Loop Parallelization Techniques and dependence analysis

- Data-Dependence Analysis
- Dependence-Removing Techniques
- Parallelizing Transformations
- Performance-enchancing Techniques

When can we run code in parallel?

- Two regions of code can be run in parallel when no dependences exist across statements to be run in parallel

$$
\begin{aligned}
& a=b+c \\
& x=y+z \\
& u=a+x
\end{aligned}
$$

$$
\begin{aligned}
& \text { for } \quad(i=0 ; i<n ; i++)\{ \\
& \quad c[i]=a[i] \text { * } b[i]+c[i] \\
& \}
\end{aligned}
$$

Some motivating examples

$$
\begin{array}{ll}
\text { do } \mathrm{i} & =1, \mathrm{n} \\
\mathrm{a}(\mathrm{i}) & =\mathrm{b}(\mathrm{i}) \\
\mathrm{c}(\mathrm{i}) & =\mathrm{S}(\mathrm{i}-1) \\
S_{1}
\end{array}
$$

end do

Is it legal to

- Run the i loop in parallel?
- Put S_{2} first in the loop?
do $I=1, n$

$$
a(i)=b(i)
$$

end do
do $I=1, n$

$$
c(i)=a(i-1)
$$

end do

Is it legal to

- Fuse the two i loops?

Need to determine if, and in what order, two references access the same memory location
Then can determine if the references might execute in a different order after some transformation.

Dependence, an example

$$
\begin{array}{ll}
\text { do } \mathrm{i} & =1, \mathrm{n} \\
\mathrm{a}(\mathrm{i}) & =\mathrm{b}(\mathrm{i}) \\
\mathrm{c}(\mathrm{i}) & =\mathrm{S}(\mathrm{i}-1) \\
\mathrm{S}_{1} & \mathrm{~S}_{\mathbf{2}}
\end{array}
$$

end do

Indicates dependences, i.e. the statement at the head of the arc is somehow dependent on the statement at the tail

$\mathrm{i}=1$	$\mathrm{i}=2$	$\mathrm{i}=3$	$\mathrm{i}=4$	$\mathrm{i}=5$	$\mathrm{i}=6$
$\mathrm{~b}(1)$	$\mathrm{b}(2)$	$\mathrm{b}(3)$	$\mathrm{b}(4)$	$\mathrm{b}(5)$	$\mathrm{b}(6)$
$\mathrm{a}(1)$	$\mathrm{a}(2)$	$\mathrm{a}(3)$	$\mathrm{a}(4)$	$\mathrm{a}(5)$	$\mathrm{a}(6)$
$\mathrm{a}(0)$	$\mathrm{a}(1)$	$\mathrm{a}(2)$	$\mathrm{a}(3)$	$\mathrm{a}(4)$	$\mathrm{a}(5)$
$\mathrm{c}(1)$	$\mathrm{c}(2)$	$\mathrm{c}(3)$	$\mathrm{c}(4)$	$\mathrm{c}(5)$	$\mathrm{c}(6)$

Can this loop be run in parallel?

$$
\begin{array}{ll}
\text { do } i=1, n \\
a(i)=b(i) & S_{1} \\
c(i)=a(i-1) & S_{2}
\end{array}
$$

end do

$i=1$		$i=3$	$i=4$	$i=5$	$i=6$
$b(1)$		$b(3)$	$b(4)$	$b(5)$	$b(6)$
$a(1)$	$i=2$	$a(3)$	$a(4)$	$a(5)$	$a(6)$
$a(0)$	$b(2)$	$a(2)$	$a(3)$	$a(4)$	$a(5)$
$c(1)$	$a(2)$	$c(3)$	$c(4)$	$c(5)$	$c(6)$
	$c(1)$				

Assume 1 iteration per processor, then if for some reason some iterations execute out of lock-step, bad things can happen In this case, read of a(2) in i=3 will get an invalid value!

Can we change the order of the statements?

$$
\begin{array}{ll}
\mathrm{do} \mathrm{i} & =1, \mathrm{n} \\
\mathrm{a}(\mathrm{i}) & =\mathrm{b}(\mathrm{i}) \\
\mathrm{c}(\mathrm{i}) & =\mathrm{S}(\mathrm{i}-1) \\
\mathrm{S}_{1}
\end{array}
$$

end do

$$
\begin{array}{ll}
\mathrm{do} \mathrm{i}=1, \mathrm{n} \\
\mathrm{c}(\mathrm{i})=\mathrm{a}(\mathrm{i}-1) & \mathrm{S}_{\mathbf{2}} \\
\mathrm{a}(\mathrm{i})=\mathrm{b}(\mathrm{i}) & \mathrm{S}_{1}
\end{array}
$$

end do

No problem with a serial execution.

Access order before statement reordering $b(1) a(1) a(0) c(1)||b(2) a(2) a(1) c(2)|| b(3) a(3) a(2) c(3)|\mid b(4) a(4) a(3) c(4)$ $i=1 \quad i=2 \quad i=3 \quad i=4$

Access order after statement reordering

$$
\underset{i=1}{\mathrm{a}(0) \mathrm{c}(1) \mathrm{b}(1) \mathrm{a}(1)||\mathrm{a}(1) \mathrm{c}(2) \mathrm{b}(2) \mathrm{a}(2)|| \mathrm{a}(2) \mathrm{c}(3) \mathrm{b}(3) \mathrm{a}(3) \| \mathrm{a}(3) \mathrm{c}(4) \mathrm{b}(4) \mathrm{a}(4)}
$$

Can we fuse the loop?

Types of dependence

$$
\begin{gathered}
a(2)=\ldots \\
\ldots=a(2)
\end{gathered}
$$

Flow or true dependence - data for a read comes from a previous write (write/read hazard in hardware terms
$\ldots=a(2) \quad$ Anti-dependence - write to a location cannot occur before

$$
a(2)=\ldots
$$ a previous read is finished

$a(2)=\ldots \quad$ Output dependence - write a location must wait for a previous write to finish

Dependences always go from earlier in a program execution to later in the execution
Anti and output dependences can be eliminated by using more storage.

Eliminating anti-dependence

$\oint \begin{aligned} & \ldots=a(2) \\ & a(2)=\ldots\end{aligned}$
Let the program in be:
$a(2)=\ldots$
$\ldots=a(2)$
$a(2)=\ldots$
$=\ldots a(2)$

Anti-dependence - write to a location cannot occur before a previous read is finished

The new program is:

$$
\begin{aligned}
& a(2)=\ldots \\
& \ldots=a(2) \\
& a a(2)=\ldots \\
& =\ldots \text { aa(2) }
\end{aligned}
$$

No more anti-dependence!
Similar to register renaming

Getting rid of output dependences

Output dependence - write to a location must wait for a previous write to finish

Let the program be:

$$
\begin{aligned}
& a(2)=\ldots \\
& \ldots=a(2) \\
& a(2)=\ldots \\
& \ldots=a(2)
\end{aligned}
$$

The new program is:
Again, by creating new storage we can eliminate the output dependence.

$$
\begin{aligned}
& a(2)=\ldots \\
& \ldots=a(2) \\
& a a(2)=\ldots \\
& \ldots=a a(2)
\end{aligned}
$$

Eliminating dependences

- In theory, can always get rid of anti- and output dependences
- Only flow dependences are inherent, i.e. must exist, thus the name "true" dependence.
- In practice, it can be complicated to figure out how to create the new storage
- Storage is not free - cost of creating new variables may be greater than the benefit of eliminating the dependence.

An example of when it is messy to create new storage

```
do i=1,n A(3i) writes locations 2, 5, 8, 11, 14,17, 20, 23
    a(3i-1) = ...
    a(2i) = .. A(2i) writes locations 2, 4, 6, 8, 10, 12,14,16,18,20,22
    = .. a(i)
end do
A(i) reads from outside the of loop when \(i=1,3,7,9,13\), \(15,19,21\)
```

$\mathrm{A}(\mathrm{i})$ reads from $\mathrm{a}(3 \mathrm{i}-1)$ when $\mathrm{I}=5,11,17,23$

A(i) reads from $\mathrm{a}(2 \mathrm{i})$ when $\mathrm{I}=2,4,6,8,10,12,14,16,18$, 20, 22

Data Dependence Tests: Other Motivating Examples

```
Statement Reordering
can these two statements be
swapped?
DO i=1,100,2
    B(2*i) = ..
        ... = B(3*i)
ENDDO
```

Loop Parallelization Can the iterations of this loop be run concurrently?

DO $\mathrm{i}=1,100,2$ $B\left(2^{*} \mathrm{i}\right)=.$.
$\ldots=B\left(2^{*} i\right)+B\left(3^{*} i\right)$
ENDDO

An array data dependence exists between two data references iff:

- both references access the same storage location
- at least one of them is a write access

Dependence sources and sinks

- The sink of a dependence is the statement at the head of the dependence arrow
- The source is the statement at the tail of the dependence arrow
- Dependences always go forward in time in a

$$
\begin{aligned}
& \text { for }(\mathrm{i}=1 ; \mathrm{i}<\mathrm{nl} \mathrm{i}++)\{ \\
& \mathrm{a}[\mathrm{i}]=\ldots \\
& \ldots=\mathrm{a}[\mathrm{i}-1] \\
&\} \\
& \mathrm{a}[1]= \\
&=\mathrm{a}[0] \\
& \mathrm{a}[2]= \\
&=\mathrm{a}[1] \\
& \mathrm{a}[3]=\mathrm{a} \\
&=\mathrm{a}[2] \\
& \mathrm{a}[4]=\mathrm{a} \\
&=\mathrm{a}[3]
\end{aligned}
$$ serial execution

Data Dependence Tests: Concepts

Terms for data dependences between statements of loop iterations.

- Distance (vector): indicates how many iterations apart the source and sink of a dependence are.
- Direction (vector): is basically the sign of the distance. There are different notations: (<,=,>) or (+1,0,-1) meaning dependence (from earlier to later, within the same, from later to earlier) iteration.
- Loop-carried (or cross-iteration) dependence and non-loop-carried (or loop-independent) dependence: indicates whether or not a dependence exists within one iteration or across iterations.
- For detecting parallel loops, only cross-iteration dependences matter.
- equal dependences are relevant for optimizations such as statement reordering and loop distribution.
- Iteration space graphs the un-abstracted form of a dependence graph with one node per statement instance.

Data Dependence Tests: Iteration space graphs

- Iteration space graphs the un-abstracted form of a dependence graph with one node per statement instance.

$$
\begin{array}{ll}
\text { do } \mathrm{i}_{1}=1, \mathrm{n} & \\
\qquad \text { do } \mathrm{i}_{2}=1, \mathrm{n} & \\
\quad \mathrm{a}\left(\mathrm{i}_{1}, \mathrm{i}_{2}\right)=\mathrm{a}\left(\mathrm{i}_{1}-2, \mathrm{i}_{2}+3\right) & \mathrm{I}_{2}=2 \\
\text { end do } & \\
\text { end do } & \mathrm{i}_{2}=3
\end{array}
$$

$$
\mathrm{i}_{2}=5
$$

This is an

$$
\begin{array}{ll}
\begin{array}{l}
\text { iteration } \\
\text { space graph } \\
\text { (or diagram) }
\end{array} & \mathrm{i}_{2}=2 \\
& \mathrm{i}_{2}=1 \\
& \mathrm{i}_{1}=
\end{array}
$$

(O)
©

16

Data Dependence Tests: Distance Vectors

Distance (vector): indicates how many iterations apart are the source and sink of dependence.

$$
\begin{aligned}
& \text { do } \mathrm{i}_{1}=1, \mathrm{n} \\
& \text { do } \mathrm{i}_{2}=1, \mathrm{n} \\
& a\left(i_{1}, i_{2}\right)=a\left(i_{1}-2, i_{2}+3\right) \\
& \text { end do } \\
& \text { end do } \\
& \mathrm{i}=(1,4) \rightarrow \mathrm{i}^{\prime}=(3,1) \\
& \text { i' - i = (2,-3) }
\end{aligned}
$$

Data Dependence Tests: Direction Vectors

Direction (vector): is basically the sign of the distance. There are different notations: (<,=,>) or ($1,0,-1$) meaning dependence (from earlier to later, within the same, from later to earlier) iteration.
do $i_{1}=1, n$
do $\mathrm{i}_{2}=1, \mathrm{n}$
$a\left(i_{1}, i_{2}\right)=a\left(i_{1}-2, i_{2}+3\right)$
end do
end do
$\mathrm{I}=(1,4) \rightarrow \mathrm{I}^{\prime}=(3,1)$
I' - I = d = (2,-3)
$\mathrm{i}_{2}=2 \bigcirc$
Direction $=(<,>)$ (or
sign(2), sign(-3) ==
$(+1,-1)$) in some works
$\mathrm{I}_{2}=1 \odot$
$\mathrm{i}_{1}=1$

Data Dependence Tests: Loop Carried

- Loop-carried (or cross-iteration) dependence and non-loop-carried (or loop-independent) dependence: indicates whether or not a dependence exists within one iteration or across iterations.

$$
\begin{aligned}
& \text { do } \mathrm{i}_{1}=1, \mathrm{n} \\
& \text { do } \mathrm{i}_{2}=1, \mathrm{n} \\
& \mathrm{a}\left(\mathrm{i}_{1}, \mathrm{i}_{2}\right)= \\
& \\
& =\mathrm{a}\left(\mathrm{i}_{1}, \mathrm{i}_{2}-1\right)
\end{aligned}
$$

end do
end do
Dependence on the i_{2} loop is loop carried.
Dependence on
the i_{1} loop is
not.

Data Dependence Tests: Loop Carried

- Loop-carried (or cross-iteration) dependence and non-loop-carried (or loop-independent) dependence: indicates whether or not a dependence exists within one iteration or across iterations.

$$
\begin{align*}
& \text { do } i_{1}=1, n \\
& \text { dopar } i_{2}=1, n \\
& a\left(i_{1}, i_{2}\right)= \\
& \text { end } \\
& \text { dopar } i_{2}=1, n \tag{1}
\end{align*}
$$

end do
end do
This is legal since loop splitting enforces the loop carried dependences

$\begin{array}{ll} i_{2}^{\prime}=5 & \bigcirc \\ i_{2}^{\prime}=4 & \bigcirc, \end{array}$	$\left.\begin{array}{l} \circ \\ 0_{4} \end{array}\right)$	$\left.\begin{array}{l} \circ \\ 0 \\ 0 \end{array}\right)$	$\left.\begin{array}{l} \circ \\ 0, \end{array}\right)$	\bigcirc
$\mathrm{i}^{\prime}=3$ O	○.)	\bigcirc	-)	\bigcirc
$\mathrm{i}_{2}=2$ © ${ }^{\text {a }}$	○.)	○,	©,	\bigcirc
$\mathrm{i}_{2}=1$ ©	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\mathrm{i}_{2}=5$ ©	©	©	\bigcirc	\bigcirc
$\mathrm{i}_{2}=4$ ()	()	()	\bigcirc	\bigcirc
$\mathrm{i}_{2}=3$ ©	()	()	\bigcirc	\bigcirc
$\mathrm{i}_{2}=2$ ○	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\mathrm{i}_{2}=1$ ©	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\mathrm{i}_{1}=$	2	3	4	5

Data Dependence Tests: Loop Carried

- Loop-carried (or cross-iteration) dependence and non-loop-carried (or loop-independent) dependence: indicates whether or not a dependence exists within one iteration or across iterations.

$\begin{aligned} & \text { do } \mathrm{i}_{1}=1, \mathrm{n} \\ & \text { dopar } \mathrm{i}_{2}=1, \mathrm{n} \end{aligned}$	$\left.\begin{array}{ll} i_{2}=5 & \bigcirc \\ i_{2}=4 & \bigcirc \\ i_{2}=3 & \bigcirc \end{array}\right)$	© (2) ©	© © (0)	© © (0)	(0)
$=a\left(l_{1}, i_{2}-1\right)$	$i_{2}=3$ $i_{2}=2$	()	O	(0)	
end do	$\begin{array}{ll}i_{2}=2 & \bigcirc \\ i_{2}=1 & \bigcirc\end{array}$	()	()	-	\bigcirc
dopar $\mathrm{i}_{2}=1, \mathrm{n}$	$\begin{array}{ll}i_{2}=1 & \text { (} \\ 1\end{array}$	()	©	()	©
$a\left(i_{1}, i_{2}\right)=$	$l_{2}=5$ ○	(-)	(-)	(0)	©
$a\left(i_{1}, i_{2}\right)=$	$\mathrm{l}_{2}=4$ ()	(0)	(0)	(0)	()
end	$\mathrm{r}_{2}=3$ -	()	()	()	(0)
end do	$\mathrm{r}_{2}=2$ -	()	()	()	()
This is not legal - turns	$\mathrm{l}_{2}=1$ -	()	()	()	(0)
true into anti dependence	$i_{1}=1$	2	3	4	5

A quick aside

A loop
$$
\text { do } \mathrm{i}=4, \mathrm{n}, 3
$$
a(i)
end do

Can be always be normalized to the loop \rightarrow

$$
\begin{aligned}
& \text { do } \mathrm{i}=0,(\mathrm{n}-1) / 3-1,1 \\
& \quad \mathrm{a}\left(3^{*} \mathrm{i}+4\right) \\
& \text { end do }
\end{aligned}
$$

This makes discussing the data-dependence problem easier since we only worry about loops from $1, n, 1$

More precisely, do $\mathrm{i}=$ lower, upper, stride $\{\mathrm{a}(\mathrm{i})\}$ becomes do i' = 0, (upper - lower + stride)/stride - 1, 1 \{a(i'*stride + lower) \}

Data Dependence Tests: Formulation of the Data-dependence problem

$$
\begin{aligned}
& \text { DO } \mathrm{i}=1, \mathrm{n} \\
& \mathrm{a}\left(4^{*} \mathrm{i}\right)=\ldots \\
& \ldots=\mathrm{a}\left(2^{*} \mathrm{i}+1\right) \\
& \text { ENDDO }
\end{aligned}
$$

the question to answer:
can $4^{*} i$ ever be equal to $2^{*} i+1$ within $i \in[1, n]$?
If so, what is the relation of the i's when they are equal?

In general, given:

- two subscript functions $f(I)$ and $g(I)$ and
- upper and lower loop bounds

Question to answer: Does
$f(I)=g\left(l^{\prime}\right)$ have an integer solution such that lower $\leq I$, l's upper?

Diophantine equations

- An equation whose coefficients and solutions are all integers is a Diophantine equation
- Determining if a Diophantine equation has a solution requires a slight detour into elementary number theory
- Let $f(i)=a_{1}{ }^{*} i+c_{1}$ and $g\left(i^{\prime}\right)=b_{1}{ }^{*} i^{\prime}+c_{2}$, then
* $f(i)=g\left(l^{\prime}\right) \Rightarrow a_{1}{ }^{*} i-b_{1}{ }^{*} i^{\prime}=c_{2}-c_{1}$
* fits general form of Diophantine equation of

$$
a_{1}{ }^{*} i_{1}+a_{2}{ }^{*} i_{2}=c
$$

Does $f(i)=g(i)$ have a solution?

- The Diophantine equation

$$
a_{1}{ }^{*} i_{2}+a_{2}{ }^{*} i_{2}=c
$$

has no solution if $\operatorname{gcd}\left(a_{1}, a_{2}\right)$ does not evenly divide c
Examples:

$$
\begin{array}{lll}
15^{*} i+6^{*} j-9^{*} k=12 & \text { has a solution } & \operatorname{gcd}=3 \\
2^{*} \mathrm{i}+7^{*} \mathrm{j}=3 & \text { has a solution } & \mathrm{gcd}=1 \\
9^{*} \mathrm{i}+3^{*} \mathrm{j}+6^{*} k=5 & \text { has no solution } & \mathrm{gcd}=3
\end{array}
$$

Euclid Algorithm: find $\operatorname{gcd}(a, b)$
Repeat

$$
\mathrm{a} \leftarrow \mathrm{a} \bmod \mathrm{~b}
$$

for more than two numbers: $\operatorname{gcd}(\mathrm{a}, \mathrm{b}, \mathrm{c})=(\operatorname{gcd}(\mathrm{a}, \operatorname{gcd}(\mathrm{b}, \mathrm{c}))$

Until $\mathrm{b}=0 \quad \rightarrow$ The resulting a is the gcd

Finding GBDS

Euclid Algorithm: find $\operatorname{gcd}(a, b)$ Repeat
$\mathrm{a} \leftarrow \mathrm{a} \bmod \mathrm{b}$
for more than two numbers: $\operatorname{gcd}(a, b, c)=(\operatorname{gcd}(a, \operatorname{gcd}(b, c))$ swap a,b Until $\mathrm{b}=0 \quad \rightarrow$ The resulting a is the gcd

$$
\begin{aligned}
& a=16, b=6 \\
& a \leftarrow 16 \bmod 6 \\
& b \leftarrow 4, a \leftarrow 6 \\
& a \leftarrow 6 \bmod 4 \\
& b \leftarrow 2, a \leftarrow 4 \\
& a \leftarrow 4 \bmod 2 \\
& a \leftarrow 2, b \leftarrow 0
\end{aligned}
$$

Determining if a Diophantine equation has a solution

Let $\mathrm{g}=\operatorname{gcd}\left(\mathrm{a}_{1}, \mathrm{a}_{2}\right)$, then can rewrite the equation as:

$$
g^{*} a_{1}^{\prime}{ }_{1} i_{1}+g^{*} a_{2}^{\prime}{ }_{2}^{*} i_{2}=c \rightarrow g^{*}\left(a_{1}^{\prime}{ }_{1}^{*} i_{1}+a_{2}^{\prime}{ }^{*} i_{2}\right)=c
$$

Because $a^{\prime}{ }_{1}$ and $a^{\prime}{ }_{2}$ are relatively prime, all integers can be expressed as a linear combination of $a^{\prime}{ }_{1}$ and $a^{\prime}{ }_{2}$.
$a^{\prime}{ }_{1}{ }^{*} i_{1}+a^{\prime}{ }_{2}{ }^{*} i_{2}$ is just such a linear combination and therefore $a^{\prime}{ }_{1}{ }^{*} i_{1}-a_{2}^{\prime}{ }_{2}{ }^{*} i_{2}$ generates all integers, (assuming $a^{\prime}{ }_{1}, a_{2}^{\prime}$ can range over the integers.)
If remainder $(\mathrm{c} / \mathrm{g})=0, \mathrm{c}$ is a solution since $\mathrm{c}=\mathrm{g}^{*} \mathrm{c}^{\prime}$, and $\mathrm{g}^{*}\left(\mathrm{a}_{1}^{\prime}{ }_{1} \mathrm{i}_{1}-\mathrm{a}^{\prime}{ }_{2}{ }^{*} \mathrm{i}_{2}\right)$ generates all multiples of g .
If remainder(c/g) != $0, \mathrm{c}$ cannot be a solution, since all values generated by $\mathrm{g}^{*}\left(\mathrm{a}_{1}^{\prime}{ }_{1} \mathrm{i}_{1}-\mathrm{a}^{\prime}{ }_{2}{ }^{*} \mathrm{i}_{2}\right)$ are (trivially) divisible by g , and cannot equal any c that is not divisible by g .

More information on gcd's and dependence analysis

- General books on number theory for info on Diophantine equations
- Books by Utpal Banerjee (Kluwer Academic Publishers), (Illinois, now Intel) who developed the GCD test in late 70's, Mike Wolfe, (Illinois, now Portland Group) "High Performance Compilers for Parallel Computing
- Randy Allen's thesis, Rice University
- Work by Eigenman \& Blume Purdue (range test)
- Work by Pugh (Omega test) Maryland
- Work by Hoeflinger, etc. Illinois (LMAD)

Other DD Tests

- The GCD test is simple but by itself not very useful
- Most subscript coefficients are $1, \operatorname{gcd}(1, i)=1$
- Other tests
- Banerjee test: accurate state-of-the-art test, takes direction and loop bounds into account
- Omega test: "precise" test, most accurate for linear subscripts (See Bill Pugh publications for details). Worst case complexity is bad.
- Range test: handles non-linear and symbolic subscripts (Blume and Eigenmann)
- many variants of these tests
- Compilers tend to perform simple to complex tests in an attempt to disprove dependence

What do dependence tests do?

- Some tests, and Banerjee's in some situations (affine subscripts, rectangular loops) are precise
- Definitively proves existence or lack of a dependence
- Most of the time tests are conservative
- Always indicate a dependence if one may exist
- May indicate a dependence if it does not exist
- In the case of "may" dependence, run-time test or speculation can prove or disprove the existence of a dependence
- Short answer: tests disprove dependences for some dependences

Banerjee's Inequalities

If $a i_{1}-b{ }^{*} i_{1}=c$ has a solution, does it have a solution within the loop bounds, and for a given direction vector?

By the mean value theorem, c can be a solution to the equation $f(i)=c, i \in[l b, u b]$ iff

$$
\begin{aligned}
& \text { do } \mathrm{i}=1,100 \\
& \begin{aligned}
\mathrm{x}(\mathrm{i}) & = \\
& = \\
& x(\mathrm{i}-1)
\end{aligned}
\end{aligned}
$$

end do
Note: there is a $(<)$ dependence.
Let's test for (=) and
(<) dependence.

- $f(l b)<=c$
- $f(u b)>=c$
(assumes $f(i)$ is monotonically increasing over the range [lb,ub])

The idea behind Banerjee's Inequalities is to find the maximum and minimum values the dependence equation can take on for a given direction vector, and see if these bound c. This is done in the real domain since integer solution requires integer programming (in NP)

Banerjee test

If $a i_{1}-b * i_{1}=c$ has a solution, does it have a solution within the loop bounds for a given direction vector (<) or (=) in this case)?
For our problem, does $i_{1}-i_{1}=-1$ have a solution?

- For $i_{1}=i_{1}$, then it does not (no (=) dependence).
- For $i_{1}<i_{1}^{\prime}$, then it does ((<) dependence).

Example of where the direction vector makes a difference

$$
\begin{aligned}
\text { do } \mathrm{i} & =1,100 \\
x(i) & = \\
& =x(i-1)
\end{aligned}
$$

end do
Note: there is a (<) dependence.
Let's test for (=) and (<) dependence.

Dependence equation is $\mathbf{i - i} \mathbf{i}^{\mathbf{=}} \mathbf{- 1}$
If $i=i$ ' (i.e. "=" direction vector), then $\mathbf{i}-\mathbf{i}^{\prime}=\mathbf{0}, \forall \mathbf{i}, \mathbf{i}^{\prime}$

If $\mathrm{i}<\mathrm{i}^{\prime}$, then $\mathrm{i}-\mathrm{i} \neq 0$, and when $\mathbf{i}=\mathbf{i}-\mathbf{1}$, the equation has a solution.

Cannot parallelize the loop, but can reorder $x(i)$ and $x(i-1)$ within the loop.

Program Transformations

- Applying data dependence tests to untransformed loops would determine that most loops are not parallel.
Reason \#1: there are many anti and output dependences

Dependence Classification:

- flow dependence:
read-write dependence
- anti dependence:
write-read dependence
- output dependence:
write-write dependence

Solution: scalar and array privatization

Scalar Expansion/Privatization

Analysis and Transformation for Scalar Expansion/Privatization

Loop Analysis:

- find variables that are used in the loop body but dead on entry. i.e., the variables are written (on all paths) through the loop before being used.
- determine if the variables are live out of the loop (make sure the variable is defined in the last loop iteration).

Transformation (variable t)

- Privatization:
- put t on private list. Mark as last-value if necessary.
- Expansion:
- declare an array $10(n)$, with $n=\# l o o p$ _iterations.
- replace all occurrences of t in the loop body with $t 0(i)$, where i is the loop variable.
- live-out variables: create the assignment $t=t O(n)$ after the loop.

Parallelization of Reduction Operations

$$
\begin{aligned}
& \text { DO } \mathrm{i}=1, \mathrm{n} \\
& \text { sum }=\operatorname{sum}+\mathrm{a}(\mathrm{i}) \\
& \text { ENDDO }
\end{aligned}
$$

> PARALLEL DO $\mathrm{i}=1, \mathrm{n}$
> Private $\mathrm{s}=0$
> $s=s+a(i)$
> POSTAMBLE
> Lock sum = sum + s
> Unlock
> ENDDO

DIMENSION s(\#processors)
DO j = 1,\#processors $\mathrm{s}(\mathrm{j})=0$
ENDDO
PARALLEL DO $\mathbf{i}=1, n / \#$ processors s (myproc) $=\mathrm{s}$ (myproc) $+\mathrm{a}(\mathrm{i})$ ENDDO
DO j = 1,\#processors
sum = sum + s(j)
ENDDO

Analysis and Transformation for (Sum) Reduction Operations

- Loop Analysis:
- find reduction statements of the form $s=s+$ expr where expr does not use s.
- discard s as a reduction variable if it is used in nonreduction statements.
- Transformation:
(as shown on previous slide)
- create private or expanded variable and replace all occurrences of reduction variable in loop body.
- update original variable with sum over all partial sums, using a critical section in a loop postamble or a summation after the loop, respectively.

Induction Variable Substitution

ind $=$ ind 0
$D O ~$
$=1, n$
$a($ ind $)=b(j)$
ind $=$ ind $+k$
ENDDO

Example: string concat j = eosA
do $i=1$, b.length
$a(j)=b(i)$
$j=j+1$;
end

```
ind = ind0
PARALLEL DO j = 1,n
    a(ind0+k*(j-1)) = b(j)
ENDDO
```

Gives $\mathrm{k}^{* j}$ - k + indo
This is of the form
$a^{*} \mathrm{j}+\mathrm{c}$, which is good
for dependence analysis. j is the loop canonical induction variable.

Induction Variable Analysis and Transformation

- Loop Analyis:
- find induction
statements of the form
$s=s+e x p r$ where expr is a loop-invariant term or another induction variable.
- discard variables that are modified in noninduction statements.
- Transformation:
- find the following increments

- for each use of IV:
- compute the increment inc with respect to the start of the outermost loop in which it is an induction sequence
- Replace IV by inc+ind0

Induction Variable Analysis and Transformation

- Transformation:
- find the following increments

- for each use of IV:
- compute the increment inc with respect to the start of the outermost loop in which it is an induction sequence in
- Replace IV by inc+ind0.

```
ind = ind0
PARALLEL DO j = 1,n
    a(ind0+k*(j-1)) = b(j)
ENDDO
```

Thus in the above

- ind0 is obvious;
- inc is $k^{*}(j-1)$
- inc is an induction sequence within the loop DO j
- The inner loop body is empty

Loop Fusion and Distribution

DO $j=1, n$ $a(j)=b(j)$ ENDDO			
DO $k=1, n$ $c(k)=a(k)$ ENDDO			
fusion		\quad	distribution $j=1, n$
---:			
$a(j)=b(j)$			
$c(j)=a(j)$			
ENDDO			

- necessary form for vectorization
- can provide synchronization necessary for "forward" dependences
- less parallel loop startup overhead
- can increase affinity (better locality of reference)
- can create perfectly nested loops

Both transformations change the statement execution order. Data dependences need to be considered!

Loop Fusion and Distribution

Dependence analysis needed:

- Determine uses/def and def/use chains across unfused loops
- Every def \Rightarrow use link should have a flow dependence in the fused loop
- Every use \Rightarrow def link should have an anti-dependence in the fused loop
- No dependence not associated with a use \Rightarrow def or def \Rightarrow use should be present in the fused loop

Loop Fusion and Distribution

Flow dependence from S1 to S2
Anti-dependence from S2 to S2

Dependence graphs

$\begin{aligned} & D O \mathrm{j}=1, \mathrm{n} \\ & \mathrm{~S} 1: \mathrm{a}(\mathrm{j}-1 \mathrm{l}=\mathrm{b}(\mathrm{j}) \end{aligned}$	fusion		$\begin{aligned} & \text { DO } \mathrm{j}=1, \mathrm{n} \\ & \mathrm{~S} 1: \mathrm{a}(\mathrm{j}-1)=\mathrm{b}(\mathrm{j}) \end{aligned}$
DO $\mathrm{k}=1, \mathrm{n}$	distribu	ution	S2: $\mathrm{c}(\mathrm{j})=\mathrm{a}(\mathrm{j})$
S2: $\mathrm{c}(\mathrm{k})=\mathrm{a}(\mathrm{k})$			ENDDO
ENDDO			

$\delta^{a}(<)$

Loop Interchange

PDO $i=1, n$
$D O ~ j=1, m$
$a(i, j)=b(i, j)$
ENDDO
ENDDO
:---:
$D O ~ i=1, n$
$a(i, j)=b(i, j)$
ENDDO
ENDDO

LoOn ATAROn?

PDO $i=1, n$
$D O ~ j=1, m$
$a(i, j)=b(i, j)$
ENDDO
ENDDO

D O ~ i=1, n

a(i, j)=b(i, j)

ENDDO

ENDDO\end{array}\right.\)

- loop interchanging alters the data reference order
> significantly affects locality-of reference
> data dependences determine the legality of the transformation: dependence structure should stay the same
- loop interchanging may also impact the granularity of the parallel computation (inner loop may become parallel instead of outer)

Loop interchange legality

(=,=): after interchange still loop indepent dependences (=,<): after interchange, is (<,=), still carried on the j loop $(<,=)$: after interchange is (=,<), still carried on the i loop (<.<): after interchange still positive in both directions
(>,*), (=,>): not possible - dependences must move forward in Iteration space
(<,>): after interchange is (>,<), except cannot have a (>,<) dependence. The source and sink of the dependence change, changing the dependence. Not legal.

Parallel ExecutionScheme

- Most widely used: Microtasking scheme

Main	Helper task
tasks	

- Main task creates helpers
_ Wake up helpers
- Barrier, helpers go back to sleep
_ Wake up helpers
- Barrier, helpers go back to sleep

Program Translation for


```
Subroutine x
call scheduler(1,n,a,b,loopsub)
END
```

Subroutine loopsub(lb,ub,a,b)
integer lb,ub
DO jj=lb,ub
$a(\mathrm{jj})=\mathrm{b}(\mathrm{jj})$
ENDDO
END

