
1

Loop Parallelization
Techniques and dependence

analysis
• Data-Dependence Analysis
• Dependence-Removing Techniques
• Parallelizing Transformations
• Performance-enchancing Techniques

Tuesday, December 8, 2009

When can we run code in
parallel?

• Two regions of code can be run in parallel
when no dependences exist across
statements to be run in parallel

2

for (i = 0; i < n; i++) {
 c[i] = a[i] * b[i] + c[i]
}

a = b + c
x = y + z
u = a + x

Tuesday, December 8, 2009

3

Some motivating examples

do i = 1, n
 a(i) = b(i) S1

 c(i) = a(i-1) S2

end do

Is it legal to
• Run the i loop in parallel?
• Put S2 first in the loop?

do I = 1, n
 a(i) = b(i)
end do

do I = 1, n
 c(i) = a(i-1)
end do

Is it legal to
• Fuse the two i loops?

Need to determine if, and in what order, two
references access the same memory
location

Then can determine if the references might
execute in a different order after some
transformation.

Tuesday, December 8, 2009

4

Dependence, an example

do i = 1, n
 a(i) = b(i) S1

 c(i) = a(i-1) S2

end do

i = 1
b(1)
a(1)
a(0)
c(1)

i = 2
b(2)
a(2)
a(1)
c(2)

i = 3
b(3)
a(3)
a(2)
c(3)

i = 4
b(4)
a(4)
a(3)
c(4)

i = 5
b(5)
a(5)
a(4)
c(5)

i = 6
b(6)
a(6)
a(5)
c(6)

Indicates dependences, i.e.
the statement at the head
of the arc is somehow
dependent on the
statement at the tail

Tuesday, December 8, 2009

5

Can this loop be run in parallel?

do i = 1, n
 a(i) = b(i) S1

 c(i) = a(i-1) S2

end do

i = 1
b(1)
a(1)
a(0)
c(1)

i = 2
b(2)
a(2)
a(1)
c(2)

i = 3
b(3)
a(3)
a(2)
c(3)

i = 4
b(4)
a(4)
a(3)
c(4)

i = 5
b(5)
a(5)
a(4)
c(5)

i = 6
b(6)
a(6)
a(5)
c(6)

Assume 1 iteration per processor, then if for
some reason some iterations execute
out of lock-step, bad things can happen

In this case, read of a(2) in i=3 will get an
invalid value!

time

Tuesday, December 8, 2009

6

Can we change the order of the
statements?

do i = 1, n
 a(i) = b(i) S1

 c(i) = a(i-1) S2

end do

do i = 1, n
 c(i) = a(i-1) S2

 a(i) = b(i) S1

end do

a(0) c(1) b(1) a(1) || a(1) c(2) b(2) a(2) || a(2) c(3) b(3) a(3) || a(3) c(4) b(4) a(4)

No problem with a serial execution.

b(1) a(1) a(0) c(1) || b(2) a(2) a(1) c(2) || b(3) a(3) a(2) c(3) || b(4) a(4) a(3) c(4)
Access order before statement reordering

i=1 i=2 i=3 i=4

i=1 i=2 i=3 i=4

Access order after statement reordering

Tuesday, December 8, 2009

7

Can we fuse the loop?
do i = 1, n
 a(i) = b(i) S1

end do
do i
 c(i) = a(i-1) S2

end do

do i = 1, n
 a(i) = b(i) S1

 c(i) = a(i-1) S2

end do

In original execution of
the unfused loops:

• a(i-1) gets value
assigned in a(i)

• Can’t overwrite
value assigned to
a(i) or c(i)

• B(i) value comes
from outside the
loop

1. Is ok after fusing, because get a(i-1)
from the value assigned in the previous
iteration

2. No “output” dependence on a(i) or c(i),
not overwritten

3. No input flow, or true dependence on a
b(i), so value comes from outside of the
loop nest

Tuesday, December 8, 2009

8

Types of dependence
a(2) = …

… = a(2)

Flow or true dependence – data for a read comes from a
previous write (write/read hazard in hardware terms

… = a(2)

a(2) = …

a(2) = …

a(2) = …

Anti-dependence – write to a location cannot occur before
a previous read is finished

Output dependence – write a location must wait for a
previous write to finish

Dependences always go from earlier in a program execution to later in the
execution

Anti and output dependences can be eliminated by using more storage.

Tuesday, December 8, 2009

9

Eliminating anti-dependence
… = a(2)

a(2) = …

Anti-dependence – write to a location cannot occur before
a previous read is finished

Let the program in be:

a(2) = …
… = a(2)
a(2) = …
= … a(2)

Create additional storage
to eliminate the anti-
dependence

The new program is:

a(2) = …
… = a(2)
aa(2) = …
= … aa(2)

No more anti-dependence!

Similar to register renaming

Tuesday, December 8, 2009

10

Getting rid of output dependences

a(2) = …

a(2) = … Output dependence – write to a location must wait
for a previous write to finish

Let the program be:

a(2) = …
… = a(2)
a(2) = …
… = a(2)

Again, by creating new
storage we can
eliminate the output
dependence.

The new program is:

a(2) = …
… = a(2)
aa(2) = …
… = aa(2)

Tuesday, December 8, 2009

11

Eliminating dependences
• In theory, can always get rid of anti- and output

dependences
• Only flow dependences are inherent, i.e. must

exist, thus the name “true” dependence.
• In practice, it can be complicated to figure out

how to create the new storage
• Storage is not free – cost of creating new

variables may be greater than the benefit of
eliminating the dependence.

Tuesday, December 8, 2009

12

An example of when it is messy to
create new storage

do i = 1, n
 a(3i-1) = …
 a(2i) = …
 = … a(i)
end do

A(3i) writes locations 2, 5, 8, 11, 14, 17, 20, 23

A(2i) writes locations 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22

A(i) reads from outside the of loop when i = 1, 3, 7, 9, 13,
15, 19, 21

A(i) reads from a(3i-1) when I = 5, 11, 17, 23

A(i) reads from a(2i) when I = 2, 4, 6, 8, 10, 12, 14, 16, 18,
20, 22

Tuesday, December 8, 2009

13

Data Dependence Tests:
Other Motivating Examples

Statement Reordering
can these two statements be
swapped?

DO i=1,100,2
 B(2*i) = ...
 ... = B(3*i)
ENDDO

Loop Parallelization
Can the iterations of this
loop be run concurrently?

DO i=1,100,2
 B(2*i) = ...
 ... = B(2*i) +B(3*i)
ENDDO

An array data dependence exists between two data references iff:
• both references access the same storage location
• at least one of them is a write access

Tuesday, December 8, 2009

14

Dependence sources and sinks
• The sink of a

dependence is the
statement at the head
of the dependence
arrow

• The source is the
statement at the tail of
the dependence arrow

• Dependences always
go forward in time in a
serial execution

for (i=1; i < nl i++) {
 a[i] = …

 … = a[i-1]
}

a[1] =
 = a[0]
a[2] =
 = a[1]
a[3] =
 = a[2]
a[4] =
 = a[3]

Tuesday, December 8, 2009

15

Data Dependence Tests: Concepts
Terms for data dependences between statements of loop iterations.
• Distance (vector): indicates how many iterations apart the source

and sink of a dependence are.
• Direction (vector): is basically the sign of the distance. There are

different notations: (<,=,>) or (+1,0,-1) meaning dependence (from
earlier to later, within the same, from later to earlier) iteration.

• Loop-carried (or cross-iteration) dependence and non-loop-carried
(or loop-independent) dependence: indicates whether or not a
dependence exists within one iteration or across iterations.
– For detecting parallel loops, only cross-iteration dependences matter.
– equal dependences are relevant for optimizations such as statement

reordering and loop distribution.

• Iteration space graphs: the un-abstracted form of a dependence
graph with one node per statement instance.

Tuesday, December 8, 2009

16

Data Dependence Tests: Iteration space graphs
• Iteration space graphs: the un-abstracted form of a dependence

graph with one node per statement instance.

i1 = 1 2 3 4 5 6

This is an
iteration
space graph
(or diagram)



i2 = 1

i2 = 3

i2 = 2

I2 = 4

i2 = 5
do i1 = 1, n
 do i2 = 1, n
 a(i1,i2) = a(i1-2,i2+3)
 end do
end do

Tuesday, December 8, 2009

17

Data Dependence Tests: Distance Vectors
Distance (vector): indicates how many iterations apart are the source

and sink of dependence.

i2 = 1

i2 = 3

i2 = 2

I2 = 4

i2 = 5

i1 = 1 2 3 4 5 6

i=(1,4)  i’ = (3,1)
i’ – i = (2,-3)

do i1 = 1, n
 do i2 = 1, n
 a(i1,i2) = a(i1-2,i2+3)
 end do
end do

Tuesday, December 8, 2009

18

Data Dependence Tests: Direction Vectors
Direction (vector): is basically the sign of the distance. There are different

notations: (<,=,>) or (1,0,-1) meaning dependence (from earlier to later,
within the same, from later to earlier) iteration.

do i1 = 1, n
 do i2 = 1, n
 a(i1,i2) = a(i1-2,i2+3)
 end do
end do

i1 = 1 2 3 4 5 6

I=(1,4)  I’ = (3,1)
I’ – I = d = (2,-3)
Direction = (<,>) (or
sign(2),sign(-3) ==
(+1,-1)) in some works I2 = 1

i2 = 3

i2 = 2

I2 = 4

i2 = 5

Tuesday, December 8, 2009

19

Data Dependence Tests: Loop Carried
• Loop-carried (or cross-iteration) dependence and non-loop-carried

(or loop-independent) dependence: indicates whether or not a
dependence exists within one iteration or across iterations.

i1 = 1 2 3 4 5 6

Dependence on
the i2 loop is
loop carried.

Dependence on
the i1 loop is
not.

I2 = 1

i2 = 3

i2 = 2

I2 = 4

i2 = 5
do i1 = 1, n
 do i2 = 1, n
 a(i1,i2) =
 = a(i1,i2-1)
 end do
end do

Tuesday, December 8, 2009

20

Data Dependence Tests: Loop Carried
• Loop-carried (or cross-iteration) dependence and non-loop-carried

(or loop-independent) dependence: indicates whether or not a
dependence exists within one iteration or across iterations.

do i1 = 1, n
 dopar i2 = 1, n
 a(i1,i2) =
 end
 dopar i’2 = 1, n
 = a(i1,i’2-1)
 end do
end do

This is legal since loop
splitting enforces
the loop carried
dependences

i1 = 1 2 3 4 5

i’2 = 2
i’2 = 3

i2 = 5
i’2 = 1

i2 = 3
i2 = 4

i2 = 1
i2 = 2

i’2 = 4
i’2 = 5

Tuesday, December 8, 2009

Data Dependence Tests: Loop Carried
• Loop-carried (or cross-iteration) dependence and non-loop-carried

(or loop-independent) dependence: indicates whether or not a
dependence exists within one iteration or across iterations.

This is not legal – turns
true into anti
dependence

do i1 = 1, n
 dopar i2 = 1, n
 = a(i1,i2-1)
 end do
 dopar i2 = 1, n
 a(i1,i2) =
 end
end do

i1 = 1 2 3 4 5

i2 = 2
i2 = 3

I’2 = 5
i2 = 1

I’2 = 3
I’2 = 4

I’2 = 1
I’2 = 2

i2 = 4
i2 = 5

Tuesday, December 8, 2009

22

A quick aside
A loop
do i = 4, n, 3
 a(i)
end do

Can be always be
normalized to
the loop 

do i = 0, (n-1)/3-1, 1
 a(3*i+4)
end do

This makes discussing the data-dependence problem
easier since we only worry about loops from 1, n, 1

More precisely, do i = lower, upper, stride { a(i)} becomes
do i’ = 0, (upper – lower + stride)/stride – 1, 1 {a(i’*stride + lower)}

Tuesday, December 8, 2009

23

Data Dependence Tests:
Formulation of the

Data-dependence problem

DO i=1,n
 a(4*i) = . . .
 . . . = a(2*i+1)
ENDDO

the question to answer:
can 4*i ever be equal to 2*i+1 within i ∈[1,n]?
If so, what is the relation of the i’s when they
are equal?

In general, given:
• two subscript functions f(I) and g(I) and
• upper and lower loop bounds
Question to answer: Does
 f(I) = g(I’) have an integer solution such that
 lower ≤ I, I’ ≤ upper?

Tuesday, December 8, 2009

24

Diophantine equations

• An equation whose coefficients and
solutions are all integers is a Diophantine
equation

• Determining if a Diophantine equation has
a solution requires a slight detour into
elementary number theory

• Let f(i) = a1*i + c1 and g(i’) = b1*i’ + c2, then
f(i) = g(I’) ⇒ a1*i - b1*i’ = c2 - c1
fits general form of Diophantine equation of

a1*i1 + a2*i2 = c

Tuesday, December 8, 2009

25

Euclid Algorithm: find gcd(a,b)
 Repeat
 a ← a mod b
 swap a,b
 Until b=0

Does f(i) = g(i’) have a solution?

• The Diophantine equation
 a1*i2 + a2*i2 = c

has no solution if gcd(a1,a2) does not evenly divide c
Examples:
 15*i +6*j -9*k = 12 has a solution gcd=3
 2*i + 7*j = 3 has a solution gcd=1
 9*i + 3*j + 6*k = 5 has no solution gcd=3

→The resulting a is the gcd

for more than two numbers:
gcd(a,b,c) = (gcd(a,gcd(b,c))

Tuesday, December 8, 2009

26

Euclid Algorithm: find gcd(a,b)
 Repeat
 a ← a mod b
 swap a,b
 Until b=0

Finding GCDs

→The resulting a is the gcd

for more than two numbers:
gcd(a,b,c) = (gcd(a,gcd(b,c))

a = 16, b = 6
a  16 mod 6
b  4, a  6
a  6 mod 4
b  2, a  4
a  4 mod 2
a  2, b  0

Tuesday, December 8, 2009

27

Determining if a Diophantine
equation has a solution

Tuesday, December 8, 2009

28

More information on gcd’s and
dependence analysis

• General books on number theory for info on Diophantine
equations

• Books by Utpal Banerjee (Kluwer Academic Publishers),
(Illinois, now Intel) who developed the GCD test in late
70’s, Mike Wolfe, (Illinois, now Portland Group) “High
Performance Compilers for Parallel Computing

• Randy Allen’s thesis, Rice University
• Work by Eigenman & Blume Purdue (range test)
• Work by Pugh (Omega test) Maryland
• Work by Hoeflinger, etc. Illinois (LMAD)

Tuesday, December 8, 2009

29

Other DD Tests
• The GCD test is simple but by itself not very useful

– Most subscript coefficients are 1, gcd(1,i) = 1
• Other tests

– Banerjee test: accurate state-of-the-art test, takes direction
and loop bounds into account

– Omega test: “precise” test, most accurate for linear
subscripts (See Bill Pugh publications for details). Worst
case complexity is bad.

– Range test: handles non-linear and symbolic subscripts
(Blume and Eigenmann)

– many variants of these tests
• Compilers tend to perform simple to complex tests in

an attempt to disprove dependence

Tuesday, December 8, 2009

30

What do dependence tests do?
• Some tests, and Banerjee’s in some situations (affine

subscripts, rectangular loops) are precise
– Definitively proves existence or lack of a dependence

• Most of the time tests are conservative
– Always indicate a dependence if one may exist
– May indicate a dependence if it does not exist

• In the case of “may” dependence, run-time test or
speculation can prove or disprove the existence of a
dependence

• Short answer: tests disprove dependences for some
dependences

Tuesday, December 8, 2009

31

Banerjee’s Inequalities
If a*i1 - b*i’1 = c has a solution, does it have a

solution within the loop bounds, and for a
given direction vector?

do i = 1, 100
 x(i) =
 = x(i-1)
end do
Note: there is a (<)

dependence.
Let’s test for (=) and

(<) dependence.

By the mean value theorem, c can be a solution to
the equation f(i) = c, i ∈ [lb,ub] iff

• f(lb) <= c
• f(ub) >= c
(assumes f(i) is monotonically increasing over the

range [lb,ub])

The idea behind Banerjee’s Inequalities is to find
the maximum and minimum values the
dependence equation can take on for a given
direction vector, and see if these bound c. This
is done in the real domain since integer
solution requires integer programming (in NP)

Tuesday, December 8, 2009

32

Banerjee test

If a*i1 - b*i’1 = c has a solution, does it have
a solution within the loop bounds for a
given direction vector (<) or (=) in this
case)?

For our problem, does i1 – i’1 = -1 have a
solution?

• For i1 = i’1, then it does not (no (=) dependence).

• For i1 < i’1, then it does ((<) dependence).

Tuesday, December 8, 2009

33

Example of where the direction
vector makes a difference

do i = 1, 100
 x(i) =
 = x(i-1)
end do
Note: there is a (<)

dependence.
Let’s test for (=) and

(<) dependence.

Dependence equation is i-i’ = -1

If i = i’ (i.e. “=“ direction vector), then
i-i’ = 0, ∀ i, i’

If i < i’, then i-i’ ≠ 0, and when i=i’-1, the
equation has a solution.

Cannot parallelize the loop, but can reorder x(i) and x(i-1)
within the loop.

Tuesday, December 8, 2009

34

anti
dependence
(cross-iter.)

Program Transformations
• Applying data dependence tests to untransformed

loops would determine that most loops are not
parallel.

Reason #1: there are many anti and output
dependences

Solution: scalar and array privatization

Dependence Classification:
• flow dependence:

read-write dependence
• anti dependence:

write-read dependence
• output dependence:

write-write dependence

DO i=1,n
 t = a(i)+b(I)
 c(i) = t
ENDDO

flow
dependence
(loop-indep.)

Tuesday, December 8, 2009

35

Scalar Expansion/Privatization

DO i = 1,n
 t = a(i) + b(i)
 c(i) = t
ENDDO

PARALLEL DO i = 1,n
 Private t
 t = a(i) + b(i)
 c(i) = t
ENDDO

PARALLEL DO i = 1,n
 t1(i) = a(i) + b(i)
 c(i) = t1(i)
ENDDO

privatization

expansion
Private creates one

copy per parallel
loop iteration.

Tuesday, December 8, 2009

36

Analysis and Transformation for
Scalar Expansion/Privatization

Loop Analysis:
– find variables that are

used in the loop body but
dead on entry. i.e., the
variables are written (on
all paths) through the
loop before being used.

– determine if the variables
are live out of the loop
(make sure the variable
is defined in the last loop
iteration).

Transformation (variable t)
• Privatization:

– put t on private list. Mark as
last-value if necessary.

• Expansion:
– declare an array t0(n), with

n=#loop_iterations.
– replace all occurrences of t in

the loop body with t0(i), where i
is the loop variable.

– live-out variables: create the
assignment t=t0(n) after the
loop.

Tuesday, December 8, 2009

37

Parallelization of Reduction
Operations

DO i = 1,n
 sum = sum + a(i)
ENDDO

PARALLEL DO i = 1,n
 Private s = 0
 s = s + a(i)
POSTAMBLE
 Lock
 sum = sum + s
 Unlock
ENDDO

PARALLEL DO i = 1,n
 ATOMIC:
 sum = sum + a(i)
ENDDO

DIMENSION s(#processors)
DO j = 1,#processors
 s(j) = 0
ENDDO
PARALLEL DO i = 1,n/#processors
 s(myproc) = s(myproc) + a(i)
ENDDO
DO j = 1,#processors
 sum = sum + s(j)
ENDDO

Tuesday, December 8, 2009

38

Analysis and Transformation for
(Sum) Reduction Operations

• Loop Analysis:
– find reduction statements

of the form s = s + expr
where expr does not use
s.

– discard s as a reduction
variable if it is used in non-
reduction statements.

• Transformation:
(as shown on previous slide)
– create private or expanded

variable and replace all
occurrences of reduction
variable in loop body.

– update original variable
with sum over all partial
sums, using a critical
section in a loop postamble
or a summation after the
loop, respectively.

Tuesday, December 8, 2009

39

Induction Variable Substitution

ind = ind0
DO j = 1,n
 a(ind) = b(j)
 ind = ind+k
ENDDO

ind = ind0
PARALLEL DO j = 1,n
 a(ind0+k*(j-1)) = b(j)
ENDDO

Gives k*j – k + indo
This is of the form
a*j + c, which is good
for dependence analysis. j is the

loop canonical induction
variable.

Example: string concat
j = eosA
do i = 1, b.length
 a(j) = b(i)
 j = j + 1;
end

Tuesday, December 8, 2009

40

Induction Variable Analysis and
Transformation

• Loop Analyis:
– find induction

statements of the form
s = s + expr where
expr is a loop-invariant
term or another
induction variable.

– discard variables that
are modified in non-
induction statements.

• Transformation:
– find the following

increments

– for each use of IV:
• compute the increment

inc with respect to the
start of the outermost
loop in which it is an
induction sequence

• Replace IV by inc+ind0

outer loop
 loop

 IV use

start of outer loop body

start of inner loop body
start of inner loop

end of inner loop body
end of inner loop

Tuesday, December 8, 2009

41

Induction Variable Analysis and
Transformation

• Transformation:
– find the following increments

– for each use of IV:
• compute the increment

inc with respect to the
start of the outermost
loop in which it is an
induction sequence in

• Replace IV by inc+ind0.

start of inner loop body

end of inner loop body

outer loop
 loop

 IV use

start of outer loop body
start of inner loop

end of inner loop

ind = ind0
PARALLEL DO j = 1,n
 a(ind0+k*(j-1)) = b(j)
ENDDO

Thus in the above
• ind0 is obvious;
• inc is k*(j-1)

• inc is an induction
sequence within the loop
DO j

• The inner loop body is
empty

Tuesday, December 8, 2009

42

Loop Fusion and Distribution

DO j = 1,n
 a(j) = b(j)
ENDDO

DO k=1,n
 c(k) = a(k)
ENDDO

DO j = 1,n
 a(j) = b(j)
 c(j) = a(j)
ENDDO

fusion

distribution

• necessary form for vectorization
• can provide synchronization
 necessary for “forward” dependences
• can create perfectly nested loops

• less parallel loop startup overhead
• can increase affinity (better locality of
 reference)

Both transformations change the statement execution order. Data
dependences need to be considered!

Tuesday, December 8, 2009

43

Loop Fusion and Distribution
DO j = 1,n
 a(j) = b(j)
ENDDO

DO k=1,n
 c(k) = a(k)
ENDDO

DO j = 1,n
 a(j) = b(j)
 c(j) = a(j)
ENDDO

fusion

distribution

•

Dependence analysis needed:
• Determine uses/def and def/use chains across unfused loops
• Every def ⇒use link should have a flow dependence in the fused

loop
• Every use ⇒def link should have an anti-dependence in the fused

loop
• No dependence not associated with a use ⇒def or def ⇒use

should be present in the fused loop

Tuesday, December 8, 2009

44

Loop Fusion and Distribution
DO j = 1,n
 S1: a(j-1) = b(j)
ENDDO

DO k=1,n
 S2: c(k) = a(k)
ENDDO

DO j = 1,n
 S1: a(j-1) = b(j)
 S2: c(j) = a(j)
ENDDO

fusion

distribution

j, k= 1 2 3 4

Flow dependence from S1 to S2

Anti-dependence from S2 to S2

k = 1 2 3 4

Tuesday, December 8, 2009

45

Dependence graphs
DO j = 1,n
 S1: a(j-1) = b(j)
ENDDO

DO k=1,n
 S2: c(k) = a(k)
ENDDO

DO j = 1,n
 S1: a(j-1) = b(j)
 S2: c(j) = a(j)
ENDDO

fusion

distribution

S1

S2

S1

S2

δa(<)δf

Tuesday, December 8, 2009

46

Loop Interchange

PDO i = 1,n
 DO j =1,m
 a(i,j) = b(i,j)
 ENDDO
ENDDO

PDO j =1,m
 DO i = 1,n
 a(i,j) = b(i,j)
 ENDDO
ENDDO

Tuesday, December 8, 2009

46

Loop Interchange

PDO i = 1,n
 DO j =1,m
 a(i,j) = b(i,j)
 ENDDO
ENDDO

PDO j =1,m
 DO i = 1,n
 a(i,j) = b(i,j)
 ENDDO
ENDDO

• loop interchanging alters the data reference order
 significantly affects locality-of reference
 data dependences determine the legality of the transformation:

dependence structure should stay the same

• loop interchanging may also impact the granularity of the parallel
 computation (inner loop may become parallel instead of outer)

Tuesday, December 8, 2009

Loop interchange legality

47

(=,=): after interchange still loop indepent dependences
(=,<): after interchange, is (<,=), still carried on the j loop
(<,=): after interchange is (=,<), still carried on the i loop
(<.<): after interchange still positive in both directions

(>,*), (=,>): not possible – dependences must move forward in
Iteration space

(<,>): after interchange is (>,<), except cannot have a (>,<)
dependence. The source and sink of the dependence change,
changing the dependence. Not legal.

Tuesday, December 8, 2009

52

Parallel ExecutionScheme

• Most widely used: Microtasking scheme

Main
task

Helper
tasks

 Main task creates helpers

Parallel loop

Parallel loop

Wake up helpers

Wake up helpers

Barrier, helpers go back to sleep

Barrier, helpers go back to sleep

Tuesday, December 8, 2009

53

Program Translation for

 Subroutine x
 ...
C$OMP PARALLEL DO
 DO j=1,n
 a(j)=b(j)
 ENDDO
 …
 END

Subroutine x
…
call scheduler(1,n,a,b,loopsub)
…
END

Subroutine loopsub(lb,ub,a,b)
integer lb,ub
DO jj=lb,ub
 a(jj)=b(jj)
ENDDO
END

Tuesday, December 8, 2009

