
Last time

• What are compilers?

• Phases of a compiler

	�����

������

	�������
��������

���������

���������������

	��������

�����

	����������

��

��

���������

Wednesday, January 12, 2011

Extra: Front-end vs. Back-end
• Scanner + Parser + Semantic actions + (high

level) optimizations called the front-end of a
compiler

• IR-level optimizations and code generation
(instruction selection, scheduling, register
allocation) called the back-end of a compiler

• Can build multiple front-ends for a particular
back-end

• e.g., gcc & g++, or many front-ends which
generate CIL

• Can build multiple back-ends for a particular
front-end

• e.g., gcc allows targeting different
architectures

	�����

������

	�������
��������

���������

���������������

	��������

�����

	����������

��

��

���������

front
end

back
end

Wednesday, January 12, 2011

The MICRO compiler: a
simple example

Wednesday, January 12, 2011

High level structure

• Single pass compiler: no intermediate representation

• Scanner tokenizes input stream, but is called by parser
on demand

• As parser recognizes constructs, it invokes semantic
routines

• Semantic routines build symbol table on-the-fly and
directly generate code for a 3-address virtual machine

Wednesday, January 12, 2011

The Micro language

• Tokens are defined by regular expressions

• Tokens: BEGIN, END, READ, WRITE, ID, LITERAL,
LPAREN, RPAREN, SEMICOLON, COMMA,
ASSIGN_OP, PLUS_OP, MINUS_OP, SCANEOF

• Implicit identifier declaration (no need to predeclare
variables): ID = [A-Z][A-Z0-9]*

• Literals (numbers): LITERAL = [0-9]+

• Comments (not passed on as tokens): --(Not(\n))*\n

• Program:

• BEGIN {statements} END

Wednesday, January 12, 2011

The Micro language

• One data type—all IDs are integers

• Statement:

ID := EXPR

• Expressions are simple arithmetic expressions which can
contain identifiers

• Note: no unary minus

• Input/output

READ(ID, ID, ...)

WRITE(EXPR, EXPR, ...)

Wednesday, January 12, 2011

Scanner

• What the scanner can identify corresponds to what the
finite automaton for a regular expression can accept

• Identifies the next token in the input stream

• Read a token (process finite automaton until accept
state found)

• Identify its type (determine which accept state the FA is
in)

• Return type and “value” (e.g., type = LITERAL, value = 5)

Wednesday, January 12, 2011

Recognizing tokens

• Skip spaces

• If the first non-space character is:

• letter: read until non-alphanumeric. Check for reserved words
(“begin,” “end”). Return reserved word or (ID and variable name)

• digit: read until non-digit. Return LITERAL and number

• () ; , +: return single character

• : : next must be =. Return ASSIGN_OP

• - : if next is also - skip to end of line, otherwise return
MINUS_OP

• “unget” the next character that had to be read to find end of IDs,
reserved words, literals and minus ops.

Wednesday, January 12, 2011

Parsers and Grammars

• Language syntax is usually specified with context-free
grammars (CFGs)

• Backus-Naur form (BNF) is the standard notation

• Written as a set of rewrite rules:

• Non-terminal ::= (set of terminals and non-terminals)

• Terminals are the set of tokens

• Each rule tells how to compose a non-terminal from
other non-terminals and terminals

Wednesday, January 12, 2011

Micro grammar

program ::= BEGIN statement_list END

statement_list ::= statement; | statement; statement_list

statement ::= ID := expression | READ(id_list) | WRITE(expr_list)

id_list ::= ID | ID, id_list

expr_list ::= expression | expression, expr_list

expression ::= primary | primary add_op expression

primary ::= (expression) | ID | LITERAL

add_op ::= PLUSOP | MINUSOP

system_goal ::= program SCANEOF

Wednesday, January 12, 2011

Relating the CFG to a program
• CFGs can produce a program by applying a sequence of

productions

• How to produce BEGIN id := id + id; END

• Rewrite by starting with the goal production and
replacing non-terminals with the rule’s RHS

Wednesday, January 12, 2011

Relating the CFG to a program
• CFGs can produce a program by applying a sequence of

productions

• How to produce BEGIN id := id + id; END

• Rewrite by starting with the goal production and
replacing non-terminals with the rule’s RHS

program SCANEOF

replace program

Wednesday, January 12, 2011

Relating the CFG to a program
• CFGs can produce a program by applying a sequence of

productions

• How to produce BEGIN id := id + id; END

• Rewrite by starting with the goal production and
replacing non-terminals with the rule’s RHS

BEGIN statement_list END

replace statement_list

Wednesday, January 12, 2011

Relating the CFG to a program
• CFGs can produce a program by applying a sequence of

productions

• How to produce BEGIN id := id + id; END

• Rewrite by starting with the goal production and
replacing non-terminals with the rule’s RHS

BEGIN statement; END

replace statement

Wednesday, January 12, 2011

Relating the CFG to a program
• CFGs can produce a program by applying a sequence of

productions

• How to produce BEGIN id := id + id; END

• Rewrite by starting with the goal production and
replacing non-terminals with the rule’s RHS

BEGIN ID := expression; END

replace expression

Wednesday, January 12, 2011

Relating the CFG to a program
• CFGs can produce a program by applying a sequence of

productions

• How to produce BEGIN id := id + id; END

• Rewrite by starting with the goal production and
replacing non-terminals with the rule’s RHS

BEGIN ID := primary add_op expression; END

replace 1st primary

Wednesday, January 12, 2011

Relating the CFG to a program
• CFGs can produce a program by applying a sequence of

productions

• How to produce BEGIN id := id + id; END

• Rewrite by starting with the goal production and
replacing non-terminals with the rule’s RHS

BEGIN ID := ID add_op expression; END

replace add_op

Wednesday, January 12, 2011

Relating the CFG to a program
• CFGs can produce a program by applying a sequence of

productions

• How to produce BEGIN id := id + id; END

• Rewrite by starting with the goal production and
replacing non-terminals with the rule’s RHS

BEGIN ID := ID + expression; END

replace expression

Wednesday, January 12, 2011

Relating the CFG to a program
• CFGs can produce a program by applying a sequence of

productions

• How to produce BEGIN id := id + id; END

• Rewrite by starting with the goal production and
replacing non-terminals with the rule’s RHS

BEGIN ID := ID + primary; END

replace primary

Wednesday, January 12, 2011

Relating the CFG to a program
• CFGs can produce a program by applying a sequence of

productions

• How to produce BEGIN id := id + id; END

• Rewrite by starting with the goal production and
replacing non-terminals with the rule’s RHS

BEGIN ID := ID + ID; END

Wednesday, January 12, 2011

How do we go in reverse?
• How do we parse a program given a CFG?

• Start at goal term, rewrite productions from left to right

• If it is a terminal, make sure we match input token

• Otherwise, there is a syntax error

• If it is a non-terminal

• If there is a single choice for a production, pick it

• If there are multiple choices for a production, choose the
production that matches the next token(s) in the stream

• e.g., when parsing statement, could use production for ID,
READ or WRITE

• Note that this means we have to look ahead in the stream to
match tokens!

Wednesday, January 12, 2011

Question: how much lookahead?

program ::= BEGIN statement_list END

statement_list ::= statement; | statement; statement_list

statement ::= ID := expression | READ(id_list) | WRITE(expr_list)

id_list ::= ID | ID, id_list

expr_list ::= expression | expression, expr_list

expression ::= primary | primary add_op expression

primary ::= (expression) | ID | LITERAL

add_op ::= PLUSOP | MINUSOP

system_goal ::= program SCANEOF

Wednesday, January 12, 2011

Recursive descent parsing
• Idea: parse using a set

of mutually recursive
functions

• One function per
non-terminal

• Each function
attempts to match
any terminals in its
production

• If a rule produces
non-terminals, call
the appropriate
function

statement() {
 token = peek_at_match();
 switch(token) {
 case ID:
 match(ID); //consume ID
 match(ASSIGN); //consume :=
 expression(); //process non-terminal
 break;
 case READ:
 match(READ); //consume READ
 match(LPAREN); //match (
 id_list(); //process non-terminal
 match(RPAREN); //match)
 break;
 case WRITE:
 match(WRITE);
 match(LPAREN); //match (
 expr_list(); //process non-terminal
 match(RPAREN); //match)
 break;
 }
 match(SEMICOLON);
}

statement ::= ID := expression; | READ(id_list) | WRITE(expr_list)

Wednesday, January 12, 2011

Recursive descent parsing (II)
• How do we parse id_list ::= ID id_list

• Basic idea:

• This is equivalent to the following loop (tail recursion)

• Note: in both cases, if peek_at_match() isn’t COMMA, we
don’t consume the next token!

id_list() {
 match(ID); //consume ID
 if (peek_at_match() == COMMA) {
 match(COMMA)
 id_list();
 }
}

id_list() {
 match(ID); //consume ID
 while (peek_at_match() == COMMA) {
 match(COMMA)
 match(ID);
 }
}

Wednesday, January 12, 2011

General rules

• One function per non-terminal

• Non-terminals with multiple choices (like statement) use
case or if statements to distinguish

• Conditional based on first set of the non-terminal, the
terminals that can distinguish between productions

• When non-terminal encountered, call appropriate function

• Functions are mutually recursive

• Some rules (like id_list) can be implemented with loops

Wednesday, January 12, 2011

Semantic processing

• Want to generate code for a 3-address machine:

• OP A, B, C performs A op B ➝ C

• Temporary variables may be created to convert more
complex expressions into three-address code

• Naming scheme: Temp&1, Temp&2, etc.

D = A + B * C
MULT C, B, Temp&1
ADD A, Temp&1, Temp&2
STORE &Temp2, D

Wednesday, January 12, 2011

Semantic action routines

• To produce code, we call routines during parsing to
generate three-address code.

• These action routines do one of two things:

• Collect information about passed symbols for use by
other semantic action routines. This information is
stored in semantic records.

• Generate code using information from semantic
records. and the current parse procedure

• Note: for this to work correctly, we must parse
expressions according to order of operations (i.e., must
parse a * expression before a + expression)

Wednesday, January 12, 2011

Operator Precedence

• Operator precedence can be specified in the CFG

• CFG can determine the order in which expressions are
parsed

• For example:

• Because +-expressions are composed of *-expressions, we
will finish dealing with the * production before we finish
with the + production

expr ::= factor {+ factor}

factor ::= primary {* primary}

primary ::= (expr) | ID | LITERAL

Wednesday, January 12, 2011

Example
• Annotations are inserted into grammar, specifying when semantic

routines should be called

• Consider A = B + 2;

• num() and id() create semantic records containing ID names
and number values

• addop() generates code for the expression, using information
from the num() and id() records, and creates a temporary
variable

• assign() generates code for the assignment using the temporary
variable generated by addop()

statement ::= ID = expr #assign
expr ::= term + term #addop
term ::= ID #id | LITERAL #num

Wednesday, January 12, 2011

Calling semantic routines
statement() {
 match(ID); //consume ID
 match(ASSIGN); //consume :=
 expr(); //process non-terminal
}

expr() {
 term(); //process non-terminal
 match(PLUS); //consume +
 term(); //process non-terminal
}

term() {
 token = peek_at_match();
 switch(token) {
 case ID:
 match(ID);
 break;
 case LIT;
 match(LIT);
 break;
 }
}

statement() {
 match(ID); //consume ID
 match(ASSIGN); //consume :=
 expr(); //process non-terminal
 assign();
}
expr() {
 term(); //process non-terminal
 match(PLUS); //consume +
 term(); //process non-terminal
 addop();
}
term() {
 token = peek_at_match();
 switch(token) {
 case ID:
 match(ID);
 id();
 break;
 case LIT;
 match(LIT);
 num();
 break;
 }
}

Wednesday, January 12, 2011

Next time

• Scanners

• How to specify the tokens for a language

• How to construct a scanner

• How to use a scanner generator

Wednesday, January 12, 2011

Backup slides

Wednesday, January 12, 2011

33

Annotated Micro Grammar (fig. 2.9)
Program ::= #start BEGIN Statement-list END
Statement-list ::= Statement {Statement}
Statement ::= ID := Expression; #assign |
 READ (Id-list) ; |
 WRITE (Expr-list) ;
Id-list ::= Ident #read_id {, Ident #read_id }
Expr-list ::= Expression #write_expr {, Expression #write_expr }
Expression ::= Primary { Add-op Primary #gen_infix}
Primary ::= (Expression) |
 Ident |
 INTLITERAL #process_literal
Ident ::= ID #process_id
Add-op ::= PLUSOP #process_op |
 MINUSOP #process_op
System-goal ::= Program SCANEOF #finish

Wednesday, January 12, 2011

34

Annotated Micro Grammar
Program ::= #start BEGIN Statement-list END

Semantic routines in Chap. 2 print information about what
the parser has recognized.

At #start, nothing has been recognized, so this takes no
action. End of parse is recognized by the final production:

System-goal ::= Program SCANEOF #finish

In a production compiler, the #start routine might set up
program initialization code (i.e. initialization of heap
storage and static storage, initialization of static values,
etc.)

Wednesday, January 12, 2011

35

Annotated Micro Grammar
Statement-list ::= Statement {Statement}

No semantic actions are associated with this statement because
the necessary semantic actions associated with statements are
done when a statement is recognized.

Wednesday, January 12, 2011

36

Annotated Micro Grammar
Statement ::= ID := Expression; #assign |
 READ (Id-list) ; |
 WRITE (Expr-list) ;
Expr-list ::= Expression #write_expr {, Expression #write_expr }
Expression ::= Primary { Add-op Primary #gen_infix}
Primary ::= (Expression) |
 Ident |
 INTLITERAL #process_literal

Different semantic actions used when the parser finds an expression. In Expr-
list, it is handled with write_expr, whereas Primary we choose to do nothing –
but could express a different semantic action if there were a reason to do so.

We know that different productions, or rules of the grammar, are reached in
different ways, and can tailor semantic actions (and the grammar)
appropriately.

Wednesday, January 12, 2011

37

Annotated Micro Grammar
Statement ::= Ident := Expression; #assign |
 READ (Id-list) ; |
 WRITE (Expr-list) ;
Id-list ::= Ident #read_id {, Ident #read_id }
Ident ::= ID #process_id

Note that in the grammar of Fig. 2.4, there is no Ident nonterminal.
By adding a nonterminal Ident a placeholder is created to take
semantic actions as the nonterminal is processed. The programs
look syntactically the same, but the additional productions allow the
semantics to be richer.

Semantic actions create a semantic record for the ID and thereby
create something for read_id to work with.

Wednesday, January 12, 2011

