Parsers

Agenda

• Terminology
• LL(1) Parsers
• Overview of LR Parsing

Terminology

• Grammar $G = (V_t, V_n, S, P)$
 • V_t is the set of terminals
 • V_n is the set of non-terminals
 • S is the start symbol
 • P is the set of productions
 • Each production takes the form: $V_n \rightarrow \lambda \mid (V_n \mid V_t)^*$
 • Grammar is context-free (why?)
• A simple grammar:

 $G = ((a, b), \{S, A, B\}, \{S \rightarrow A \cdot B \cdot \$, $A \rightarrow A \cdot a, A \rightarrow a, B \rightarrow B \cdot b, B \rightarrow b\}, S)$

Generating strings

• Given a start rule, productions tell us how to rewrite a non-terminal into a different set of symbols
 • By convention, first production applied has the start symbol on the left, and there is only one such production

To derive the string “$a \cdot a \cdot b \cdot b \cdot b$” we can do the following rewrites:

$S \Rightarrow A \cdot B \cdot \$
$A \Rightarrow A \cdot a$
$A \Rightarrow a$
$B \Rightarrow B \cdot b$
$B \Rightarrow b$

$S \Rightarrow A \cdot B \cdot \$ \Rightarrow A \cdot a \cdot B \cdot \$ \Rightarrow a \cdot a \cdot B \cdot b \cdot \$

$aa \cdot B \cdot b \cdot \$ \Rightarrow aa \cdot a \cdot b \cdot b \cdot \$
Terminology

- Strings are composed of symbols
 - AA a a B b A a is a string
- We will use Greek letters to represent strings composed of both terminals and non-terminals
- \(L(G) \) is the language produced by the grammar \(G \)
 - All strings consisting of only terminals that can be produced by \(G \)
 - In our example, \(L(G) = a+b+\$ \)
- All regular expressions can be expressed as grammars for context-free languages, but not vice-versa
 - Consider: \(a^i b^i \$ \) (what is the grammar for this?)

Parse trees

- Tree which shows how a string was produced by a language
 - Interior nodes of tree: non-terminals
 - Children: the terminals and non-terminals generated by applying a production rule
 - Leaf nodes: terminals

Leftmost derivation

- Rewriting of a given string starts with the leftmost symbol
- Exercise: do a leftmost derivation of the input program

\[F(V + V) \]

using the following grammar:

- What does the parse tree look like?

Rightmost derivation

- Rewrite using the rightmost non-terminal, instead of the left
- What is the rightmost derivation of this string?

\[F(V + V) \]

Simple conversions

- Top-down parsers use left-most derivation
- Bottom-up parsers use right-looking parse
- Notation:
 - LL(1): Leftmost derivation with 1 symbol lookahead
 - LL(k): Leftmost derivation with k symbols lookahead
 - LR(1): Right-looking derivation with 1 symbol lookahead
What is parsing

- Parsing is recognizing members in a language specified/defined/generated by a grammar.
- When a construct (corresponding to a production in a grammar) is recognized, a typical parser will take some action.
- In a compiler, this action generates an intermediate representation of the program construct.
- In an interpreter, this action might be to perform the action specified by the construct. Thus, if \(a + b \) is recognized, the value of \(a \) and \(b \) would be added and placed in a temporary variable.

Another simple grammar

\[
\text{PROGRAM} \rightarrow \text{begin} \text{STMTLIST} \text{end} \\
\text{STMTLIST} \rightarrow \text{STMT} ; \text{STMTLIST} \\
\text{STMT} \rightarrow \text{id} \\
\text{STMT} \rightarrow \text{if} (\text{id}) \text{STMTLIST} \\
\]

A sentence in the grammar:

\[
\text{begin if(id) if(id) id ; end; end; end; $}
\]

What are the terminals and non-terminals of this grammar?

Parsing this grammar

\[
\text{PROGRAM} \rightarrow \text{begin} \text{STMTLIST} \text{end} \\
\text{STMTLIST} \rightarrow \text{STMT} ; \text{STMTLIST} \\
\text{STMT} \rightarrow \text{id} \\
\text{STMT} \rightarrow \text{if} (\text{id}) \text{STMTLIST} \\
\]

First and follow sets

- First\((\alpha)\): the set of terminals that begin all strings that can be derived from \(\alpha \)
- First\((A)\) = \(\{x, y\}\)
- First\((xaA)\) = \(\{x\}\)
- First\((AB)\) = \(\{x, y, b\}\)
- Follow\((A)\): the set of terminals that can appear immediately after \(A \) in some partial derivation
- Follow\((A)\) = \(\{b\}\)

Another example

\[
\text{S} \rightarrow \text{A B $} \\
\text{A} \rightarrow \text{x a A} \\
\text{A} \rightarrow \text{y a A} \\
\text{A} \rightarrow \text{\lambda} \\
\text{B} \rightarrow \text{b} \\
\]

Consider \(S \rightarrow A B $ \rightarrow x a A B $ \rightarrow x a B $ \rightarrow x a b $.

First\((\alpha)\) = \(\{a \in \Sigma \mid \alpha \Rightarrow^* a\beta\} \cup \{\lambda \mid \text{if } \alpha \Rightarrow^* \lambda\}\)

Follow\((A)\) = \(\{a \in \Sigma \mid S \Rightarrow^* \ldots Aa \ldots \} \cup \{S \mid \text{if } S \Rightarrow^* \ldots A S\}\)

First and follow sets

- First\((\alpha)\) = \(\{a \in \Sigma \mid \alpha \Rightarrow^+ a\beta\}\)
- Follow\((A)\) = \(\{a \in \Sigma \mid S \Rightarrow^* \ldots Aa \ldots \} \cup \{S \mid \text{if } S \Rightarrow^* \ldots A S\}\)
Computing first sets

- Terminal: $\text{First}(a) = \{a\}$
- Non-terminal: $\text{First}(A)$
 - Look at all productions for A
 \[A \rightarrow X_1X_2...X_n \]
 - $\text{First}(A) \supseteq (\text{First}(X_i) - \lambda)$
 - If $\lambda \in \text{First}(X_i)$, $\text{First}(A) \supseteq (\text{First}(X_i) - \lambda)$
 - If λ is in $\text{First}(X_i)$ for all i, then $\lambda \in \text{First}(A)$
 - Computing $\text{First}(a)$: similar procedure to computing $\text{First}(A)$

Exercise

- What are the first sets for all the non-terminals in following grammar:
 \[S \rightarrow A \ B \ \$ \]
 \[A \rightarrow x \ a \ A \]
 \[A \rightarrow y \ a \ A \]
 \[A \rightarrow \lambda \]
 \[B \rightarrow b \]
 \[B \rightarrow A \]

Computing follow sets

- $\text{Follow}(S) = \{\$\}$
- To compute $\text{Follow}(A)$:
 - Find productions which have A on rhs. Three rules:
 1. $X \rightarrow \alpha \ A \ \beta$: $\text{Follow}(A) \supseteq (\text{First}(\beta) - \lambda)$
 2. $X \rightarrow \alpha \ A \ \beta$: If $\lambda \in \text{First}(\beta)$, $\text{Follow}(A) \supseteq \text{Follow}(X)$
 3. $X \rightarrow \alpha \ A$: $\text{Follow}(A) \supseteq \text{Follow}(X)$
 - Note: $\text{Follow}(X)$ never has λ in it.

Exercise

- What are the follow sets for
 \[S \rightarrow A \ B \ \$ \]
 \[A \rightarrow x \ a \ A \]
 \[A \rightarrow y \ a \ A \]
 \[A \rightarrow \lambda \]
 \[B \rightarrow b \]
 \[B \rightarrow A \]

Towards parser generators

- Key problem: as we read the source program, we need to decide what productions to use
- Step 1: find the tokens that can tell which production P (of the form $A \rightarrow X_1X_2...X_n$) applies
 \[
 \text{Predict}(P) = \begin{cases}
 \text{First}(X_1...X_n) & \text{if } \lambda \notin \text{First}(X_1...X_n) \\
 (\text{First}(X_1...X_n) - \lambda) \cup \text{Follow}(A) & \text{otherwise}
 \end{cases}
 \]
- If next token is in $\text{Predict}(P)$, then we should choose this production

Parse tables

- Step 2: build a parse table
 - Given some non-terminal V_n (the non-terminal we are currently processing) and a terminal V_t (the lookahead symbol), the parse table tells us which production P to use (or that we have an error)
 - More formally:
 \[
 T : V_n \times V_t \rightarrow P \cup \{\text{Error}\}
 \]
Building the parse table

- Start: \(T[A][t] = //initialize all fields to "error" \)
 - foreach A:
 - foreach P with A on its lhs:
 - foreach t in Predict(P):
 - \(T[A][t] = P \)

- Exercise: build parse table for our toy grammar

Recursive-descent parsers

- Given the parse table, we can create a program which generates recursive descent parsers
- Remember the recursive descent parser we saw for MICRO
- If the choice of production is not unique, the parse table tells us which one to take
- However, there is an easier method!

Stack-based parser for LL(1)

- Given the parse table, a stack-based algorithm is much simpler to generate than a recursive descent parser
- Basic algorithm:
 1. Push the RHS of a production onto the stack
 2. Pop a symbol, if it is a terminal, match it
 3. If it is a non-terminal, take its production according to the parse table and go to 1
- Algorithm on page 121
- Note: always start with start state

An example

- How would a stack-based parser parse: \(x a y a b \)

<table>
<thead>
<tr>
<th>Parse stack</th>
<th>Remaining input</th>
<th>Parser action</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S)</td>
<td>(x a y a b $)</td>
<td>predict 1</td>
</tr>
<tr>
<td>(A B $)</td>
<td>(x a y a b $)</td>
<td>predict 2</td>
</tr>
</tbody>
</table>
An example

- How would a stack-based parser parse:
 \texttt{x a y a b}

<table>
<thead>
<tr>
<th>Parse stack</th>
<th>Remaining input</th>
<th>Parser action</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>\texttt{x y a b}$</td>
<td>predict 1</td>
</tr>
<tr>
<td>\texttt{A B}$</td>
<td>\texttt{x y a b}$</td>
<td>predict 2</td>
</tr>
<tr>
<td>\texttt{x A B}$</td>
<td>\texttt{x y a b}$</td>
<td>match(x)</td>
</tr>
<tr>
<td>\texttt{a A B}$</td>
<td>\texttt{a y a b}$</td>
<td>match(a)</td>
</tr>
<tr>
<td>\texttt{y a A B}$</td>
<td>\texttt{a y a b}$</td>
<td>match(y)</td>
</tr>
<tr>
<td>\texttt{a A B}$</td>
<td>\texttt{a b}$</td>
<td>predict 3</td>
</tr>
<tr>
<td>\texttt{A B}$</td>
<td>\texttt{b}$</td>
<td>predict 4</td>
</tr>
<tr>
<td>\texttt{B}$</td>
<td>\texttt{b}$</td>
<td>predict 5</td>
</tr>
</tbody>
</table>

An example

- How would a stack-based parser parse:
 \texttt{x a y a b}

<table>
<thead>
<tr>
<th>Parse stack</th>
<th>Remaining input</th>
<th>Parser action</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>\texttt{x y a b}$</td>
<td>predict 1</td>
</tr>
<tr>
<td>\texttt{A B}$</td>
<td>\texttt{x y a b}$</td>
<td>predict 2</td>
</tr>
<tr>
<td>\texttt{x A B}$</td>
<td>\texttt{x y a b}$</td>
<td>match(x)</td>
</tr>
<tr>
<td>\texttt{a A B}$</td>
<td>\texttt{a y a b}$</td>
<td>match(a)</td>
</tr>
<tr>
<td>\texttt{A B}$</td>
<td>\texttt{a b}$</td>
<td>predict 3</td>
</tr>
<tr>
<td>\texttt{y A B}$</td>
<td>\texttt{a b}$</td>
<td>predict 4</td>
</tr>
<tr>
<td>\texttt{A B}$</td>
<td>\texttt{b}$</td>
<td>predict 5</td>
</tr>
</tbody>
</table>

An example

- How would a stack-based parser parse:
 \texttt{x a y a b}

<table>
<thead>
<tr>
<th>Parse stack</th>
<th>Remaining input</th>
<th>Parser action</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>\texttt{x y a b}$</td>
<td>predict 1</td>
</tr>
<tr>
<td>\texttt{A B}$</td>
<td>\texttt{x y a b}$</td>
<td>predict 2</td>
</tr>
<tr>
<td>\texttt{x A B}$</td>
<td>\texttt{x y a b}$</td>
<td>match(x)</td>
</tr>
<tr>
<td>\texttt{a A B}$</td>
<td>\texttt{a y a b}$</td>
<td>match(a)</td>
</tr>
<tr>
<td>\texttt{A B}$</td>
<td>\texttt{y a b}$</td>
<td>predict 3</td>
</tr>
<tr>
<td>\texttt{y A B}$</td>
<td>\texttt{y a b}$</td>
<td>predict 4</td>
</tr>
<tr>
<td>\texttt{A B}$</td>
<td>\texttt{b}$</td>
<td>predict 5</td>
</tr>
</tbody>
</table>

An example

- How would a stack-based parser parse:
 \texttt{x a y a b}

<table>
<thead>
<tr>
<th>Parse stack</th>
<th>Remaining input</th>
<th>Parser action</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>\texttt{x y a b}$</td>
<td>predict 1</td>
</tr>
<tr>
<td>\texttt{A B}$</td>
<td>\texttt{x y a b}$</td>
<td>predict 2</td>
</tr>
<tr>
<td>\texttt{x A B}$</td>
<td>\texttt{x y a b}$</td>
<td>match(x)</td>
</tr>
<tr>
<td>\texttt{a A B}$</td>
<td>\texttt{a y a b}$</td>
<td>match(a)</td>
</tr>
<tr>
<td>\texttt{A B}$</td>
<td>\texttt{y a b}$</td>
<td>predict 3</td>
</tr>
<tr>
<td>\texttt{y A B}$</td>
<td>\texttt{y a b}$</td>
<td>predict 4</td>
</tr>
<tr>
<td>\texttt{a A B}$</td>
<td>\texttt{a b}$</td>
<td>predict 5</td>
</tr>
</tbody>
</table>

An example

- How would a stack-based parser parse:
 \texttt{x a y a b}

<table>
<thead>
<tr>
<th>Parse stack</th>
<th>Remaining input</th>
<th>Parser action</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>\texttt{x y a b}$</td>
<td>predict 1</td>
</tr>
<tr>
<td>\texttt{A B}$</td>
<td>\texttt{x y a b}$</td>
<td>predict 2</td>
</tr>
<tr>
<td>\texttt{x A B}$</td>
<td>\texttt{x y a b}$</td>
<td>match(x)</td>
</tr>
<tr>
<td>\texttt{a A B}$</td>
<td>\texttt{a y a b}$</td>
<td>match(a)</td>
</tr>
<tr>
<td>\texttt{A B}$</td>
<td>\texttt{y a b}$</td>
<td>predict 3</td>
</tr>
<tr>
<td>\texttt{y A B}$</td>
<td>\texttt{y a b}$</td>
<td>predict 4</td>
</tr>
<tr>
<td>\texttt{a A B}$</td>
<td>\texttt{a b}$</td>
<td>predict 5</td>
</tr>
</tbody>
</table>

Wednesday, January 19, 2011
An example

• How would a stack-based parser parse:

\[\text{x a y a b} \]

<table>
<thead>
<tr>
<th>Parse stack</th>
<th>Remaining input</th>
<th>Parser action</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>x a y a b $</td>
<td>predict 1</td>
</tr>
<tr>
<td>A B $</td>
<td>x a y a b $</td>
<td>predict 2</td>
</tr>
<tr>
<td>x a A B $</td>
<td>x a y a b $</td>
<td>match(x)</td>
</tr>
<tr>
<td>a A B $</td>
<td>a y a b $</td>
<td>match(a)</td>
</tr>
<tr>
<td>A B $</td>
<td>y a b $</td>
<td>predict 3</td>
</tr>
<tr>
<td>y a A B $</td>
<td>y a b $</td>
<td>match(y)</td>
</tr>
<tr>
<td>a A B $</td>
<td>a b $</td>
<td>match(a)</td>
</tr>
<tr>
<td>A B $</td>
<td>b $</td>
<td>predict 4</td>
</tr>
<tr>
<td>B $</td>
<td>b $</td>
<td>predict 5</td>
</tr>
<tr>
<td>b $</td>
<td>b $</td>
<td>match(b)</td>
</tr>
</tbody>
</table>

An example

• How would a stack-based parser parse:

\[\text{x a y a b} \]

<table>
<thead>
<tr>
<th>Parse stack</th>
<th>Remaining input</th>
<th>Parser action</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>x a y a b $</td>
<td>predict 1</td>
</tr>
<tr>
<td>A B $</td>
<td>x a y a b $</td>
<td>predict 2</td>
</tr>
<tr>
<td>x a A B $</td>
<td>x a y a b $</td>
<td>match(x)</td>
</tr>
<tr>
<td>a A B $</td>
<td>a y a b $</td>
<td>match(a)</td>
</tr>
<tr>
<td>A B $</td>
<td>y a b $</td>
<td>predict 3</td>
</tr>
<tr>
<td>y a A B $</td>
<td>y a b $</td>
<td>match(y)</td>
</tr>
<tr>
<td>a A B $</td>
<td>a b $</td>
<td>match(a)</td>
</tr>
<tr>
<td>A B $</td>
<td>b $</td>
<td>predict 4</td>
</tr>
<tr>
<td>B $</td>
<td>b $</td>
<td>predict 5</td>
</tr>
<tr>
<td>b $</td>
<td>b $</td>
<td>match(b)</td>
</tr>
<tr>
<td>$</td>
<td></td>
<td>Done!</td>
</tr>
</tbody>
</table>

LL(k) parsers

• Can use similar techniques for LL(k) parsers
• Use more than one symbol of look-ahead to distinguish productions
• Why might this be bad?

Dealing with semantic actions

• Recall: we can annotate a grammar with action symbols
• Tell the parser to invoke a semantic action routine
• Can simply push action symbols onto stack as well
• When popped, the semantic action routine is called

Non-LL(1) grammars

• Not all grammars are LL(1)!
• Consider

\[
\text{<stmt> } \rightarrow \text{ if <expr> then <stmt list> endif}
\]

\[
\text{<stmt> } \rightarrow \text{ if <expr> then <stmt list> else <stmt list> endif}
\]

• This is not LL(1) (why?)
• We can turn this in to

\[
\text{<stmt> } \rightarrow \text{ if <expr> then <stmt list> <if suffix>}
\]

\[
\text{<if suffix> } \rightarrow \text{ endif}
\]

\[
\text{<if suffix> } \rightarrow \text{ else <stmt list> endif}
\]

Left recursion

• Left recursion is a problem for LL(1) parsers
• LHS is also the first symbol of the RHS
• Consider:

\[
\text{E } \rightarrow \text{ E + T}
\]

• What would happen with the stack-based algorithm?
Removing left recursion

\[E \rightarrow E + T \]
\[E \rightarrow T \]

Algorithm on page 125

Are all grammars LL(k)?

- No! Consider the following grammar:
 \[
 S \rightarrow E \\
 E \rightarrow (E + E) \\
 E \rightarrow (E - E) \\
 E \rightarrow x
 \]
- When parsing \(E \), how do we know whether to use rule 2 or 3?
- Potentially unbounded number of characters before the distinguishing '+' or '-' is found
- No amount of lookahead will help!

In real languages?

- Consider the if-then-else problem
- if \(x \) then \(y \) else \(z \)
- Problem: else is optional
- if \(a \) then if \(b \) then \(c \) else \(d \)
- Which if does the else belong to?
- This is analogous to a “bracket language”\(\langle \rangle \) \((i \geq j) \)

\[
\begin{align*}
S & \rightarrow \{ S \} \\
S & \rightarrow \lambda \\
C & \rightarrow \} \\
C & \rightarrow \lambda
\end{align*}
\]

[can be parsed: \(S \lambda \) or \(S \lambda \)

(it's ambiguous!)]

Solving the if-then-else problem

- The ambiguity exists at the language level. To fix, we need to define the semantics properly
- \(\} \) matches nearest unmatched \([\)’
- This is the rule \(C \) uses for if-then-else
- What if we try this?

\[
\begin{align*}
S & \rightarrow [S] \\
S & \rightarrow S1 \\
S1 & \rightarrow [S1] \\
S1 & \rightarrow \lambda
\end{align*}
\]

This grammar is still not LL(1) (or LL(k) for any k!)

Two possible fixes

- If there is an ambiguity, prioritize one production over another
 - e.g., if \(C \) is on the stack, always match ‘\(\} \)’ before matching ‘\(\lambda \)’

\[
\begin{align*}
S & \rightarrow [S \ C] \\
S & \rightarrow \lambda \\
C & \rightarrow \} \\
C & \rightarrow \lambda
\end{align*}
\]

- Another option: change the language!
 - e.g., all if-statements need to be closed with an endif

\[
\begin{align*}
S & \rightarrow \text{if } S \ E \\
S & \rightarrow \text{other} \\
E & \rightarrow \text{else } S \ \text{endif} \\
E & \rightarrow \text{endif}
\end{align*}
\]

Parsing if-then-else

- What if we don’t want to change the language?
- \(C \) does not require \(\} \) to delimit single-statement blocks
- To parse if-then-else, we need to be able to look ahead at the entire rhs of a production before deciding which production to use
- In other words, we need to determine how many ‘\(\} \)’ to match before we start matching ‘\(\} \)’s
- \(LR \) parsers can do this!
LR Parsers

- Parser which does a Left-to-right, Right-most derivation
- Rather than parse top-down, like LL parsers do, parse bottom-up, starting from leaves
- Basic idea: put tokens on a stack until an entire production is found
- Issues:
 - Recognizing the endpoint of a production
 - Finding the length of a production (RHS)
 - Finding the corresponding nonterminal (the LHS of the production)

Data structures

- At each state, given the next token,
- A goto table defines the successor state
- An action table defines whether to
 - shift – put the next state and token on the stack
 - reduce – an RHS is found; process the production
 - terminate – parsing is complete

Example

- Consider the simple grammar:
 \[
 \text{<program>} \rightarrow \text{begin } \text{<stmts>} \text{ end }$
 \]
 \[
 \text{<stmts>} \rightarrow \text{SimpleStmt ; <stmts>}
 \]
 \[
 \text{<stmts>} \rightarrow \text{begin } \text{<stmts>} \text{ end } ; \text{<stmts>}
 \]
 \[
 \text{<stmts>} \rightarrow \lambda
 \]
- Shift-reduce driver algorithm on page 142

Action and goto tables

<table>
<thead>
<tr>
<th></th>
<th>begin</th>
<th>end</th>
<th>SimpleStmt</th>
<th>$<program></th>
<th>$<stmts></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$/1$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>$/4$</td>
<td>R4</td>
<td>$/5$</td>
<td>$/2$</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>$/3$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>$/4$</td>
<td>R4</td>
<td>$/5$</td>
<td>$/7$</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>$/6$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>$/4$</td>
<td>R4</td>
<td>$/5$</td>
<td>$/10$</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>$/8$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>$/9$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>$/4$</td>
<td>R4</td>
<td>$/5$</td>
<td>$/11$</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>R2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>R3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example

- Parse: begin SimpleStmt ; SimpleStmt ; end $

<table>
<thead>
<tr>
<th>Step</th>
<th>Parse Stack</th>
<th>Remaining Input</th>
<th>Parser Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>begin $/5$; $/6$ end $</td>
<td>Shift 1</td>
</tr>
<tr>
<td>2</td>
<td>0 1</td>
<td>$/5$; $/6$ end $</td>
<td>Shift 5</td>
</tr>
<tr>
<td>3</td>
<td>0 1 5</td>
<td>;$/6$; $/6$ end $</td>
<td>Shift 6</td>
</tr>
<tr>
<td>4</td>
<td>0 1 5 6</td>
<td>;$/6$; $/6$ end $</td>
<td>Shift 5</td>
</tr>
<tr>
<td>5</td>
<td>0 1 5 6 5</td>
<td>;$/6$; $/6$ end $</td>
<td>Shift 6</td>
</tr>
<tr>
<td>6</td>
<td>0 1 5 6 5 6</td>
<td>end $</td>
<td>Reduce 4 (goto 10)</td>
</tr>
<tr>
<td>7</td>
<td>0 1 5 6 5 6 10</td>
<td>end $</td>
<td>Reduce 2 (goto 10)</td>
</tr>
<tr>
<td>8</td>
<td>0 1 5 6 10</td>
<td>end $</td>
<td>Reduce 2 (goto 2)</td>
</tr>
<tr>
<td>9</td>
<td>0 1 2</td>
<td>end $</td>
<td>Shift 3</td>
</tr>
<tr>
<td>10</td>
<td>0 1 2 3</td>
<td>$</td>
<td>Accept</td>
</tr>
</tbody>
</table>

LR Parsers

- Basic idea:
 - shift tokens onto the stack. At any step, keep the set of productions that could generate the read-in tokens
 - reduce the RHS of recognized productions to the corresponding non-terminal on the LHS of the production. Replace the RHS tokens on the stack with the LHS non-terminal.
LR(k) parsers

- LR(0) parsers
 - No lookahead
 - Predict which action to take by looking only at the symbols currently on the stack
- LR(k) parsers
 - Can look ahead \(k \) symbols
 - Most powerful class of deterministic bottom-up parsers
- LR(1) and variants are the most common parsers

Terminology for LR parsers

- Configuration: a production augmented with a “•”

\[
A \rightarrow X_i \ldots X_j \cdot X_{i+1} \ldots X_k
\]

- The “•” marks the point to which the production has been recognized. In this case, we have recognized \(X_i \ldots X_k \)
- Configuration set: all the configurations that can apply at a given point during the parse:

\[
A \rightarrow B \cdot CD
A \rightarrow B \cdot GH
T \rightarrow B \cdot Z
\]

- Idea: every configuration in a configuration set is a production that can possibly be matched

Configuration closure set

- Include all the configurations necessary to recognize the next symbol after the •
- closure0(configuration set) defined on page 146

Example:

\[
closure0(S \rightarrow \cdot E \$) = \{ \\
S \rightarrow \cdot E \$
E \rightarrow \cdot E + T
E \rightarrow \cdot T
T \rightarrow \cdot ID
T \rightarrow \cdot (E)
\}
\]

Successor configuration set

- Starting with the initial configuration set

\[
s_0 = closure0(S \rightarrow \cdot \alpha \$)
\]

 an LR(0) parser will find the successor given the next symbol \(X \)

- \(X \) can be either a terminal (the next token from the scanner) or a non-terminal (the result of applying a reduction)
- Determining the successor \(s' = go_to0(s, X) \):

 - For each configuration in \(s \) of the form \(A \rightarrow \beta \cdot X \gamma \) add

 \[
 A \rightarrow \beta \cdot X \cdot \gamma \to \tau
 \]

 - \(s' = closure0(t) \)

CFSM

- CFSM = Characteristic Finite State Machine
- Nodes are configuration sets (starting from \(s_0 \))
- Arcs are go_to relationships

Building the goto table

- We can just read this off from the CFSM

<table>
<thead>
<tr>
<th>Symbol</th>
<th>ID</th>
<th>$</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>State 0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>State 1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State 2</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>State 3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Building the action table

- Given the configuration set s:
- We shift if the next token matches a terminal after the * in some configuration

 $A \rightarrow \alpha * a \beta \in s$ and $a \in V_t$, else error
- We reduce production P if the * is at the end of a production

 $B \rightarrow \alpha \epsilon \in s$ where production P is $B \rightarrow \alpha$
- Extra actions:

 - shift if goto table transitions between states on a non-terminal
 - accept if we are about to shift $\$$

Conflicts in action table

- For LR(0) grammars, the action table entries are unique:
 from each state, can only shift or reduce
- But other grammars may have conflicts

 - Reduce/reduce conflicts: multiple reductions possible from the given configuration
 - Shift/reduce conflicts: we can either shift or reduce from the given configuration

Shift/reduce example

- Consider the following grammar:

 $S \rightarrow A y$
 $A \rightarrow \lambda | x$
- This leads to the following initial configuration set:

 $S \rightarrow * A y$
 $A \rightarrow * x$
 $A \rightarrow \lambda *$
- Can shift or reduce here

Lookahead

- Can resolve reduce/reduce conflicts and shift/reduce conflicts by employing lookahead
- Looking ahead one (or more) tokens allows us to determine whether to shift or reduce

 - (cf how we resolved ambiguity in LL(1) parsers by looking ahead one token)

Semantic actions

- Recall in LL parsers, we could integrate the semantic actions with the parser

 - Why? Because the parser was predictive
 - Why doesn’t that work for LR parsers?

 - Don’t know which production is matched until parser reduces
 - For LR parsers, we put semantic actions at the end of productions

 - May have to rewrite grammar to support all necessary semantic actions
Parsers with lookahead

- Adding lookahead creates an LR(1) parser
- Built using similar techniques as LR(0) parsers, but uses lookahead to distinguish states
- LR(1) machines can be much larger than LR(0) machines, but resolve many shift/reduce and reduce/reduce conflicts
- Other types of LR parsers are SLR(1) and LALR(1)
 - Differ in how they resolve ambiguities
 - yacc and bison produce LALR(1) parsers

LR(1) parsing

- Configurations in LR(1) look similar to LR(0), but they are extended to include a lookahead symbol
 \[A \rightarrow X_1 \ldots X_i \cdot X_{i+1} \ldots X_j \cdot I \] (where \(I \in \mathcal{V} \cup \mathcal{L} \))
- If two configurations differ only in their lookahead component, we combine them
 \[A \rightarrow X_1 \ldots X_i \cdot X_{i+1} \ldots X_j \cdot \{l_1 \ldots l_n\} \]

Building configuration sets

- To close a configuration
 \[B \rightarrow \alpha \cdot A \beta, I \]
- Add all configurations of the form \(A \rightarrow \cdot \gamma, u \) where \(u \in \text{First}(\beta) \)
- Intuition: the parse could apply the production for \(A \), and the lookahead after we apply the production should match the next token that would be produced by \(B \)

Example

\[
\text{closure}_1(S \rightarrow E \cdot S, (\lambda)) =
\]

\[
S \rightarrow E S
E \rightarrow E + T | T
T \rightarrow \text{ID} | (E)
\]

Example

\[
\text{closure}_1(S \rightarrow E \cdot S, (\lambda)) =
\]

\[
S \rightarrow E S
E \rightarrow E + T | T
T \rightarrow \text{ID} | (E)
\]
Building goto and action tables

- The function $\text{goto1}(\text{configuration-set}, \text{symbol})$ is analogous to $\text{goto0}(\text{configuration-set}, \text{symbol})$ for LR(0).
- Build goto table in the same way as for LR(0).
- Key difference: the action table.

$$\text{action}[s][x] =$$

- reduce when \ast is at end of configuration and $x \in$ lookahead set of configuration
 $$A \rightarrow \alpha \cdot \{\ldots x \ldots\} \in s$$
- shift when \ast is before x
 $$A \rightarrow \beta \cdot x \gamma \in s$$

Problems with LR(1) parsers

- LR(1) parsers are very powerful ...
 - But the table size is much larger than LR(0) — as much as a factor of $|V_t|$ (why?)
 - Example: Algol 60 (a simple language) includes several thousand states!
 - Storage efficient representations of tables are an important issue

Solutions to the size problem

- Different parser schemes
 - SLR (simple LR): build an CFSM for a language, then add lookahead wherever necessary (i.e., add lookahead to resolve shift/reduce conflicts)
 - What should the lookahead symbol be?
 - To decide whether to reduce using production $A \rightarrow \alpha$, use Follow(A)
 - LALR: merge LR states in certain cases (we won’t discuss this)