More Dataflow Analysis
Recall steps to building analysis

- Step 1: Choose lattice
- Step 2: Choose direction of dataflow (forward or backward)
- Step 3: Create monotonic transfer function
- Step 4: Choose confluence operator (i.e., what to do at merges)
 - Either join or meet in the lattice
- Let’s walk through these steps for a new analysis

Wednesday, November 11, 2009
Liveness analysis

- Which variables are live at a particular program point?
- Used all over the place in compilers
 - Register allocation
 - Loop optimizations
Choose lattice

- What do we want to know?
 - At each program point, want to maintain the set of variables that are live
- Lattice elements: sets of variables
- Natural choice for lattice: powerset of variables!
Choose dataflow direction

- A variable is \textit{live} if it is used later in the program without being redefined

- At a given program point, we want to know information about what happens later in the program

- This means that liveness is a \textit{backwards} analysis

- Recall that we did liveness backwards when we looked at single basic blocks
Create x-fer functions

• What do we do for a statement like:
 \[x = y + z \]

• If \(x \) was live “before” (i.e., live after the statement), it isn’t now (i.e., is not live before the statement)

• If \(y \) and \(z \) were not live “before,” they are now

• What about:
 \[x = x \]
Create x-fer functions

• Let’s generalize

• For any statement s, we can look at which live variables are killed, and which new variables are made live (generated)

• Which variables are killed in s?
 • The variables that are defined in s: $\text{DEF}(s)$

• Which variables are made live in s?
 • The variables that are used in s: $\text{USE}(s)$

• If the set of variables that are live after s is X, what is the set of variables live before s?

$$T_s(X) = \text{use}(s) \cup (X - \text{def}(s))$$

• Is this monotonic?

Wednesday, November 11, 2009

Yes: if we add $\{a\}$ to X, either $T(X)$ stays the same (because $\{a\}$ is in $\text{def}(s)$) or it gets bigger (because $\{a\}$ is not in $\text{def}(s)$)
Dealing with aliases

- Aliases, as usual, cause problems
- Consider

```c
int x, y
int *z, *w;
if (...) z = &y else z = &x
if (...) w = &y else z = &x
*z = *w; //which variable is defined? which is used?
```

- What should USE(*z = *w) and DEF(*z = *w) be?
- Keep in mind: the goal is to get a list of variables that *may* be live at a program point
- For now, assume there is no aliasing
Dealing with function calls

• Similar problem as aliases:

```c
int foo(int &x, int &y); //pass by reference!

void main() {
    int x, y, z;
    z = foo(x, y);
}
```

• Simple solution: functions can do *anything* – redefine variables, use variables

• So DEF(foo()) is \{ \} and USE(foo()) is V

• Real solution: *interprocedural* analysis, which determines what variables are used and defined in foo
Choose confluence operator

- What happens at a merge point?
- The variables live in to a merge point are the variables that are live along either branch
- Confluence operator: Set union (⊔) of all live sets of outgoing edges

\[T_{merge} = \bigcup_{X \in \text{succ}(merge)} X \]

\[y = x \]
\[y = w \]
\[x = w \]
How to initialize analysis?

- At the end of the program, we know no variables are live → value at exit point is \{ \}
- What about elsewhere in the program?
 - We should initialize other sets to \{ \}
 - This is consistent with our approach to finding the least fixpoint
READ(Z)
{}

READ(N)
{}

X = l
{}

X = X + Z
{}

X < N?
{}

PRINT(X)
{}

Wednesday, November 11, 2009
An alternate approach

• Dataflow analyses like live-variable analysis are *bit-vector* analyses: are even more structured than regular dataflow analysis
 • Consistent lattice: powerset
 • Consistent transfer functions
• Many sources only talk about bitvector dataflow
Bit-vector lattices

- Consider a single element, \(V \), of the powerset(\(S \)) lattice
- Each item in \(S \) either appears in \(V \) or does not: can represent using a single bit
- Can represent \(V \) as a *bit vector*
 - \(\{a, b, c\} = \langle 1, 1, 1\rangle \)
 - \(\{\} = \langle 0, 0, 0\rangle \)
 - \(\{b, c\} = \langle 0, 1, 1\rangle \)
- \(\sqcup \) and \(\sqcap \) (which are just \(\cup \) and \(\cap \)) are simply bitwise \(\lor \) and \(\land \), respectively
Eliminating merge nodes

- Many dataflow presentations do not use explicit merge nodes in CFG
- How do we handle this?
- Problem: now a node may be a statement and a merge point
- Solution: compose confluence operator and transfer functions
- Note: non-merge nodes have just one successor; this equation works for all nodes!

\[
T(s) = \text{use}(s) \cup \left(\bigcup_{X \in \text{succ}(s)} X \right) - \text{def}(s)
\]
Simplifying matters

\[T(s) = \text{use}(s) \cup (\bigcup_{X \in \text{succ}(s)} X) - \text{def}(s) \]

- Lets split this up into two different sets
 - OUT(s): the set of variables that are live *immediately after* a statement is executed
 - IN(s): the set of variables that are live *immediately before* a statement is executed

\[
\begin{align*}
(\text{\ }} & = \text{use}() \cup (\text{ \text{\ } } - \text{def}() \\
\text{\text{\ } } & = \bigcup_{t \in \text{succ}(s)} ()
\end{align*}
\]
Generalizing

• USE(s) are the variables that become live due to a statement—they are *generated* by this statement

• DEF(s) are the variables that stop being live due to a statement—they are *killed* by this statement

\[
IN(s) = \text{gen}(s) \cup (OUT(s) - \text{kill}(s))
\]

\[
OUT(s) = \bigcup_{t \in \text{succ}(s)} IN(t)
\]
Bit-vector analyses

- A bit-vector analysis is any analysis that
 - Operates over the powerset lattice, ordered by \subseteq and with \cup and \cap as its meet and join
 - Has transfer functions that can be written in the form:
 \[
 \begin{align*}
 IN(s) &= gen(s) \cup (OUT(s) \setminus kill(s)) \\
 OUT(s) &= \bigcup_{t \in succ(s)} IN(t)
 \end{align*}
 \]
 - Are these transfer functions monotonic? (Hint: if f and g are monotonic, is $f \circ g$ monotonic?)
 - gen and $kill$ are dependent on the statement, but not on IN or OUT
 - Things are a little different for forward analyses, and some analyses use \cap instead of \cup
Reaching definitions

- What definitions of a variable *reach* a particular program point
 - A definition of variable x from statement s reaches a statement t if there is a path from s to t where x is not redefined
 - Especially important if x is used in t

- Used to build *def-use* chains and *use-def* chains, which are key building blocks of other analyses
 - Used to determine dependences: if x is defined in s and that definition reaches t then there is a flow dependence from s to t

- We used this to determine if statements were loop invariant
 - All definitions that reach an expression must originate from outside the loop, or themselves be invariant
Creating a reaching-def analysis

• Can we use a powerset lattice?

• At each program point, we want to know which definitions have reached a particular point

 • Can use powerset of set of definitions in the program

 • V is set of variables, S is set of program statements

 • Definition: $d \in V \times S$

 • Use a tuple, <v, s>

• How big is this set?

 • At most $|V \times S|$ definitions
Forward or backward?

- What do you think?
Choose confluence operator

- Remember: we want to know if a definition *may* reach a program point
- What happens if we are at a merge point and a definition reaches from one branch but not the other?
 - We don’t know which branch is taken!
 - We should union the two sets – any of those definitions can reach
- We want to avoid getting too many reaching definitions \(\rightarrow \) should start sets at \(\bot \)
Transfer functions

- Forward analysis, so need a slightly different formulation
- Merged data flowing into a statement

\[
\begin{align*}
IN(s) &= \bigcup_{t \in \text{pred}(s)} OUT(t) \\
OUT(s) &= gen(s) \cup (IN(s) - \text{kill}(s))
\end{align*}
\]

- What are gen and kill?

 - gen(s): the set of definitions that may occur at s
 - e.g., gen(s_1: x = e) is <s_1, x>
 - kill(s): all previous definitions of variables that are definitely redefined by s
 - e.g., kill(s_1: x = e) is <*, x>
Available expressions

• We’ve seen this one before

• What is the lattice? powerset of all expressions appearing in a procedure

• Forward or backward?

• Confluence operator?
Transfer functions for meet

- What do the transfer functions look like if we are doing a meet?

\[
IN(s) = gen(s) \cup (OUT(s) - kill(s))
\]

\[
OUT(s) = \bigcap_{t \in succ(s)} IN(t)
\]

- gen(s): expressions that must be computed in this statement
- kill(s): expressions that use variables that may be defined in this statement
 - Note difference between these sets and the sets for reaching definitions or liveness
- Insight: gen and kill must never lead to incorrect results
 - Must not decide an expression is available when it isn’t, but OK to be safe and say it isn’t
 - Must not decide a definition doesn’t reach, but OK to overestimate and say it does
Analysis initialization

- Remember our formalization
 - If we start with everything initialized to ⊥, we compute the least fixpoint
 - If we start with everything initialized to ⊤, we compute the greatest fixpoint
- Which do we want? It depends!
 - Reaching definitions: a definition that may reach this point
 - We want to have as few reaching definitions as possible → use least fixpoint
 - Available expressions: an expression that was definitely computed earlier
 - We want to have as many available expressions as possible → use greatest fixpoint
- Rule of thumb: if confluence operator is ⊔, start with ⊥, otherwise start with ⊤
Analysis initialization (II)

- The set at the entry of a program (for forward analyses) or exit of a program (for backward analyses) may be different.
- One way of looking at this: start statement and end statement have their own transfer functions.
- General rule for bitvector analyses: no information at beginning of analysis, so first set is always \{ \}
Very busy expressions

• An expression is very busy if it is computed on every path that leads from a program point

• Why does this matter?

• Can calculate very busy expressions early without wasting computation (since the expression is used at least once on every outgoing path) – this can save space

• Good candidates for loop invariant code motion
Very busy expressions

- Lattice?
- Direction?
- Confluence operator?
- Initialization?
- Transfer functions?
 - Gen? Kill?
Four types of dataflow

- Analysis can either be forward or backward
- Analysis can either be over all paths or over any path
 - All paths: merges consider values from all paths
 - Any path: merges consider values from any path

<table>
<thead>
<tr>
<th></th>
<th>All paths</th>
<th>Any path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward</td>
<td>available expressions</td>
<td>reaching definitions</td>
</tr>
<tr>
<td>Backward</td>
<td>very busy expressions</td>
<td>liveness analysis</td>
</tr>
</tbody>
</table>

- What kind of analysis is constant propagation?
Dataflow analysis precision

- So how good are the results of dataflow analysis?
- What is the best solution we can get?
 - Should determine information based on every path the actual program takes
 - This is undecidable! (what if the program loops?)
- More restrictive solution: *meet over all paths*
 - Determine information based on every possible path in the program (including paths the actual program may not take)
 - In general, this is also undecidable! (potentially infinite number of possible paths)
Dataflow analysis precision

- The solution to iterative dataflow analysis is less precise than the meet over all paths solution

 - More formally, if confluence operator is \sqcap

 Greatest fixpoint \sqsubseteq meet over all paths solution

 - e.g., for available expressions, calculated fixpoint does not have more available expressions than MOP solution

 - If confluence operator is \sqcup

 Meet over all paths solution \sqsubseteq least fixpoint

 - e.g., for constant propagation, dataflow solution does not say a variable is constant if MOP says the variable is definitely not constant
Distributive analysis

- A dataflow analysis is *distributive* if, for all transfer functions f
 $$f(x \sqcup y) = f(x \sqcup f(y)) \text{ (equivalent definition for } \sqcap \text{)}$$

- If a dataflow analysis is distributive, then meet over all paths solution = dataflow solution

- Bitvector analyses are distributive

- Is constant propagation distributive?