Register Allocation

Main idea

- Want to replace temporary variables with some fixed set of registers
 - First: need to know which variables are live after each instruction
 - Two simultaneously live variables cannot be allocated to the same register

Register allocation

- For every node n in CFG, we have $\text{out}[n]$
 - Set of temporaries live out of n
- Two variables interfere if
 - both initially live (i.e., function args), or
 - both appear in $\text{out}[n]$ for any n
- How to assign registers to variables?

Interference graph

- Nodes of the graph = variables
- Edges connect variables that interfere with one another
- Nodes will be assigned a color corresponding to the register assigned to the variable
- Two colors can’t be next to one another in the graph

Instructions	Live vars
$b = a + 2$ |
$c = b \times b$ |
$b = c + 1$ |
return $b \times a$ |

Instructions	Live vars
$b = a + 2$ |
$c = b \times b$ |
$b = c + 1$ |
return $b \times a$ |
b,a
Interference graph

Instructions	Live vars
\(b = a + 2 \) | a
\(c = b \times b \) | a,c
\(b = c + 1 \) | b,a
return \(b \times a \) |

Interference graph

Instructions	Live vars
\(b = a + 2 \) | b,a
\(c = b \times b \) | a,c
\(b = c + 1 \) | b,a
return \(b \times a \) |

Interference graph

Instructions	Live vars
\(b = a + 2 \) | a
\(c = b \times b \) | a,c
\(b = c + 1 \) | b,a
return \(b \times a \) |

Graph coloring

- **Questions:**
 - Can we efficiently find a coloring of the graph whenever possible?
 - Can we efficiently find the optimum coloring of the graph?
 - How do we choose registers to avoid move instructions?
 - What do we do when there aren’t enough colors (registers) to color the graph?
Coloring a graph

- Kempe’s algorithm [1879] for finding a K-coloring of a graph
- Assume K=3
- Step 1 (simplify): find a node with at most K-1 edges and cut it out of the graph.
 (Remember this node on a stack for later stages.)

Monday, March 28, 2011

Coloring a graph

- Once a coloring is found for the simpler graph, we can always color the node we saved on the stack
- Step 2 (color): when the simplified subgraph has been colored, add back the node on the top of the stack and assign it a color not taken by one of the adjacent nodes

Monday, March 28, 2011

Coloring

- color register
 - eax
 - ebx

stack:

```
  a
  b
  c
  d
  e
```

Monday, March 28, 2011

Coloring

- color register
 - eax
 - ebx

stack:

```
  a
  b
  c
  d
  e
```

Monday, March 28, 2011

Coloring

- color register
 - eax
 - ebx

stack:

```
  a
  b
  c
  d
  e
```

Monday, March 28, 2011

Coloring

- color register
 - eax
 - ebx

stack:

```
  a
  b
  c
  d
  e
```

Monday, March 28, 2011
Coloring

- eax
- ebx

- stack:
 - b
 - a
 - e
 - c

Monday, March 28, 2011

Coloring

- eax
- ebx

- stack:
 - d
 - b
 - a
 - e
 - c

Monday, March 28, 2011

Coloring

- eax
- ebx

- stack:
 - b
 - a
 - e
 - c

Monday, March 28, 2011

Coloring

- eax
- ebx

- stack:
 - d
 - b
 - e
 - c

Monday, March 28, 2011

Coloring

- eax
- ebx

- stack:
 - a
 - e
 - c

Monday, March 28, 2011

Coloring

- eax
- ebx

- stack:
 - e
 - c

Monday, March 28, 2011

Coloring

- eax
- ebx

- stack:
 - c

Monday, March 28, 2011
If the graph cannot be colored, it will eventually be simplified to a graph in which every node has at least K neighbors.

- Sometimes, the graph is still K-colorable!
- Finding a K-coloring in all situations is an NP-complete problem.
 - We will have to approximate to make register allocators fast enough.
We got lucky!

Some graphs can’t be colored in K colors:

We got lucky!
Coloring

Some graphs can’t be colored in K colors:

Spilling

• Step 3 (spilling): once all nodes have K or more neighbors, pick a node for spilling
 – Storage on the stack
 • There are many heuristics that can be used to pick a node
 – not in an inner loop

Rewriting code

• Consider: add t1 t2
 – Suppose t2 is selected for spilling and assigned to stack location [ebp-24]
 – Invent new temporary t35 for just this instruction and rewrite:
 • mov t35, [ebp – 24];
 • add t1, t35
 – Advantage: t35 has a very short live range and is much less likely to interfere.
 – Rerun the algorithm; fewer variables will spill
Precolored Nodes

• Some variables are pre-assigned to registers
 – Eg: mul on x86/pentium
 • uses eax; defines eax, edx
 – Eg: call on x86/pentium
 • Defines (trashes) caller-save registers eax, ecx, edx
• Treat these registers as special temporaries; before beginning, add them to the graph with their colors

Precolored Nodes

• Can’t simplify a graph by removing a precolored node
• Precolored nodes are the starting point of the coloring process
• Once simplified down to colored nodes start adding back the other nodes as before

Optimizing Moves

• Code generation produces a lot of extra move instructions
 – mov t1, t2
 – If we can assign t1 and t2 to the same register, we do not have to execute the mov
 – Idea: if t1 and t2 are not connected in the interference graph, we coalesce into a single variable

Coalescing

• Problem: coalescing can increase the number of interference edges and make a graph uncolorable
• Solution 1 (Briggs): avoid creation of high-degree (> K) nodes
• Solution 2 (George): a can be coalesced with b if every neighbour t of a:
 – already interferes with b, or
 – has low-degree (< K)

Simplify & Coalesce

• Step 1 (simplify): simplify as much as possible without removing nodes that are the source or destination of a move (move-related nodes)
• Step 2 (coalesce): coalesce move-related nodes provided low-degree node results
• Step 3 (freeze): if neither steps 1 or 2 apply, freeze a move instruction: registers involved are marked not move-related and try step 1 again

Overall Algorithm

Simplify, freeze and coalesce
Mark possible spills
Color & detect actual spills
Liveness
Rewrite code to implement actual spills