Dataflow Analysis
Program optimizations

• So far we have talked about different kinds of optimizations
 • Peephole optimizations
 • Local common sub-expression elimination
 • Loop optimizations
• What about *global optimizations*
 • Optimizations across multiple basic blocks (usually a whole procedure)
 • Not just a single loop
Useful optimizations

- Common subexpression elimination (global)
 - Need to know which expressions are available at a point
- Dead code elimination
 - Need to know if the effects of a piece of code are never needed, or if code cannot be reached
- Constant folding
 - Need to know if variable has a constant value
- Loop invariant code motion
 - Need to know where and when variables are live
- So how do we get this information?
Dataflow analysis

- Framework for doing compiler analyses to drive optimization
- Works across basic blocks
- Examples
 - Constant propagation: determine which variables are constant
 - Liveness analysis: determine which variables are live
 - Available expressions: determine which expressions are have valid computed values
 - Reaching definitions: determine which definitions could “reach” a use
Example: constant propagation

• Goal: determine when variables take on constant values

• Why? Can enable many optimizations

 • Constant folding

```plaintext
x = 1;
y = x + 2;
if (x > z) then y = 5
... y ...
```

 • Create dead code

```plaintext
x = 1;
y = x + 2;
if (y > x) then y = 5
... y ...
```
Example: constant propagation

- Goal: determine when variables take on constant values
- Why? Can enable many optimizations
 - Constant folding

 \[
 \begin{align*}
 x &= 1; \\
y &= x + 2; \\
 \text{if (}x > z\text{) then } y &= 5 \\
 \ldots y \ldots
 \end{align*}
 \]

 \[
 \begin{align*}
 x &= 1; \\
y &= 3; \\
 \text{if (}x > z\text{) then } y &= 5 \\
 \ldots y \ldots
 \end{align*}
 \]

 - Create dead code

 \[
 \begin{align*}
 x &= 1; \\
y &= x + 2; \\
 \text{if (}y > x\text{) then } y &= 5 \\
 \ldots y \ldots
 \end{align*}
 \]

 \[
 \begin{align*}
 x &= 1; \\
y &= x + 2; \\
 \text{if (}y > x\text{) then } y &= 5 \\
 \ldots y \ldots
 \end{align*}
 \]
Example: constant propagation

• Goal: determine when variables take on constant values

• Why? Can enable many optimizations

• Constant folding

\[
\begin{align*}
x &= 1; \\
y &= x + 2; \\
\text{if } (x > z) \text{ then } y &= 5 \\
\cdots y \cdots
\end{align*}
\]

\[
\begin{align*}
x &= 1; \\
y &= 3; \\
\text{if } (x > z) \text{ then } y &= 5 \\
\cdots y \cdots
\end{align*}
\]

• Create dead code

\[
\begin{align*}
x &= 1; \\
y &= x + 2; \\
\text{if } (y > x) \text{ then } y &= 5 \\
\cdots y \cdots
\end{align*}
\]

\[
\begin{align*}
x &= 1; \\
y &= 3; //\text{dead code} \\
\text{if } (\text{true}) \text{ then } y &= 5 //\text{simplify!} \\
\cdots y \cdots
\end{align*}
\]
How can we find constants?

• Ideal: run program and see which variables are constant

• Problem: variables can be constant with some inputs, not others – need an approach that works for all inputs!

• Problem: program can run forever (infinite loops?) – need an approach that we know will finish fairly quickly

• Idea: run program *symbolically*

• Essentially, keep track of whether a variable is constant or not constant (but nothing else)
Overview of algorithm

- Build control flow graph
 - We’ll use statement-level CFG (with merge nodes) for this
- Perform symbolic evaluation
 - Keep track of whether variables are constant or not
- Replace constant-valued variable uses with their values, try to simplify expressions and control flow
x = 1;
y = x + 2;
if (y > x) then y = 5;
... y ...
Symbolic evaluation

- Idea: replace each value with a symbolic constant (specify which), maybe constant, definitely not constant
- Can organize these possible values in a lattice (will formalize this later)
Symbolic evaluation

- Evaluate expressions symbolically:
 \(\text{eval}(e, V_{\text{in}}) \)
- If \(e \) evaluates to a constant, return that value. If any input is \(\top \) (or \(\bot \)), return \(\top \) (or \(\bot \))
- Why?
- Two special operations on lattice
 - \(\text{meet}(a, b) \) – highest value less than or equal to both \(a \) and \(b \)
 - \(\text{join}(a, b) \) – lowest value greater than or equal to both \(a \) and \(b \)

Join often written as \(a \sqcup b \)
Meet often written as \(a \sqcap b \)
Putting it together

- Keep track of the symbolic value of a variable at every program point (on every CFG edge)
- State vector
- What should our initial value be?
 - Starting state vector is all \top
 - Can’t make any assumptions about inputs – must assume not constant
 - Everything else starts as \perp, since we don’t know if the variable is constant or not at that point
Executing symbolically

- For each statement \(t = e \) evaluate \(e \) using \(V_{in} \), update value for \(t \) and propagate state vector to next statement
- What about switches?
 - If \(e \) is true or false, propagate \(V_{in} \) to appropriate branch
- What if we can’t tell?
 - Propagate \(V_{in} \) to both branches, and symbolically execute both sides
- What do we do at merges?

Wednesday, November 4, 2009
Handling merges

- Have two different V_{in}s coming from two different paths
- Goal: want new value for V_{in} to be safe (shouldn’t generate wrong information), and we don’t know which path we actually took
- Consider a single variable. Several situations:
 - $V_1 = \bot, V_2 = * \rightarrow V_{\text{out}} = *$
 - $V_1 = \text{constant } x, V_2 = x \rightarrow V_{\text{out}} = x$
 - $V_1 = \text{constant } x, V_2 = \text{constant } y \rightarrow V_{\text{out}} = \top$
 - $V_1 = \top, V_2 = * \rightarrow V_{\text{out}} = \top$
- Generalization:
 - $V_{\text{out}} = V_1 \sqcup V_2$
Result: worklist algorithm

- Associate state vector with each edge of CFG, initialize all values to ⊥, worklist has just start edge

- While worklist not empty, do:

 Process the next edge from worklist

 Symbolically evaluate target node of edge using input state vector

 If target node is assignment \((x = e)\), propagate \(V_{in}[\text{eval}(e)/x]\) to output edge

 If target node is branch \((e?)\)

 If \(\text{eval}(e)\) is true or false, propagate \(V_{in}\) to appropriate output edge

 Else, propagate \(V_{in}\) along both output edges

 If target node is merge, propagate join(all \(V_{in}\)) to output edge

 If any output edge state vector has changed, add it to worklist
Running example

start

\[x = 1 \]

\[y = x + 2 \]

\[y > x? \]

merge

\[\ldots y \ldots \]

end
Running example

\[
x = 1
\]
\[
y = x + 2
\]
\[
y > x?
\]
\[
y = 5
\]
end
What do we do about loops?

• Unless a loop never executes, symbolic execution looks like it will keep going around to the same nodes over and over again

• Insight: if the input state vector(s) for a node don’t change, then its output doesn’t change

• If input stops changing, then we are done!

• Claim: input will eventually stop changing. Why?
Loop example

First time through loop, $x = 1$
Subsequent times, $x = \top$
Complexity of algorithm

- V = # of variables, E = # of edges
- Height of lattice = 2 → each state vector can be updated at most 2 * V times.
- So each edge is processed at most 2 * V times, so we process at most 2 * E * V elements in the worklist.
- Cost to process a node: O(V)
- Overall, algorithm takes O(EV^2) time
Question

- Can we generalize this algorithm and use it for more analyses?
- First, let’s lay the theoretical foundation for dataflow analysis.
Lattice Theory
First, something interesting

- **Brouwer Fixpoint Theorem**
 - Every continuous function \(f \) from a closed disk into itself has at least one fixed point

- More formally:
 - Domain \(D \): a *convex, closed, bounded* subspace in a plane (generalizes to higher dimensions)
 - Function \(f : D \rightarrow D \)
 - There exists some \(x \) such that \(f(x) = x \)
Intuition

• Consider the one-dimensional case: mapping a line segment onto itself

• \(x \in [0, 1] \)

• \(f(x) \in [0, 1] \)

• There must exist some \(x \) for which \(f(x) = x \)

• Examples (in 2D)
 • A mall directory
 • Crumpling up a piece of graph paper
Back to dataflow

- Game plan:
 - Finite partially ordered set with least element: D
 - Function $f : D \rightarrow D$
 - Monotonic function $f : D \rightarrow D$
 - \exists fixpoint of f
 - \exists least fixpoint of f
 - Generalization to case when D has a greatest element, \top
 - \exists greatest fixpoint of f
 - Generalization to systems of equations
Partially ordered set (poset)

- Set D with a relation \sqsubseteq that is
 - Reflexive: $x \sqsubseteq x$
 - Anti-symmetric: $x \sqsubseteq y$ and $y \sqsubseteq x \Rightarrow y = x$
 - Transitive: $x \sqsubseteq y, y \sqsubseteq z \Rightarrow x \sqsubseteq z$

- Example: set of integers and \leq

- Graphical representation of poset
 - Graph in which nodes are elements of D and relation \sqsubseteq is indicated by arrows
 - Usually omit reflexive and transitive arrows for legibility
 - Not counting reflexive edges, graph is always a DAG (why?)
Another example

- Powerset of any set, ordered by \(\subseteq \) is a poset

- In the example, poset elements are \(\{\}, \{a\}, \{a, b\}, \{a, b, c\}, \) etc.

- \(X \subseteq Y \) iff \(X \subseteq Y \)
Finite poset with least element

- Poset in which
 - Set is finite
 - There is a least element that is below all other elements in poset

- Examples
 - Set of integers ordered by \leq is *not* a finite poset with least element (no least element, not finite)
 - Set of natural numbers ordered by \leq has a least element (0), but not finite
 - Set of factors of 12, ordered by \leq has a least element as is finite
 - Powerset example from before is finite (how many elements?) with a least element ($\{\}$)
• “Finite poset with least element” is a mouthful, so we will abbreviate this to *domain*

• Later, we will add additional conditions to domains that are of interest to us in the context of dataflow analysis

• (Goal: what is a lattice?)
Functions on domains

• If D is a domain, we can define a function $f : D \rightarrow D$

• Function maps each element of domain on to another element of the domain

• Example: for $D =$ powerset of $\{a, b, c\}$

 • $f(x) = x \cup \{a\}$
 • $g(x) = x - \{a\}$
 • $h(x) = \{a\} - x$
Monotonic functions

- A function \(f: D \rightarrow D \) on a domain \(D \) is *monotonic* if
 - \(x \sqsubseteq y \Rightarrow f(x) \sqsubseteq f(y) \)

- Note: this is not the same as \(x \sqsubseteq f(x) \)

- This means that \(x \) is *extensive*

- Intuition: think of \(f \) as an electrical circuit mapping input to output
 - If \(f \) is monotonic, raising the input voltage raises the output voltage (or keeps it the same)
 - If \(f \) is extensive, the output voltage is always the same or more than the input voltage
Examples

- Domain D is the powerset of \{a, b, c\}
- Monotonic functions:
 - \(f(x) = \{\} \) (why?)
 - \(f(x) = x \cup \{a\} \)
 - \(f(x) = x - \{a\} \)
- Not monotonic
 - \(f(x) = \{a\} - x \) (why?)
- Extensivity
 - \(f(x) = x \cup \{a\} \) is monotonic \textit{and} extensive
 - \(f(x) = x - \{a\} \) is monotonic but not extensive
 - \(f(x) = \{a\} - x \) is neither
- What is a function that is extensive, but not monotonic?
Fixpoints

- Suppose $f : D \rightarrow D$.
- A value x is a **fixpoint** of f if $f(x) = x$
- f maps x to itself
- Examples: D is a powerset of $\{a, b, c\}$
 - Identity function: $f(x) = x$
 - Every element is a fixpoint
 - $f(x) = x \cup \{a\}$
 - Every set that contains a is a fixpoint
 - $f(x) = \{a\} - x$
 - No fixpoints
Fixpoint theorem

- One form of *Knaster-Tarski Theorem*:

 If D is a domain and $f : D \rightarrow D$ is monotonic, then f has at least one fixpoint

- More interesting consequence:

 If \bot is the least element of D, then f has a *least fixpoint*, and that fixpoint is the largest element in the chain

 $\bot, f(\bot), f(f(\bot)), f(f(f(\bot))), \ldots, f^n(\bot)$

- Least fixpoint: a fixpoint of f, x such that, if y is a fixpoint of f, then $x \sqsubseteq y$
Examples

• For domain of powersets, \{ \} is the least element
• For identity function, \(f^n(\{ \})\) is the chain
 \{ \}, \{ \}, \{ \}, ... so least fixpoint is \{ \}, which is correct
• For \(f(x) = x \cup \{a\}\), we get the chain
 \{ \}, \{a\}, \{a\}, ... so least fixpoint is \{a\}, which is correct
• For \(f(x) = \{a\} - x\), function is not monotonic, so not guaranteed to have a fixpoint!
• Important observation: as soon as the chain repeats, we have found the fixpoint (why?)
Proof of fixpoint theorem

• First, prove that largest element of chain $f^n(\bot)$ is a fixpoint

• Second, prove that $f^n(\bot)$ is the least fixpoint
Solving equations

• If D is a domain and $f : D \rightarrow D$ is a monotone function on that domain, then the equation $f(x) = x$ has a least fixpoint, given by the largest element in the sequence
 \[\perp, f(\perp), f(f(\perp)), f(f(f(\perp))) \ldots \]

• Proof follows directly from fixpoint theorem
Adding a top

• Now let us consider domains with an element \top, such that for every point x in the domain, $x \sqsubseteq \top$

• New theorem: if D is a domain with a greatest element \top and $f : D \to D$ is monotonic, then the equation $x = f(x)$ has a greatest solution, and that solution is the smallest element in the sequence $\top, f(\top), f(f(\top)), \ldots$

• Proof?
Multi-argument functions

• If D is a domain, a function $f : D \times D \rightarrow D$ is monotonic if it is monotonic in each argument when the other is held constant

• Intuition:
 • Electrical circuit has two inputs
 • If you raise either input while holding the other constant, the output either goes up or stays the same
Fixpoints of multi-arg functions

• Can generalize fixpoint theorem in a straightforward way

• If D is a domain and $f, g : D \times D \rightarrow D$ are monotonic, the following system of equations has a least fixpoint solution, calculated in the obvious way

 \[
 x = f(x, y) \quad \text{and} \quad y = g(x, y)
 \]

• Can generalize this to more than two variables and domains with greatest elements easily
Lattices

A bounded lattice is a partially ordered set with a \(\perp \) and \(\top \), with two special functions for any pair of points \(x \) and \(y \) in the lattice:

- A join: \(x \sqcup y \) is the least element that is greater than \(x \) and \(y \) (also called the least upper bound)

- A meet: \(x \sqcap y \) is the greatest element that is less than \(x \) and \(y \) (also called the greatest lower bound)

- Are \(\sqcup \) and \(\sqcap \) monotonic?
More about lattices

- Bounded lattices with a finite number of elements are a special case of domains with \top (why are they not the same?)
- Systems of monotonic functions (including \sqcup and \sqcap) will have fixpoints
- But some lattices are infinite! (example: the lattice for constant propagation)
 - It turns out that you can show a monotonic function will have a least fixpoint for any lattice (or domain) of finite height
 - Finite height: any totally ordered subset of domain (this is called a chain) must be finite
- Why does this work?
Solving system of equations

• Consider

\[x = f(x, y, z) \]
\[y = g(x, y, z) \]
\[z = h(x, y, z) \]

• Obvious iterative solution: evaluate every function at every step:

\[f(⊥, ⊥, ⊥) \quad \ldots \]
\[g(⊥, ⊥, ⊥) \quad \ldots \]
\[h(⊥, ⊥, ⊥) \quad \ldots \]
Worklist algorithm

- Obvious point: only necessary to re-evaluate functions whose inputs have changed

- Worklist algorithm
 - Initialize worklist with all equations
 - Initialize solution vector S to all \bot
 - While worklist not empty
 - Get equation from worklist
 - Re-evaluate equation based on S, update entry corresponding to lhs in S
 - Put all equations which use this lhs on their rhs in the worklist

- Claim: the worklist algorithm for constant propagation is an instance of this approach
Mapping worklist algorithm

• Careful: the “variables” in constant propagation are not the individual variable values in a state vector. Each variable (from a fixpoint perspective) is an entire state vector – there are as many variables as there are edges in the CFG

• Functions:
 • Program statements: eval(e, V_{in})
 • These are called transfer functions
 • Need to make sure this is monotonic

• Branches
 • Propagates input state vector to output – trivially monotonic

• Merges
 • Use join or meet to combine multiple input variables – monotonic by definition
Constant propagation

• Step 1: choose lattice
 • Use constant lattice (infinite, but finite height)

• Step 2: choose direction of dataflow
 • Run forward through program

• Step 3: create monotonic transfer functions
 • If input goes from \(\bot \) to constant, output can only go up. If input goes from constant to \(\top \), output goes to \(\top \)

• Step 4: choose confluence operator
 • What do do at merges? For constant propagation, use join