
ECE 573 — Midterm 2
April 5, 2011

Name:
 ___KEY________________________________

Purdue email:

Please sign the following:
I affirm that the answers given on this test are mine and mine alone. I did not receive
help from any person or material (other than those explicitly allowed).

 X ___

Part Points Score
1 25

2 10

3 18

4 27

5 20

Total 100

Part 1: Semantic actions and functions (25 pts)

1) Give an example with two functions, foo and bar, where foo calls bar, where
passing all arguments to bar by value-result will give different behavior than
passing the arguments by reference. You may use global variables. (8 pts):

int x;

foo () {
 x = 0;
 bar (x);
 print(x);
}

bar (int y) { y++; print(x); }

2) Give an example of a function bar where using the callee-saves convention will
always be at least as efficient as using the caller-saves convention. (7 pts):

bar() {
}

Empty function means that we donʼt need any registers to generate code for bar, which
means that callee-saves wonʼt have to save anything.

Other alternate answers were acceptable, too (e.g., only one return site, so only one
place to generate register restore code).

3) Here is a partial stack of a method being executed (the stack grows down).
Show the stack after calling int foo(double &a, double b). Note that the
first argument is passed by reference, while the second is passed by value.
Show the frame pointer, and note how much space each part of the stack
occupies (32-bit ints and pointers, 64-bit doubles). Assume that we are using a
caller-saves convention, and that the machine has 4 registers (plus FP & SP
registers). Assume that there are no nested scopes or local variables in foo. (10
pts)

Rest of stack

Local variables

Saved registers
(16 bytes)

foo's return value
(4 bytes)

double &a
(4 bytes)

Caller's return address
(4 bytes)

Caller's frame pointer
(4 bytes)

double b
(8 bytes)

 FP register

Part 2: Code generation (10 points)

For the next problems, consider a modified for-loop:

for_double (<init_stmt>; <test_exp>; <incr_stmt>) {<body>}

This loop executes the body of the for-loop twice in every iteration (meaning the
body is executed twice per incr_stmt); “break” and “continue” statements
operate as before, breaking out of the loop entirely, or skipping to the next
incr_stmt, respectively.

1) Using a format like we did in the class slides, show what code you would
generate for for_double. (10 pts):

	 <init_stmt>
L0:	 <test_exp>
	 j!op B0; //if test_exp is false, jump
	 <body>
	 <body>
C1:	 <incr_stmt>
	 jmp L0;
B0:

I took off points for various inefficiencies. For example, using an extra register to store
how many times you executed the body. Other errors actually change the semantics;
executing incr_stmt too many times, or test_exp too many times (since test_exp might
have side effects).

Part 3: Common subexpression elimination (18 pts)

For the next questions, consider the following piece of code:

1: A = B + C;
2: P = A + D;
3: B = B + C;
4: Q = A + D;
5: A = B + C;
6: R = B + C;

1) Assume there is no aliasing between variables. For each statement, list which
expressions are “available” after the statement executes (6 pts)

1 B+C

2 B+C, A+D

3 A+D

4 A+D

5 B+C

6 B+C

2) What does the code look like after performing CSE (when eliminating a
redundant expression, replace it with the variable that holds the calculated
value of the expression) (6 pts)

1: A = B + C;
2: P = A + D;
3: B = A;
4: Q = P;
5: A = B + C;
6: R = A;

3) There are two variables which, if they were aliased, would make it so that no
expressions are redundant. What are they? (6 pts)

A & B. The definitions of A & B in lines 1, 3 and 5 would keep A+D or B+C from ever
being redundant. Note that the expressions might still become available at some point --
they just wonʼt ever be able to be exploited.

Part 4: Register allocation (27 pts)

For the next problems, consider the following code:

 1: A = 7

 2: B = 8

 3: C = A + B

 4: D = A + C

 5: B = C - D

 6: E = A + B

 7: A = D + C

 8: F = A + C

 9: G = E + F

 10: WRITE(G) //this counts as a use of G

1) Show which variables are live after each instruction (5 pts)

1 A

2 A, B

3 A, C

4 A, C, D

5 A, B, C, D

6 C, D, E

7 A, C, E

8 E, F

9 G

10 {}

2) How many registers are needed to perform register allocation on this code
without spills? (2 pts)

4 – there are 4 variables live in instruction 5.

3) Perform bottom-up register allocation on this piece of code, assuming there
are 3 registers. At each instruction, show which variable is assigned to which
register after the instruction is executed (if a register is freed, mark it as such
even if it still holds a value). When a register needs to be spilled, pick the one
whose value is next used the farthest away. If there is a tie, pick the lowest
numbered register. If multiple registers are free when allocating registers,
choose the lowest numbered one. Indicate where loads and stores due to spills
happen (10 pts)
Inst R1 R2 R3 Loads/Stores due to spills

1 A

2 A B

3 A C B is freed as it stops being live

4 A C D

5 A B D Spill C. There is a tie between C & D, so we pick
C. I also accepted picking D

6 E D Free A & B

7 E C A Unspill C into R2, use C & D, free D, put A in R3

8 E F Free C & A

9 G Free E & F

10 Free G

4) Draw the interference graph for the code. (5 pts):

5) Show the order in which the graph will be simplified when performing register
allocation via graph coloring. If there is a tie (multiple possible simplifications
can occur in a step), choose the variable that appears earliest in alphabetical
order. If you cannot simplify without spilling, choose the variable with the
fewest uses next. Mark any variables that are potential spills with a “*”. (5 pts)

F G E* D* A B C

Thereʼs a tie for uses between B and D, so an alternate order would be:

F G E* B* A C D

Note that many people spilled A first (rather than E). Although A interferes with the most
other variables, gets used many times. So spilling A results in fewer spilled variables,
but more actual spill operations.

F

G

A

B

C

D

E

Part 5: Instruction Scheduling (20 pts)

For the following problems, assume a machine that has 1 ALU that can execute
adds and shifts, with a single-cycle latency, 1 pipelined MU that can do integer
multiplication with a two-cycle latency and adds with a single cycle latency, and 1
non-pipelined LS unit that can execute loads with a two-cycle latency and stores
with a one-cycle latency.

1) Draw the reservation tables for the following instructions: LD, ST, ADD, MUL,
SHIFT (6 pts):

X

X

ALU MU LS

LD

X

ALU MU LS

ST

X

ALU MU LS

ADD

X

ALU MU LS

SHIFT

X

ALU MU LS

ADD

X

ALU MU LS

MUL

2) Draw the data-dependence graph for the following piece of code, including
latencies. Show the heights of each node in the graph (8 pts):

 1: LD A, R1; //Load A into R1

 2: LD B, R2;

 3: R3 = R2 * 2;

 4: R4 = R1 + R2;

 5: R5 = R4 << 1; //Shift R4 by 1

 6: R6 = R2 + 1;

 7: R7 = R5 + R6

 8: ST R7, C; //Store R7 into C

DDG is below. The heights are in parentheses. Note that height is defined as the
longest path from the instruction to the end of the DDG, so instr. 3 has a height of 0. I
also accepted as correct people who offset heights by the latencies of instructions 8 and
3.

1 (5) 2 (5)

3 (0)4 (3)

5 (2) 6 (2)

7 (1)

8 (0)

2 2

2

2

1

1 1

1

3) Consider the peephole optimization that converts “* 2” into “<< 1”. Why might
this optimization be useful on this machine in general? (3 pts)

On this machine, shifts have a latency of one cycle, but multiplies have a latency of two.
In general, we would prefer to use the faster instruction.

4) Why might that peephole optimization be a bad idea for this particular piece of
code? (3 pts)

This question was a little broken. The answer I was going for is that the MU isnʼt utilized
very much, and the multiply isnʼt on the critical path, so itʼs OK to let it use the MU,
whereas turning it into a shift would force it to use the oversubscribed ALU. However, in
this particular piece of code, the total run time would be the same either way (because
all the adds could just be moved over to the MU).

I accepted pretty much any answer that gave an argument for why it might or might not
be useful.

