
ECE 573
Problem Set 1: Solutions

1. We first define a few helper expressions, which we will use to construct the larger
regular expression.

D , [0− 9] All digits, 0 through 9
E , [0, 2− 9] All digits except 1
F , [2− 9] All digits except 0 and 1

We can now define the regular expression for phone numbers:

F (ED|1E)D4

In English, the number should start with a digit other than 0 or 1. The number
should then should continue with a two digit number which is not 11 (which we
represent by a number that either does not start with 1, or does start with 1 but is
not 11). Finally, the number should end with 4 digits, which can be anything.

2. The DFA accepting this regular expression is given below.

F
1
E

E

D
D D D D

3. We begin by building the NFAs for each of the components of the regular expression.
Note that for brevity, we have omitted the incoming arrow for the start state. Unless
otherwise specified, the left-most state is the start state.

(01)+ =
0 1

λ

(11)+ =
1 1

λ

We then produce the NFA for ((01)+|(11)+):

1



0 1

λ

1 1

λ

λ

λ

λ

λ

And finally, we produce the NFA for ((01)+|(11)+)∗:

6

3 42 0 1

λ

75 1 1

λ
8

λ

λ

λ

λ

1

λ

We have numbered the states for reference in the next problem.

4. We can walk through constructing the DFA for this NFA step by step, starting with
the start state, which, including λ transitions, is {1, 2, 5} (note that this is also a
final state!).

State 0 1 Final? New name
{1, 2, 5} {3} {6}

√
A

{3} error {1, 2, 4, 5, 8} B
{4} error {1, 2, 5, 7, 8} C
{1, 2, 4, 5, 8} {3} {6}

√
D

{1, 2, 5, 7, 8} {3} {6}
√

E

This encodes the following DFA:

2



A

B

C

D

E

0

1

1

0

1

1

1

0

5. To reduce the DFA, we begin by placing each of the final states in a single merged
state, and each of the non-final states in a single merged state:

States 0 1
{A,D, E} {B} {C}
{B,C} error {D,E}

We immediately see that from each merged state, no transition takes us to more
than one merged state, so we do not need to do any splitting. This table encodes the
following minimal DFA

1

0, 1

which we can verify accepts the strings in the regular expression ((01)+|(11)+)∗

(which, as we can see from the reduced DFA, is equivalent to ((0|1)1)∗).

6. Informally, the language cannot be recognized by an FSA. This is because for each
( that we see, we must match a later ), and we cannot record how many (s we have
seen. Formally, we can appeal to the pumping lemma (which you will not have to
know!) to show that this language is not regular:

We will show this by contradicition. Let us assume that L is regular. Let w in L
be (pg)p. By the pumping lemma, we must be able to decompose w into a string
xyz such that |y| ≥ 1, |xy| ≤ p and xyiz ∈ L for i ≥ 0. We can see that xy will

3



contain only left parentheses, and all the right parentheses are in z. So if we repeat
y more than once, then xyiz will not be in L, leading to a contradiction. Hence, the
language is not regular.

7. This language can be recognized by an FSA. The FSA will have 2 ∗k +1 states, with
the first k states recognizing (, the k + 1th state recognizing g and the remaining k
states recognizing ).

4


