Control flow graphs and loop optimizations
Agenda

• Building control flow graphs
• Low level loop optimizations
 • Code motion
 • Strength reduction
 • Unrolling
• High level loop optimizations
 • Loop fusion
 • Loop interchange
 • Loop tiling
Moving beyond basic blocks

- Up until now, we have focused on single basic blocks
- What do we do if we want to consider larger units of computation
 - Whole procedures?
 - Whole program?
- Idea: capture *control flow* of a program
 - How control transfers between basic blocks due to:
 - Conditionals
 - Loops
Representation

- Use standard three-address code
- Jump targets are labeled
- Also label beginning/end of functions
- Want to keep track of targets of jump statements
 - Any statement whose execution may immediately follow execution of jump statement
 - *Explicit* targets: targets mentioned in jump statement
 - *Implicit* targets: statements that follow conditional jump statements
 - The statement that gets executed if the branch is not taken
A = 4

\[t1 = A \times B \]

repeat {
 \[t2 = t1/C \]
 if (t2 ≥ W) {
 \[M = t1 \times k \]
 \[t3 = M + I \]
 }
 \[H = I \]
 \[M = t3 - H \]
} until (T3 ≥ 0)
Running example

1 A = 4
2 t1 = A * B
3 L1: t2 = t1 / C
4 if t2 < W goto L2
5 M = t1 * k
6 t3 = M + I
7 L2: H = I
8 M = t3 - H
9 if t3 ≥ 0 goto L3
10 goto L1
11 L3: halt
Control flow graphs

- Divides statements into *basic blocks*

- Basic block: a maximal sequence of statements \(l_0, l_1, l_2, \ldots, l_n \) such that if \(l_j \) and \(l_{j+1} \) are two adjacent statements in this sequence, then

 - The execution of \(l_j \) is always immediately followed by the execution of \(l_{j+1} \)

 - The execution of \(l_{j+1} \) is always immediately preceded by the execution of \(l_j \)

- Edges between basic blocks represent potential flow of control
CFG for running example

A = 4
t1 = A * B

L1: t2 = t1/c
if t2 < W goto L2

M = t1 * k
t3 = M + I

L2: H = I
M = t3 - H
if t3 ≥ 0 goto L3

L3: halt

goto L1

How do we build this automatically?
Constructing a CFG

- To construct a CFG where each node is a basic block
 - Identify leaders: first statement of a basic block
 - In program order, construct a block by appending subsequent statements up to, but not including, the next leader
- Identifying leaders
 - First statement in the program
 - Explicit target of any conditional or unconditional branch
 - Implicit target of any branch
Partitioning algorithm

- **Input**: set of statements, \(\text{stat}(i) = i^{\text{th}} \) statement in input
- **Output**: set of *leaders*, set of basic blocks where \(\text{block}(x) \) is the set of statements in the block with leader \(x \)
- **Algorithm**

 \[
 \text{leaders} = \{1\} \quad // \text{Leaders always includes first statement}
 \]

 \[
 \text{for} \ i = 1 \ \text{to} \ |n| \quad // |n| = \text{number of statements}
 \]

 \[
 \text{if stat}(i) \text{ is a branch, then}
 \]

 \[
 \text{leaders} = \text{leaders} \cup \text{all potential targets}
 \]

 \[
 \text{end for}
 \]

 \[
 \text{worklist} = \text{leaders}
 \]

 \[
 \text{while worklist not empty do}
 \]

 \[
 x = \text{remove earliest statement in worklist}
 \]

 \[
 \text{block}(x) = \{x\}
 \]

 \[
 \text{for} \ (i = x + 1; i \leq |n| \text{ and } i \notin \text{leaders}; i++)
 \]

 \[
 \text{block}(x) = \text{block}(x) \cup \{i\}
 \]

 \[
 \text{end for}
 \]

 \[
 \text{end while}
 \]
Running example

1 A = 4
2 t1 = A * B
3 L1: t2 = t1 / C
4 if t2 < W goto L2
5 M = t1 * k
6 t3 = M + I
7 L2: H = I
8 M = t3 - H
9 if t3 ≥ 0 goto L3
10 goto L1
11 L3: halt

Leaders =
Basic blocks =

Tuesday, October 27, 2009
Running example

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A = 4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>t1 = A * B</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>L1: t2 = t1 / C</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>if t2 < W goto L2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>M = t1 * k</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>t3 = M + I</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>L2: H = I</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>M = t3 - H</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>if t3 ≥ 0 goto L3</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>goto L1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>L3: halt</td>
<td></td>
</tr>
</tbody>
</table>

Leaders = \{1, 3, 5, 7, 10, 11\}
Basic blocks = \{ \{1, 2\}, \{3, 4\}, \{5, 6\}, \{7, 8, 9\}, \{10\}, \{11\} \}
Putting edges in CFG

• There is a directed edge from \(B_1 \) to \(B_2 \) if
 • There is a branch from the last statement of \(B_1 \) to the first statement (leader) of \(B_2 \)
 • \(B_2 \) immediately follows \(B_1 \) in program order and \(B_1 \) does not end with an unconditional branch

• Input: \textit{block}, a sequence of basic blocks

• Output: The CFG

\begin{verbatim}
for i = 1 to |block|
 x = last statement of block(i)
 if stat(x) is a branch, then
 for each explicit target y of stat(x)
 create edge from block i to block y
 end for
 if stat(x) is not unconditional then
 create edge from block i to block i+1
 end for
\end{verbatim}
A = 4
\(t_1 = A \times B\)

L1: \(t_2 = \frac{t_1}{c}\)
if \(t_2 < W\) goto L2

M: \(t_1 \times k\)
\(t_3 = M + I\)

L2: \(H = I\)
\(M = t_3 - H\)
if \(t_3 \geq 0\) goto L3

L3: halt

goto L1

Tuesday, October 27, 2009
Discussion

- Some times we will also consider the *statement-level* CFG, where each node is a statement rather than a basic block.
 - Either kind of graph is referred to as a CFG.
 - In statement-level CFG, we often use a node to explicitly represent *merging* of control.
 - Control merges when two different CFG nodes point to the same node.
- Note: if input language is *structured*, front-end can generate basic block directly.
 - “GOTO considered harmful”
Statement level CFG

+ ⇒ ;

/ ⇒ 7

0 ⇒ ;

/ ⇒ 0

/ ⇒ 7 ≥

5
Loop optimization

- Low level optimization
 - Moving code around in a single loop
 - Examples: loop invariant code motion, strength reduction, loop unrolling

- High level optimization
 - Restructuring loops, often affects multiple loops
 - Examples: loop fusion, loop interchange, loop tiling
Low level loop optimizations

- Affect a single loop
- Usually performed at three-address code stage or later in compiler
- First problem: identifying loops
 - Low level representation doesn’t have loop statements!
Identifying loops

• First, we must identify *dominators*

• Node a dominates node b if every possible execution path that gets to b must pass through a

• Many different algorithms to calculate dominators – we will not cover how this is calculated

• A *back edge* is an edge from b to a when a dominates b

• The target of a back edge is a *loop header*
Natural loops

• Will focus on *natural loops* – loops that arise in structured programs

• For a node \(n \) to be in a loop with header \(h \)
 • \(n \) must be dominated by \(h \)
 • There must be a path in the CFG from \(n \) to \(h \) through a back-edge to \(h \)

• What are the back edges in the example to the right? The loop headers? The natural loops?
Loop invariant code motion

• Idea: some expressions evaluated in a loop never change; they are *loop invariant*

• Can move loop invariant expressions outside the loop, store result in temporary and just use the temporary in each iteration

• Why is this useful?

Tuesday, October 27, 2009
Think of this as CSE on steroids
Identifying loop invariant code

- To determine if a statement
 \[s: t = a \text{ op } b \]
 is loop invariant, find all definitions of \(a \) and \(b \) that reach \(s \)

- \(s \) is loop invariant if both \(a \) and \(b \) satisfy one of the following
 - it is constant
 - all definitions that reach it are from outside the loop
 - only one definition reaches it and that definition is also loop invariant
Moving loop invariant code

• Just because code is loop invariant doesn’t mean we can move it!

```plaintext
for (...)  
  if (*)  
    a = 5
  else  
    a = 6
for (...)  
  a = b + c  
c = a;
```

• We can move a loop invariant statement \(t = a \ op b \) if

 • The statement dominates all loop exits where \(t \) is live

 • There is only one definition of \(t \) in the loop

 • \(t \) is not defined before the loop where the definition reaches a use after the loop

• Move instruction to a **preheader**, a new block put right before loop header
Strength reduction

- Like strength reduction peephole optimization
- Peephole: replace expensive instruction like $a \times 2$ with $a \ll 1$
- Replace expensive instruction, multiply, with a cheap one, addition
- Applies to uses of an \textit{induction variable}
- Opportunity: array indexing

```c
for (i = 0; i < 100; i++)
    A[i] = 0;

i = 0;
L2: if (i >= 100) goto L1
    j = 4 * i + &A
    *j = 0;
    i = i + 1;
    goto L2
L1:
```
Strength reduction

• Like strength reduction peephole optimization

• Peephole: replace expensive instruction like a * 2 with a << 1

• Replace expensive instruction, multiply, with a cheap one, addition

• Applies to uses of an *induction variable*

• Opportunity: array indexing

```c
for (i = 0; i < 100; i++)
    A[i] = 0;
```

```c
i = 0; k = &A;
L2:if (i >= 100) goto L1
    j = k;
    *j = 0;
    i = i + 1; k = k + 4;
    goto L2
L1:
```
Induction variables

- A *basic induction variable* is a variable j
- whose only definition within the loop is an assignment of the form $j = j \pm c$, where c is loop invariant
- Intuition: the variable which determines number of iterations is usually an induction variable
- A *mutual induction variable* i may be
 - defined once within the loop, and its value is a linear function of some other induction variable j such that
 $$i = c_1 \cdot j \pm c_2 \text{ or } i = j/c_1 \pm c_2$$
 where c_1, c_2 are loop invariant
- A *family* of induction variables include a basic induction variable and any related mutual induction variables

Tuesday, October 27, 2009
Strength reduction algorithm

- Let i be an induction variable in the family of the basic induction variable j, such that \(i = c_1 \times j + c_2 \)
- Create a new variable \(i' \)
- Initialize in preheader
 \[i' = c_1 \times j + c_2 \]
- Track value of j. After \(j = j + c_3 \), perform
 \[i' = i' + (c_1 \times c_3) \]
- Replace definition of i with
 \[i = i' \]
- Key: \(c_1, c_2, c_3 \) are all loop invariant (or constant), so computations like \((c_1 \times c_3)\) can be moved outside loop
Linear test replacement

- After strength reduction, the loop test may be the only use of the basic induction variable
- Can now eliminate induction variable altogether
- Algorithm
 - If only use of an induction variable is the loop test and its increment, and if the test is always computed
 - Can replace the test with an equivalent one using one of the mutual induction variables

```plaintext
i = 2
for (; i < k; i++)
  j = 50*i
  ... = j
```

Strength reduction

```plaintext
i = 2; j' = 50 * i
for (; i < k; i++, j' += 50)
  ... = j'
```

Linear test replacement

```plaintext
i = 2; j' = 50 * i
for (; j' < 50*k; j' += 50)
  ... = j'
```
Loop unrolling

- Modifying induction variable in each iteration can be expensive
- Can instead unroll loops and perform multiple iterations for each increment of the induction variable
- What are the advantages and disadvantages?

```
for (i = 0; i < N; i++)
    A[i] = ...            // Unroll by factor of 4
```

```
for (i = 0; i < N; i += 4)
    A[i] = ...
    A[i+1] = ...
    A[i+2] = ...
    A[i+3] = ...
```

Advantages: fewer instructions executed, more opportunities for CSE, strength reduction, ILP etc.
Disadvantages: code size increase, more i-cache pressure, can confuse allocator (more variables being used -> more interference -> more need for spilling), need to execute cleanup code if unroll factor doesn’t divide number of iterations
High level loop optimizations

- Many useful compiler optimizations require restructuring loops or sets of loops
 - Combining two loops together (loop fusion)
 - Switching the order of a nested loop (loop interchange)
 - Completely changing the traversal order of a loop (loop tiling)
- These sorts of high level loop optimizations usually take place at the AST level (where loop structure is obvious)
Cache behavior

- Most loop transformations target cache performance
- Attempt to increase *spatial* or *temporal* locality
- Locality can be exploited when there is *reuse* of data (for temporal locality) or recent access of nearby data (for spatial locality)
- Loops are a good opportunity for this: many loops iterate through matrices or arrays
- Consider matrix-vector multiply example
 - Multiple traversals of vector: opportunity for spatial and temporal locality
 - Regular access to array: opportunity for spatial locality

\[
y = Ax
\]

\[
\begin{align*}
\text{for } (i = 0; i < N; i++) \\
\text{for } (j = 0; j < N; j++) \\
y[i] &\gets A[i][j] \times x[j]
\end{align*}
\]
Loop fusion

- Combine two loops together into a single loop
- Why is this useful?
- Is this always legal?

Useful because it can increase temporal locality: we can now use the same fetched \(a[i] \) for both instructions, rather than potentially re-fetching after a cache miss.
Loop interchange

- Change the order of a nested loop
- This is not always legal – it changes the order that elements are accessed!
- Why is this useful?
- Consider matrix-matrix multiply when A is stored in column-major order (i.e., each column is stored in contiguous memory)

```
for (i = 0; i < N; i++)
  for (j = 0; j < N; j++)
    y[i] += A[i][j] * x[j]
```
Loop interchange

- Change the order of a nested loop
- This is not always legal – it changes the order that elements are accessed!
- Why is this useful?
- Consider matrix-matrix multiply when A is stored in column-major order (i.e., each column is stored in contiguous memory)

```c
for (j = 0; j < N; j++)
    for (i = 0; i < N; i++)
        y[i] += A[i][j] * x[j]
```

Exploits spatial locality in A
Loop tiling

- Also called “loop blocking”
- One of the more complex loop transformations
- Goal: break loop up into smaller pieces to get spatial and temporal locality
- Create new inner loops so that data accessed in inner loops fit in cache
- Also changes iteration order, so may not be legal

```plaintext
for (i = 0; i < N; i++)
  for (j = 0; j < N; j++)
    y[i] += A[i][j] * x[j]

for (ii = 0; ii < N; ii += B)
  for (jj = 0; jj < N; jj += B)
    for (i = ii; i < ii+B; i++)
      for (j = jj; j < jj+B; j++)
        y[i] += A[i][j] * x[j]
```

![Diagram of loop tiling](image)
Loop tiling

• Also called “loop blocking”
• One of the more complex loop transformations
• Goal: break loop up into smaller pieces to get spatial and temporal locality
• Create new inner loops so that data accessed in inner loops fit in cache
• Also changes iteration order, so may not be legal

\[
\text{for } (i = 0; i < N; i++)
\text{ for } (j = 0; j < N; j++)
\quad y[i] += A[i][j] \times x[j]
\]

\[
\text{for } (ii = 0; ii < N; ii += B)
\text{ for } (jj = 0; jj < N; jj += B)
\text{ for } (i = ii; i < ii+B; i++)
\text{ for } (j = jj; j < jj+B; j++)
\quad y[i] += A[i][j] \times x[j]
\]
In a real (Itanium) compiler

GFLOPS relative to -O2; bigger is better

92% of Peak Performance

Tuesday, October 27, 2009
Loop transformations

- Loop transformations can have dramatic effects on performance
- Doing this legally and automatically is very difficult!
- Researchers have developed techniques to determine legality of loop transformations and automatically transform the loop
 - Techniques like *unimodular transform framework* and *polyhedral framework*
 - These approaches will get covered in more detail in advanced compilers course