I_{i+1} \) is always immediate preceded by the execution of \(I_i \)
- Edges between basic blocks represent potential flow of control

CFG for running example

```
A = 4
l1 = A * B

L1: t2 = t1/c
   if t2 < W goto L2
   M = t1 * k
   t3 = M + I
   goto L1

L2: H = I
    M = t3 - H
    if t3 ≥ 0 goto L3
    M = t1 * k
    t3 = M + I
    goto L2

L3: halt
```

How do we build this automatically?

Constructing a CFG

- To construct a CFG where each node is a basic block
- Identify leaders: first statement of a basic block
- In program order, construct a block by appending subsequent statements up to, but not including, the next leader
- Identifying leaders
 - First statement in the program
 - Explicit target of any conditional or unconditional branch
 - Implicit target of any branch

Partitioning algorithm

- Input: set of statements, \(\text{stat}(i) = i^{th} \) statement in input
- Output: set of leaders, set of basic blocks where \(\text{block}(x) \) is the set of statements in the block with leader \(x \)
- Algorithm
  ```
  leaders = \{1\} //Leaders always includes first statement
  for i = 1 to |n| //|n| = number of statements
    if \( \text{stat}(i) \) is a branch, then
      leaders = leaders ∪ all potential targets
    end for
  worklist = leaders
  while worklist not empty do
    x = remove earliest statement in worklist
    block(x) = \{\}
    for (i = x + 1; i < |n| and i ∈ leaders; i++)
      block(x) = block(x) ∪ {i}
    end for
  end while
  ```

Running example

```
1   A = 4
2   t1 = A * B
3 L1: t2 = t1 / C
4   if t2 < W goto L2
5   M = t1 * k
6   t3 = M + I
7  L2: H = I
8   M = t3 - H
9   if t3 ≥ 0 goto L3
10  goto L1
11  L3: halt
```

Leaders = \{1, 3, 5, 7, 10, 11\}

Basic blocks = \{ \{1, 2\}, \{3, 4\}, \{5, 6\}, \{7, 8, 9\}, \{10\}, \{11\} \}
Putting edges in CFG

- There is a directed edge from \(B_1 \) to \(B_2 \) if
 - There is a branch from the last statement of \(B_1 \) to the first statement (leader) of \(B_2 \)
 - \(B_2 \) immediately follows \(B_1 \) in program order and \(B_1 \) does not end with an unconditional branch
- Input: block, a sequence of basic blocks
- Output: The CFG

```python
for i = 1 to |block|
x = last statement of block(i)
if stat(x) is a branch,
  for each explicit target y of stat(x)
    create edge from block_i to block_y
  end for
if stat(x) is not unconditional
  create edge from block_i to block_i+1
end for
```

Discussion

- Some times we will also consider the statement-level CFG, where each node is a statement rather than a basic block
- Either kind of graph is referred to as a CFG
- In statement-level CFG, we often use a node to explicitly represent merging of control
 - Control merges when two different CFG nodes point to the same node
- Note: if input language is structured, front-end can generate basic block directly
 - “GOTO considered harmful”

Statement level CFG

```python
A = 4
l1 = A * B
L1:
t2 = t1/c
if t2 < W goto L2
M = t1 * k
L2:
H = I
M = t3 - H
if t3 != 0 goto L3
L3:
halt
```

Loop optimization

- Low level optimization
 - Moving code around in a single loop
 - Examples: loop invariant code motion, strength reduction, loop unrolling
- High level optimization
 - Restructuring loops, often affects multiple loops
 - Examples: loop fusion, loop interchange, loop tiling

Low level loop optimizations

- Affect a single loop
- Usually performed at three-address code stage or later in compiler
- First problem: identifying loops
- Low level representation doesn’t have loop statements!
Identifying loops

- First, we must identify dominators
 - Node a dominates node b if every possible execution path that gets to b must pass through a
 - Many different algorithms to calculate dominators – we will not cover how this is calculated
 - A back edge is an edge from b to a when a dominates b
 - The target of a back edge is a loop header

Natural loops

- Will focus on natural loops – loops that arise in structured programs
 - For a node n to be in a loop with header h
 - n must be dominated by h
 - There must be a path in the CFG from n to h through a back-edge to h
 - What are the back edges in the example to the right? The loop headers? The natural loops?

Loop invariant code motion

- Idea: some expressions evaluated in a loop never change; they are loop invariant
- Can move loop invariant expressions outside the loop, store result in temporary and just use the temporary in each iteration
- Why is this useful?

Identifying loop invariant code

- To determine if a statement s: $t = a \text{ op } b$
 - s is loop invariant if both a and b satisfy one of the following
 - it is constant
 - all definitions that reach it are from outside the loop
 - only one definition reaches it and that definition is also loop invariant

Moving loop invariant code

- Just because code is loop invariant doesn’t mean we can move it!
 - We can move a loop invariant statement $t = a \text{ op } b$ if
 - The statement dominates all loop exits where t is live
 - There is only one definition of t in the loop
 - t is not live before the loop
 - Move instruction to a preheader, a new block put right before loop header

Strength reduction

- Like strength reduction peephole optimization
 - Peephole: replace expensive instruction like $a \times 2$ with $a \ll 1$
- Replace expensive instruction, multiply, with a cheap one, addition
- Applies to uses of an induction variable
- Opportunity: array indexing
 - for $(i = 0; i < 100; i++)$ $A[i] = 0$
 - Replace expensive instruction multiply, with a cheap one, addition
 - Applies to uses of an induction variable
 - Opportunity: array indexing
Strength reduction

- Like strength reduction peephole optimization
- Peephole: replace expensive instruction like a * 2 with a << 1
- Replace expensive instruction, multiply, with a cheap one, addition
- Applies to uses of an induction variable
- Opportunity: array indexing

```
for (i = 0; i < 100; i++)
A[i] = 0;
```

```
i = 0; k = 6A;
j = k;
*j = 0;
i = i + 1; k = k + 4;
goto L2
```

```
L2: if (i >= 100) goto L1
```

```
j = k;
```

```
i = i + 1; k = k + 4;
goto L2
```

```
L1:
```

Induction variables

- A basic induction variable is a variable j
- whose only definition within the loop is an assignment of the form j = f(j), where f is loop invariant
- Intuition: the variable which determines number of iterations is usually an induction variable
- A mutual induction variable i may be defined once within the loop, and its value is a linear function of some other induction variable j such that
 i = c1 * j ± c2 or i = j/c1 ± c2
 where c1, c2 are loop invariant
- A family of induction variables include a basic induction variable and any related mutual induction variables

```
for (; i < k; i++)
j = 50*i
... = j
```

```
i = 2
```

```
for (; i < k; i++)
j = 50* i
... = j
```

```
Strength reduction
```

```
Linear test replacement
```

```
for (; i < k; i++)
```

```
j = 50* i
... = j
```

```
Strength reduction
```

```
Linear test replacement
```

```
for (; i < k; i++)
j = 50* i
... = j
```

```
Linear test replacement
```

```
for (; i < k; i++, j' += 50)
```

```
for (; j' < 50*k; j' += 50)
```

```
Linear test replacement
```

```
for (; i < k; i++)
j = 50* i
... = j
```

```
Linear test replacement
```

```
for (; i < k; i++)
j = 50* i
... = j
```

Loop unrolling

- Modifying induction variable in each iteration can be expensive
- Can instead unroll loops and perform multiple iterations for each increment of the induction variable
- What are the advantages and disadvantages?

```
for (i = 0; i < N; i++)
A[i] = ... Unroll by factor of 4
```

```
for (i = 0; i < N; i++)
A[i] = ...
A[i+1] = ...
A[i+2] = ...
A[i+3] = ...
```

High level loop optimizations

- Many useful compiler optimizations require restructuring loops or sets of loops
- Combining two loops together (loop fusion)
- Switching the order of a nested loop (loop interchange)
- Completely changing the traversal order of a loop (loop tiling)
- These sorts of high level loop optimizations usually take place at the AST level (where loop structure is obvious)
Cache behavior

- Most loop transformations target cache performance
- Attempt to increase spatial or temporal locality
- Locality can be exploited when there is reuse of data (for temporal locality) or recent access of nearby data (for spatial locality)
- Loops are a good opportunity for this: many loops iterate through matrices or arrays
- Consider matrix-vector multiply example
- Multiple traversals of vector: opportunity for spatial and temporal locality
- Regular access to array: opportunity for spatial locality

\[y = Ax \]

Loop fusion

- Combine two loops together into a single loop
- Why is this useful?
- Is this always legal?

\[\begin{array}{c}
\text{for } (i = 0; i < N; i++) \\
\text{for } (j = 0; j < N; j++) \\
y[i] += A[i][j] \times x[j]
\end{array} \]

Loop interchange

- Change the order of a nested loop
- This is not always legal – it changes the order that elements are accessed!
- Why is this useful?
- Consider matrix-matrix multiply when A is stored in column-major order (i.e., each column is stored in contiguous memory)

\[\begin{array}{c}
\text{for } (i = 0; i < N; i++) \\
\text{for } (j = 0; j < N; j++) \\
y[i] += A[i][j] \times x[j]
\end{array} \]

Loop tiling

- Also called “loop blocking”
- One of the more complex loop transformations
- Goal: break loop up into smaller pieces to get spatial and temporal locality
- Create new inner loops so that data accessed in inner loops fit in cache
- Also changes iteration order, so may not be legal

\[\begin{array}{c}
\text{for } (i = 0; i < N; i++) \\
\text{for } (j = 0; j < N; j++) \\
y[i] += A[i][j] \times x[j]
\end{array} \]
In a real (Itanium) compiler

<table>
<thead>
<tr>
<th>Pred.</th>
<th>After + Interchange</th>
<th>After + Unroll-Jam</th>
<th>After + Blocking</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.0</td>
<td>22.5</td>
<td>15.0</td>
<td>7.5</td>
</tr>
</tbody>
</table>

GFLOPS relative to -O2; bigger is better

92% of Peak Performance

Thursday, April 14, 2011

Loop transformations

- Loop transformations can have dramatic effects on performance
- Doing this legally and automatically is very difficult!
- Researchers have developed techniques to determine legality of loop transformations and automatically transform the loop
 - Techniques like unimodular transform framework and polyhedral framework
 - These approaches will get covered in more detail in advanced compilers course

Thursday, April 14, 2011