Announcements

• You may optionally work with a partner on the project
 • Must work with the partner for the entire project
 • Let me know by next Thursday who you are working with (if anyone), and under which username you will be submitting
• I’m trying to get the lectures posted online at least a day before class (some days I’m more successful than others!)
From last time: Lex (Flex)

- Commonly used Unix scanner generator (superseded by Flex)
- Has character classes and regular expressions like ScanGen but some key differences:
 - After each token is matched, calls user-defined “filter” function, which processes identified token before returning it to parser
 - Hence, no “Toss” facility (why?)
 - No exception list
 - Instead, supports matching multiple regexps.
 - Matches longest token (i.e., doesn’t think ifa is IF ID(a))
 - In case of tie, returns earliest-defined regexp
 - To treat if as a reserved word instead of an identifier, define token IF before defining identifiers.
Lex operation

Example of Lex input on page 67 of textbook
Parsers
Agenda

- Terminology
- LL(1) Parsers
- Overview of LR Parsing
Terminology

- Grammar $G = (V_t, V_n, S, P)$
 - V_t is the set of terminals
 - V_n is the set of non-terminals
 - S is the start symbol
 - P is the set of productions
 - Each production takes the form: $V_n \rightarrow \lambda \mid (V_n \mid V_t)^+$
 - Grammar is context-free (why?)
- A simple grammar:
 \[G = (\{a, b\}, \{S, A, B\}, \{S \rightarrow A \ B \$, A \rightarrow A \ a, A \rightarrow a, B \rightarrow B \ b, B \rightarrow b\}, S) \]
Terminology

- V is the *vocabulary* of a grammar, consisting of terminal (V_t) and non-terminal (V_n) symbols

- For our sample grammar
 - $V_n = \{S, A, B\}$
 - Non-terminals are symbols on the LHS of a production
 - Non-terminals are constructs in the language that are recognized during parsing
 - $V_t = \{a, b\}$
 - Terminals are the tokens recognized by the scanner
 - They correspond to symbols in the text of the program
Terminology

• Productions (rewrite rules) tell us how to derive strings in the language
• Apply productions to rewrite strings into other strings
• We will use the standard BNF form
• \[P = \{ \]
 \[S \rightarrow A \ B \ \$ \]
 \[A \rightarrow A \ a \]
 \[A \rightarrow a \]
 \[B \rightarrow B \ b \]
 \[B \rightarrow b \]
\[\} \]
Generating strings

- Given a start rule, productions tell us how to rewrite a non-terminal into a different set of symbols.
- By convention, first production applied has the start symbol on the left, and there is only one such production.

To derive the string “a a b b b” we can do the following rewrites:

\[
S \Rightarrow A \ B \ \$ \Rightarrow A \ a \ B \ \$ \Rightarrow a \ a \ B \ \$ \Rightarrow a \ a \ B \ b \ \$ \Rightarrow a \ a \ b \ b \ b \ \$
\]
Terminology

- \textit{Strings} are composed of symbols
 - \texttt{AA a a B b b A a} is a string
 - We will use Greek letters to represent strings composed of both terminals and non-terminals
- \(L(G) \) is the language produced by the grammar \(G \)
 - All strings consisting of only terminals that can be produced by \(G \)
 - In our example, \(L(G) = a+b+\$ \)
 - All regular expressions can be expressed as grammars for context-free languages, but not vice-versa
 - Consider: \(a^i b^i \$ \) (what is the grammar for this?)
Parse trees

- Tree which shows how a string was produced by a language
 - Interior nodes of tree: non-terminals
 - Children: the terminals and non-terminals generated by applying a production rule
 - Leaf nodes: terminals
Leftmost derivation

• Rewriting of a given string starts with the leftmost symbol
• Exercise: do a leftmost derivation of the input program

\[F(V + V) \]

using the following grammar:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>→</td>
</tr>
<tr>
<td></td>
<td>Prefix (E)</td>
</tr>
<tr>
<td>E</td>
<td>→</td>
</tr>
<tr>
<td></td>
<td>V Tail</td>
</tr>
<tr>
<td>Prefix</td>
<td>→</td>
</tr>
<tr>
<td></td>
<td>F</td>
</tr>
<tr>
<td>Prefix</td>
<td>→</td>
</tr>
<tr>
<td></td>
<td>λ</td>
</tr>
<tr>
<td>Tail</td>
<td>→</td>
</tr>
<tr>
<td></td>
<td>+ E</td>
</tr>
<tr>
<td>Tail</td>
<td>→</td>
</tr>
<tr>
<td></td>
<td>λ</td>
</tr>
</tbody>
</table>

• What does the parse tree look like?
Rightmost derivation

- Rewrite using the rightmost non-terminal, instead of the left
- What is the rightmost derivation of this string?

\[F(V + V) \]

<table>
<thead>
<tr>
<th>E</th>
<th>→</th>
<th>Prefix (E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>→</td>
<td>V Tail</td>
</tr>
<tr>
<td>Prefix</td>
<td>→</td>
<td>F</td>
</tr>
<tr>
<td>Prefix</td>
<td>→</td>
<td>λ</td>
</tr>
<tr>
<td>Tail</td>
<td>→</td>
<td>+ E</td>
</tr>
<tr>
<td>Tail</td>
<td>→</td>
<td>λ</td>
</tr>
</tbody>
</table>
Top-down vs. Bottom-up parsers

- Top-down parsers use left-most derivation
- Bottom-up parsers use right-looking parse
- Notation:
 - LL(1): Leftmost derivation with 1 symbol lookahead
 - LL(k): Leftmost derivation with k symbols lookahead
 - LR(1): Right-looking derivation with 1 symbol lookahead
Micro in standard BNF

1. Program ::= BEGIN Statement-list END
2. Statement-list ::= Statement StatementTail
3. StatementTail ::= Statement StatementTail
4. StatementTail ::= λ.
5. Statement ::= ID ::= Expression ;
6. Statement ::= READ (Id-list);
7. Statement ::= WRITE (Expr-list);
8. Id-list ::= ID IdTail
9. IdTail ::= , ID IdTail
10. IdTail ::= λ.
11. Expr-list ::= Expression ExprTail
12. ExprTail ::= , Expression ExprTail
13. ExprTail ::= λ.
14. Expression ::= Primary PrimaryTail
15. PrimaryTail ::= Add-op Primary PrimaryTail
16. PrimaryTail ::= λ.
17. Primary ::= (Expression)
18. Primary ::= ID
19. Primary ::= INTLITERAL
20. Add-op ::= PLUSOP
21. Add-op ::= MINUSOP
22. System-goal ::= Program SCANEOF

Compare this to grammar in lecture 2
Micro in standard BNF

1. Program ::= BEGIN Statement-list END
2. Statement-list ::= Statement StatementTail
3. StatementTail ::= Statement StatementTail
4. StatementTail ::= λ
5. Statement ::= ID := Expression ;
6. Statement ::= READ (Id-list) ;
7. Statement ::= WRITE (Expr-list) ;
8. Id-list ::= ID IdTail
9. IdTail ::= , ID IdTail
10. IdTail ::= λ
11. Expr-list ::= Expression ExprTail
12. ExprTail ::= , Expression ExprTail
13. ExprTail ::= λ
14. Expression ::= Primary PrimaryTail
15. PrimaryTail ::= Add-op Primary PrimaryTail
16. PrimaryTail ::= λ
17. Primary ::= (Expression)
18. Primary ::= ID
19. Primary ::= INTLITERAL
20. Add-op ::= PLUSOP
21. Add-op ::= MINUSOP
22. System-goal ::= Program SCANEOF

Compare this to grammar in lecture 2
Micro in standard BNF

1 Program ::= BEGIN Statement-list END
2 Statement-list ::= Statement StatementTail
3 StatementTail ::= Statement StatementTail
4 StatementTail ::= λ
5 Statement ::= ID ::= Expression ;
6 Statement ::= READ (Id-list) ;
7 Statement ::= WRITE (Expr-list) ;
8 Id-list ::= ID IdTail
9 IdTail ::= , ID IdTail
10 IdTail ::= λ
11 Expr-list ::= Expression ExprTail
12 ExprTail ::= , Expression ExprTail
13 ExprTail ::= λ
14 Expression ::= Primary PrimaryTail
15 PrimaryTail ::= Add-op Primary PrimaryTail
16 PrimaryTail ::= λ
17 Primary ::= (Expression)
18 Primary ::= ID
19 Primary ::= INTLITERAL
20 Add-op ::= PLUSOP
21 Add-op ::= MINUSOP
22 System-goal ::= Program SCANEOF

Compare this to grammar in lecture 2

Thursday, September 10, 2009
What is parsing

• Parsing is recognizing members in a language specified/defined/generated by a grammar

• When a construct (corresponding to a production in a grammar) is recognized, a typical parser will take some action

 • In a compiler, this action generates an intermediate representation of the program construct

 • In an interpreter, this action might be to perform the action specified by the construct. Thus, if $a+b$ is recognized, the value of a and b would be added and placed in a temporary variable
Another simple grammar

\[
\text{PROGRAM} \rightarrow \text{begin STMTLIST }$
\]

\[
\text{STMTLIST} \rightarrow \text{STMT ; STMTLIST}
\]

\[
\text{STMTLIST} \rightarrow \text{end}
\]

\[
\text{STMT} \rightarrow \text{id}
\]

\[
\text{STMT} \rightarrow \text{if (id) STMTLIST}
\]

• A sentence in the grammar:

\[
\text{begin if (id) if (id) id ; end; end; end; }
\]

\[
$
\]

• What are the terminals and non-terminals of this grammar?
Parsing this grammar

PROGRAM → begin STMTLIST $
STMTLIST → STMT ; STMTLIST
STMTLIST → end
STMT → id
STMT → if (id) STMTLIST

• Note
 • To parse STMT in STMTLIST → STMT ; STMTLIST, it is necessary to parse either STMT → id or STMT → if ...
 • Choose the production to parse by finding out if next token is if or id
 • i.e., which production the next input token matches
 • This is the first set of the production
Another example

\[S \rightarrow A \ B \ \$ \]
\[A \rightarrow x \ a \ A \]
\[A \rightarrow y \ a \ A \]
\[A \rightarrow \lambda \]
\[B \rightarrow b \]

- Consider \(S \Rightarrow A \ B \ \$ \Rightarrow x \ a \ A \ B \ \$ \Rightarrow x \ a \ B \ \$ \Rightarrow x \ a \ b \ \$
- When parsing \(x \ a \ b \ \$ \) we know from the goal production we need to match an \(A \). The next token is \(x \), so we apply \(A \rightarrow x \ a \ A \)
- The parser matches \(x \), matches \(a \) and now needs to parse \(A \) again
- How do we know which \(A \) to use? We need to use \(A \rightarrow \lambda \)
 - When matching the right hand side of \(A \rightarrow \lambda \), the next token comes from a non-terminal that follows \(A \) (i.e., it must be \(b \))
 - Tokens that can follow \(A \) are called the follow set of \(A \)
First and follow sets

• First(α): the set of terminals that begin all strings that can be derived from α
 • First(A) = \{x, y\}
 • First(xaA) = \{x\}
 • First(AB) = \{x, y, b\}

• Follow(A): the set of terminals that can appear immediately after A in some partial derivation
 • Follow(A) = \{b\}

S → A B $
A → x a A
A → y a A
A → λ
B → b
First and follow sets

• First(α) = {a ∈ V_t | α ⇒* aβ} ∪ {λ | if α ⇒* λ}

• Follow(A) = {a ∈ V_t | S ⇒+ ...Aa ...} ∪ {$ | if S ⇒+ ...A$}

S: start symbol
a: a terminal symbol
A: a non-terminal symbol
α,β: a string composed of terminals and non-terminals (typically, α is the RHS of a production)
⇒: derived in 1 step
⇒*: derived in 0 or more steps
⇒+: derived in 1 or more steps
Computing first sets

- Terminal: First(a) = \{a\}
- Non-terminal: First(A)
 - Look at all productions for A
 \[A \rightarrow X_1 X_2 \ldots X_k \]
 - First(A) \supseteq (First(X_1) - \lambda)
 - If \(\lambda \in \text{First}(X_1) \), First(A) \supseteq (First(X_2) - \lambda)
 - If \(\lambda \) is in First(X_i) for all i, then \(\lambda \in \text{First}(A) \)
- Computing First(\(\alpha \)): similar procedure to computing First(A)
Exercise

• What are the first sets for all the non-terminals in following grammar:

\[
\begin{align*}
S & \rightarrow A \ B \ $ \\
A & \rightarrow x \ a \ A \\
A & \rightarrow y \ a \ A \\
A & \rightarrow \lambda \\
A & \rightarrow \lambda \\
B & \rightarrow b
\end{align*}
\]
Computing follow sets

• Follow(S) = {$$
• To compute Follow(A):
 • Find productions which have A on rhs. Three rules:
 1. \(X \rightarrow \alpha A \beta \): Follow(A) \supseteq (First(\beta) - \lambda)
 2. \(X \rightarrow \alpha A \beta \): If \(\lambda \in \text{First}(\beta) \), Follow(A) \supseteq \text{Follow}(X)
 3. \(X \rightarrow \alpha A \): Follow(A) \supseteq \text{Follow}(X)
 • Note: Follow(X) never has \(\lambda \) in it.
Exercise

• What are the follow sets for

\[S \rightarrow A \ B \$ \]
\[A \rightarrow x \ a \ A \]
\[A \rightarrow y \ a \ A \]
\[A \rightarrow \lambda \]
\[B \rightarrow b \]
Towards parser generators

• Key problem: as we read the source program, we need to decide what productions to use

• Step 1: find the tokens that can tell which production P (of the form $A \rightarrow X_1X_2 \ldots X_m$) applies

$\text{Predict}(P) =$

$$\begin{cases}
\text{First}(X_1 \ldots X_m) & \text{if } \lambda \not\in \text{First}(X_1 \ldots X_m) \\
(\text{First}(X_1 \ldots X_m) - \lambda) \cup \text{Follow}(A) & \text{otherwise}
\end{cases}$$

• If next token is in $\text{Predict}(P)$, then we should choose this production
Step 2: build a parse table

Given some non-terminal V_n (the non-terminal we are currently processing) and a terminal V_t (the lookahead symbol), the parse table tells us which production P to use (or that we have an error)

More formally:

$$T: V_n \times V_t \rightarrow P \cup \{\text{Error}\}$$
Building the parse table

• Start: \(T[A][t] = //initialize all fields to “error” \)

 foreach A:

 foreach P with A on its lhs:

 foreach t in Predict(P):

 \(T[A][t] = P \)

• Exercise: build parse table for our toy grammar

1. \(S \rightarrow A \ B \ \$ \)
2. \(A \rightarrow x \ a \ A \)
3. \(A \rightarrow y \ a \ A \)
4. \(A \rightarrow \lambda \)
5. \(B \rightarrow b \)
Recursive-descent parsers

- Given the parse table, we can create a program which generates recursive descent parsers
- Remember the recursive descent parser we saw for MICRO
- If the choice of production is not unique, the parse table tells us which one to take
- However, there is an easier method!
Stack-based parser for LL(1)

- Given the parse table, a stack-based algorithm is much simpler to generate than a recursive descent parser

- Basic algorithm:
 1. Push the RHS of a production onto the stack
 2. Pop a symbol, if it is a terminal, match it
 3. If it is a non-terminal, take its production according to the parse table and go to 1

- Algorithm on page 121

- Note: always start with start state
An example

• How would a stack-based parser parse:

\[
x \ a \ y \ a \ b
\]

<table>
<thead>
<tr>
<th>Parse stack</th>
<th>Remaining input</th>
<th>Parser action</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>x a y a b $</td>
<td>predict 1</td>
</tr>
</tbody>
</table>

1. S → A B $
2. A → x a A
3. A → y a A
4. A → λ
5. B → b
An example

- How would a stack-based parser parse:
 \[x \ a \ y \ a \ b \]

<table>
<thead>
<tr>
<th>Parse stack</th>
<th>Remaining input</th>
<th>Parser action</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>(x \ a \ y \ a \ b)</td>
<td>predict 1</td>
</tr>
<tr>
<td>A B $</td>
<td>(x \ a \ y \ a \ b)</td>
<td>predict 2</td>
</tr>
</tbody>
</table>

1. \(S \rightarrow A \ B \) \$
2. \(A \rightarrow x \ a A \)
3. \(A \rightarrow y \ a A \)
4. \(A \rightarrow \lambda \)
5. \(B \rightarrow b \)
An example

- How would a stack-based parser parse:

 \texttt{x a y a b}

<table>
<thead>
<tr>
<th>Parse stack</th>
<th>Remaining input</th>
<th>Parser action</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{S}</td>
<td>\texttt{x a y a b $}</td>
<td>predict 1</td>
</tr>
<tr>
<td>\texttt{A B $}</td>
<td>\texttt{x a y a b $}</td>
<td>predict 2</td>
</tr>
<tr>
<td>\texttt{x a A B $}</td>
<td>\texttt{x a y a b $}</td>
<td>match(x)</td>
</tr>
</tbody>
</table>

1. \texttt{S \rightarrow A B $}
2. \texttt{A \rightarrow x a A}
3. \texttt{A \rightarrow y a A}
4. \texttt{A \rightarrow \lambda}
5. \texttt{B \rightarrow b}
An example

- How would a stack-based parser parse:

 \[\text{x a y a b} \]

<table>
<thead>
<tr>
<th>Parse stack</th>
<th>Remaining input</th>
<th>Parser action</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>x a y a b $</td>
<td>predict 1</td>
</tr>
<tr>
<td>A B $</td>
<td>x a y a b $</td>
<td>predict 2</td>
</tr>
<tr>
<td>x a A B $</td>
<td>x a y a b $</td>
<td>match(x)</td>
</tr>
<tr>
<td>a A B $</td>
<td>a y a b $</td>
<td>match(a)</td>
</tr>
</tbody>
</table>
An example

- How would a stack-based parser parse:

\[x \ a \ y \ a \ b \]

<table>
<thead>
<tr>
<th>Parse stack</th>
<th>Remaining input</th>
<th>Parser action</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>(x \ a \ y \ a \ b $</td>
<td>predict 1</td>
</tr>
<tr>
<td>A B $</td>
<td>(x \ a \ y \ a \ b $</td>
<td>predict 2</td>
</tr>
<tr>
<td>x A A B $</td>
<td>(x \ a \ y \ a \ b $</td>
<td>match(x)</td>
</tr>
<tr>
<td>a A B $</td>
<td>(a \ y \ a \ b $</td>
<td>match(a)</td>
</tr>
<tr>
<td>A B $</td>
<td>(y \ a \ b $</td>
<td>predict 3</td>
</tr>
</tbody>
</table>
An example

How would a stack-based parser parse:

\[x \ a \ y \ a \ b \]

<table>
<thead>
<tr>
<th>Parse stack</th>
<th>Remaining input</th>
<th>Parser action</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>(x \ a \ y \ a \ b \ $)</td>
<td>predict 1</td>
</tr>
<tr>
<td>A B $</td>
<td>(x \ a \ y \ a \ b \ $)</td>
<td>predict 2</td>
</tr>
<tr>
<td>(x \ a A B) $</td>
<td>(x \ a \ y \ a \ b \ $)</td>
<td>match(x)</td>
</tr>
<tr>
<td>a A B $</td>
<td>(a \ y \ a \ b \ $)</td>
<td>match(a)</td>
</tr>
<tr>
<td>A B $</td>
<td>(y \ a \ b \ $)</td>
<td>predict 3</td>
</tr>
<tr>
<td>y a A B $</td>
<td>(y \ a \ b \ $)</td>
<td>match(y)</td>
</tr>
</tbody>
</table>
An example

- How would a stack-based parser parse:

\[x \ a \ y \ a \ b \]

<table>
<thead>
<tr>
<th>Parse stack</th>
<th>Remaining input</th>
<th>Parser action</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>(x \ a \ y \ a \ b)</td>
<td>predict 1</td>
</tr>
<tr>
<td>A B $</td>
<td>(x \ a \ y \ a \ b)</td>
<td>predict 2</td>
</tr>
<tr>
<td>x a A B $</td>
<td>(x \ a \ y \ a \ b)</td>
<td>match(x)</td>
</tr>
<tr>
<td>a A B $</td>
<td>(a \ y \ a \ b)</td>
<td>match(a)</td>
</tr>
<tr>
<td>A B $</td>
<td>(y \ a \ b)</td>
<td>predict 3</td>
</tr>
<tr>
<td>y a A B $</td>
<td>(y \ a \ b)</td>
<td>match(y)</td>
</tr>
<tr>
<td>a A B $</td>
<td>(a \ b)</td>
<td>match(a)</td>
</tr>
</tbody>
</table>
An example

- How would a stack-based parser parse:

\[x \ a \ y \ a \ b \]

<table>
<thead>
<tr>
<th>Parse stack</th>
<th>Remaining input</th>
<th>Parser action</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>x a y a b $</td>
<td>predict 1</td>
</tr>
<tr>
<td>A B $</td>
<td>x a y a b $</td>
<td>predict 2</td>
</tr>
<tr>
<td>x a A B $</td>
<td>x a y a b $</td>
<td>match(x)</td>
</tr>
<tr>
<td>a A B $</td>
<td>a y a b $</td>
<td>match(a)</td>
</tr>
<tr>
<td>A B $</td>
<td>y a b $</td>
<td>predict 3</td>
</tr>
<tr>
<td>y a A B $</td>
<td>y a b $</td>
<td>match(y)</td>
</tr>
<tr>
<td>a A B $</td>
<td>a b $</td>
<td>match(a)</td>
</tr>
<tr>
<td>A B $</td>
<td>b $</td>
<td>predict 4</td>
</tr>
</tbody>
</table>

1. \(S \rightarrow A B $
2. \(A \rightarrow x aA
3. \(A \rightarrow y aA
4. \(A \rightarrow \lambda
5. \(B \rightarrow b

Thursday, September 10, 2009
An example

- How would a stack-based parser parse:

\[x \, a \, y \, a \, b \]

<table>
<thead>
<tr>
<th>Parse stack</th>
<th>Remaining input</th>
<th>Parser action</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>x a y a b $</td>
<td>predict 1</td>
</tr>
<tr>
<td>A B $</td>
<td>x a y a b $</td>
<td>predict 2</td>
</tr>
<tr>
<td>x a A B $</td>
<td>x a y a b $</td>
<td>match(x)</td>
</tr>
<tr>
<td>aA B $</td>
<td>a y a b $</td>
<td>match(a)</td>
</tr>
<tr>
<td>A B $</td>
<td>y a b $</td>
<td>predict 3</td>
</tr>
<tr>
<td>y a A B $</td>
<td>y a b $</td>
<td>match(y)</td>
</tr>
<tr>
<td>aA B $</td>
<td>a b $</td>
<td>match(a)</td>
</tr>
<tr>
<td>a A B $</td>
<td>a b $</td>
<td>match(a)</td>
</tr>
<tr>
<td>A B $</td>
<td>b $</td>
<td>predict 4</td>
</tr>
<tr>
<td>B $</td>
<td>b $</td>
<td>predict 5</td>
</tr>
</tbody>
</table>

1. \(S \rightarrow A \, B \, $ \)
2. \(A \rightarrow x \, a \, A \)
3. \(A \rightarrow y \, a \, A \)
4. \(A \rightarrow \lambda \)
5. \(B \rightarrow b \)

Thursday, September 10, 2009
An example

• How would a stack-based parser parse:

\[x \ a \ y \ a \ b \]

<table>
<thead>
<tr>
<th>Parse stack</th>
<th>Remaining input</th>
<th>Parser action</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>x a y a b $</td>
<td>predict 1</td>
</tr>
<tr>
<td>A B $</td>
<td>x a y a b $</td>
<td>predict 2</td>
</tr>
<tr>
<td>x a A B $</td>
<td>x a y a b $</td>
<td>match(x)</td>
</tr>
<tr>
<td>a A B $</td>
<td>a y a b $</td>
<td>match(a)</td>
</tr>
<tr>
<td>A B $</td>
<td>y a b $</td>
<td>predict 3</td>
</tr>
<tr>
<td>y a A B $</td>
<td>y a b $</td>
<td>match(y)</td>
</tr>
<tr>
<td>a A B $</td>
<td>a b $</td>
<td>match(a)</td>
</tr>
<tr>
<td>a A B $</td>
<td>a b $</td>
<td>predict 4</td>
</tr>
<tr>
<td>B $</td>
<td>b $</td>
<td>predict 5</td>
</tr>
<tr>
<td>b $</td>
<td>b $</td>
<td>match(b)</td>
</tr>
</tbody>
</table>
An example

- How would a stack-based parser parse:

\[x \ a \ y \ a \ b \]

<table>
<thead>
<tr>
<th>Parse stack</th>
<th>Remaining input</th>
<th>Parser action</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>x a y a b $</td>
<td>predict 1</td>
</tr>
<tr>
<td>A B $</td>
<td>x a y a b $</td>
<td>predict 2</td>
</tr>
<tr>
<td>x a A B $</td>
<td>x a y a b $</td>
<td>match(x)</td>
</tr>
<tr>
<td>a A B $</td>
<td>a y a b $</td>
<td>match(a)</td>
</tr>
<tr>
<td>A B $</td>
<td>y a b $</td>
<td>predict 3</td>
</tr>
<tr>
<td>y A A B $</td>
<td>y a b $</td>
<td>match(y)</td>
</tr>
<tr>
<td>a A B $</td>
<td>a b $</td>
<td>match(a)</td>
</tr>
<tr>
<td>A B $</td>
<td>b $</td>
<td>predict 4</td>
</tr>
<tr>
<td>B $</td>
<td>b $</td>
<td>predict 5</td>
</tr>
<tr>
<td>b $</td>
<td>b $</td>
<td>match(b)</td>
</tr>
<tr>
<td>$</td>
<td>$</td>
<td>Done!</td>
</tr>
</tbody>
</table>

1. \(S \rightarrow A \ B \ \$ \)
2. \(A \rightarrow x \ a A \)
3. \(A \rightarrow y \ a A \)
4. \(A \rightarrow \lambda \)
5. \(B \rightarrow b \)
LL(k) parsers

• Can use similar techniques for LL(k) parsers
• Use more than one symbol of look-ahead to distinguish productions
• Why might this be bad?
Dealing with semantic actions

- Recall: we can annotate a grammar with *action symbols*
- Tell the parser to invoke a semantic action routine
- Can simply push action symbols onto stack as well
- When popped, the semantic action routine is called
Non-LL(1) grammars

• Not all grammars are LL(1)!
• Consider

\[<\text{stmt}> \rightarrow \text{if } <\text{expr}> \text{ then } <\text{stmt list}> \text{ endif} \]
\[<\text{stmt}> \rightarrow \text{if } <\text{expr}> \text{ then } <\text{stmt list}> \text{ else } <\text{stmt list}> \text{ endif} \]
• This is not LL(1) (why?)
• We can turn this in to

\[<\text{stmt}> \rightarrow \text{if } <\text{expr}> \text{ then } <\text{stmt list}> <\text{if suffix}> \]
\[<\text{if suffix}> \rightarrow \text{endif} \]
\[<\text{if suffix}> \rightarrow \text{else } <\text{stmt list}> \text{ endif} \]
Left recursion

- *Left recursion* is a problem for LL(1) parsers

- LHS is also the first symbol of the RHS

- Consider:

 \[E \rightarrow E + T \]

- What would happen with the stack-based algorithm?
Removing left recursion

Algorithm on page 125
Are all grammars LL(1)?

• No! Consider the if-then-else problem

• if \(x \) then \(y \) else \(z \)

• Problem: else is optional

• if \(a \) then if \(b \) then \(c \) else \(d \)

• Which if does the else belong to?

• This is analogous to a “bracket language”: \([i]\) \(i \geq j\)

\[
\begin{align*}
S & \rightarrow [S C] \\
S & \rightarrow \lambda \\
C & \rightarrow] \\
C & \rightarrow \lambda
\end{align*}
\]

\([[\) can be parsed: \(SS\lambda C \) or \(SSC\lambda \)

(it’s ambiguous!)
Solving the if-then-else problem

• The ambiguity exists at the language level. To fix, we need to define the semantics properly
 • “] matches nearest unmatched [”
 • This is the rule C uses for if-then-else
 • What if we try this?

\[
\begin{align*}
S & \rightarrow [S \\
S & \rightarrow S I \\
SI & \rightarrow [SI] \\
SI & \rightarrow \lambda
\end{align*}
\]

This grammar is still not LL(1) (or LL(k) for any k!)
Two possible fixes

• If there is an ambiguity, prioritize one production over another

• e.g., if C is on the stack, always match “]” before matching “λ”

 \[
 S \rightarrow [S C \\
 S \rightarrow \lambda \\
 C \rightarrow] \\
 C \rightarrow \lambda
 \]

• Another option: change the language!

• e.g., all if-statements need to be closed with an endif

 \[
 S \rightarrow \text{if } S \ E \\
 S \rightarrow \text{other} \\
 E \rightarrow \text{else } S \ \text{endif} \\
 E \rightarrow \text{endif}
 \]
Parsing if-then-else

• What if we don’t want to change the language?
 • C does not require { } to delimit single-statement blocks

• To parse if-then-else, we need to be able to look ahead at the entire rhs of a production before deciding which production to use
 • In other words, we need to determine how many “]” to match before we start matching “[”’s

• LR parsers can do this!
LR Parsers

• Parser which does a Left-to-right, Right-most derivation

• Rather than parse top-down, like LL parsers do, parse bottom-up, starting from leaves

• Basic idea: put tokens on a stack until an entire production is found

• Issues:
 • Recognizing the endpoint of a production
 • Finding the length of a production (RHS)
 • Finding the corresponding nonterminal (the LHS of the production)
Data structures

- At each state, given the next token,
 - A *goto table* defines the successor state
 - An *action table* defines whether to
 - *shift* – put the next state and token on the stack
 - *reduce* – an RHS is found; process the production
 - *terminate* – parsing is complete
Example

- Consider the simple grammar:

 \[
 \begin{align*}
 <\text{program}> & \rightarrow \text{begin} <\text{stmts}> \text{ end} \ \$ \\
 <\text{stmts}> & \rightarrow \text{SimpleStmt} \ ; <\text{stmts}> \\
 <\text{stmts}> & \rightarrow \text{begin} <\text{stmts}> \text{ end} \ ; <\text{stmts}> \\
 <\text{stmts}> & \rightarrow \lambda
 \end{align*}
 \]

- Shift-reduce driver algorithm on page 142
Action and goto tables

<table>
<thead>
<tr>
<th></th>
<th>begin</th>
<th>end</th>
<th>;</th>
<th>SimpleStmt</th>
<th>$</th>
<th><program></th>
<th><stmts></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>S / 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>S / 4</td>
<td>R4</td>
<td></td>
<td>S / 5</td>
<td></td>
<td></td>
<td>S / 2</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>S / 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>S / 4</td>
<td>R4</td>
<td></td>
<td>S / 5</td>
<td></td>
<td></td>
<td>S / 7</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>S / 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>S / 4</td>
<td>R4</td>
<td></td>
<td>S / 5</td>
<td></td>
<td></td>
<td>S / 10</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>S / 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>S / 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>S / 4</td>
<td>R4</td>
<td></td>
<td>S / 6</td>
<td></td>
<td></td>
<td>S / 11</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>R2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>R3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example

- Parse: begin SimpleStmt ; SimpleStmt ; end $

<table>
<thead>
<tr>
<th>Step</th>
<th>Parse Stack</th>
<th>Remaining Input</th>
<th>Parser Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>begin S ; S ; end $</td>
<td>Shift 1</td>
</tr>
<tr>
<td>2</td>
<td>0 1</td>
<td>S ; S ; end $</td>
<td>Shift 5</td>
</tr>
<tr>
<td>3</td>
<td>0 1 5</td>
<td>; S ; end $</td>
<td>Shift 6</td>
</tr>
<tr>
<td>4</td>
<td>0 1 5 6</td>
<td>S ; end $</td>
<td>Shift 5</td>
</tr>
<tr>
<td>5</td>
<td>0 1 5 6 5</td>
<td>; end $</td>
<td>Shift 6</td>
</tr>
<tr>
<td>6</td>
<td>0 1 5 6 5 6</td>
<td>end $</td>
<td>Reduce 4 (goto 10)</td>
</tr>
<tr>
<td>7</td>
<td>0 1 5 6 5 6 10</td>
<td>end $</td>
<td>Reduce 2 (goto 10)</td>
</tr>
<tr>
<td>8</td>
<td>0 1 5 6 10</td>
<td>end $</td>
<td>Reduce 2 (goto 2)</td>
</tr>
<tr>
<td>9</td>
<td>0 1 2</td>
<td>end $</td>
<td>Shift 3</td>
</tr>
<tr>
<td>10</td>
<td>0 1 2 3</td>
<td>$</td>
<td>Accept</td>
</tr>
</tbody>
</table>
Announcements

- I will be out of town on Tuesday (9/15)
- Class will be covered by Professor Midkiff
LR Parsers

• Basic idea:
 • **shift** tokens onto the stack. At any step, keep the set of productions that could generate the read-in tokens
 • **reduce** the RHS of recognized productions to the corresponding non-terminal on the LHS of the production. Replace the RHS tokens on the stack with the LHS non-terminal.
LR(k) parsers

- LR(0) parsers
 - No lookahead
 - Predict which action to take by looking only at the symbols currently on the stack

- LR(k) parsers
 - Can look ahead \(k \) symbols
 - Most powerful class of deterministic bottom-up parsers
 - LR(1) and variants are the most common parsers
Terminology for LR parsers

• Configuration: a production augmented with a “•”

 \[A \rightarrow X_1 \ldots X_i \cdot X_{i+1} \ldots X_j \]

• The “•” marks the point to which the production has been recognized. In this case, we have recognized \(X_1 \ldots X_i \)

• Configuration set: all the configurations that can apply at a given point during the parse:

 \[A \rightarrow B \cdot CD \]
 \[A \rightarrow B \cdot GH \]
 \[T \rightarrow B \cdot Z \]

• Idea: every configuration in a configuration set is a production that can possibly be matched
Configuration closure set

- Include all the configurations necessary to recognize the next symbol after the •

\[\text{closure0}(\text{configuration_set}) \text{ defined on page 146} \]

- Example:

\[
\begin{align*}
S & \rightarrow E \$
E & \rightarrow E + T \mid T
T & \rightarrow \text{ID} \mid (E)
\end{align*}
\]

\[
\text{closure0}\{S \rightarrow • E \$\} = \{
S \rightarrow • E \$
E \rightarrow • E + T
E \rightarrow • T
T \rightarrow • \text{ID}
T \rightarrow • (E)
\}
\]
Successor configuration set

• Starting with the initial configuration set

s0 = closure0({S → • α $})

an LR(0) parser will find the successor given the next symbol X

• X can be either a terminal (the next token from the scanner) or a non-terminal (the result of applying a reduction)

• Determining the successor s’ = go_to0(s, X):

 • For each configuration in s of the form A → β • X γ add A → β X • γ to t

 • s’ = closure0(t)
CFSM

- CFSM = Characteristic Finite State Machine
- Nodes are configuration sets (starting from s0)
- Arcs are go_to relationships
Building the goto table

- We can just read this off from the CFSM
Building the action table

- Given the configuration set s:
 - We **shift** if the next token matches a terminal after the • in some configuration
 \[
 A \rightarrow \alpha \cdot a \beta \in s \text{ and } a \in V_t, \text{ else error}
 \]
 - We **reduce** production P if the • is at the end of a production
 \[
 B \rightarrow \alpha \cdot \in s \text{ where production } P \text{ is } B \rightarrow \alpha
 \]
- Extra actions:
 - **shift** if goto table transitions between states on a non-terminal
 - **accept** if we are about to shift $\$
Action table

<table>
<thead>
<tr>
<th>State</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>S</td>
</tr>
<tr>
<td>1</td>
<td>R2</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ID</th>
<th>$</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thursday, September 10, 2009
Some books represent goto and action tables differently

- Action table only has columns for terminals, and consists of two kinds of actions:
 - shift + state: shift and move to a state
 - reduce + rule: reduce according to rule

- Goto table only has columns for non-terminals
 - Specifies which state to go to after reducing

<table>
<thead>
<tr>
<th>State</th>
<th>Action</th>
<th>Goto</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>S1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>R2</td>
<td>R2</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conflicts in action table

- For LR(0) grammars, the action table entries are unique: from each state, can only shift or reduce
- But other grammars may have conflicts
 - Reduce/reduce conflicts: multiple reductions possible from the given configuration
 - Shift/reduce conflicts: we can either shift or reduce from the given configuration
Shift/reduce example

- Consider the following grammar:

 \[S \rightarrow A \, y \]

 \[A \rightarrow \lambda \mid x \]

- This leads to the following initial configuration set:

 \[S \rightarrow \cdot A \, y \]

 \[A \rightarrow \cdot x \]

 \[A \rightarrow \lambda \cdot \]

- Can shift or reduce here
Lookahead

• Can resolve reduce/reduce conflicts and shift/reduce conflicts by employing *lookahead*

• Looking ahead one (or more) tokens allows us to determine whether to shift or reduce

• *(cf how we resolved ambiguity in LL(1) parsers by looking ahead one token)*

• Note that it is possible to create an LR(0) grammar for any LR(k) grammar (as long as we can determine the end of a program), but it may be very complex!
LR(1) parsing

• Configurations in LR(1) look similar to LR(0), but they are extended to include a lookahead symbol

\[A \to X_1 \ldots X_i \cdot X_{i+1} \ldots X_j , \{l_1 \ldots l_m\} \]

• If two configurations differ only in their lookahead component, we combine them

\[A \to X_1 \ldots X_i \cdot X_{i+1} \ldots X_j , \{l_1 \ldots l_m\} \]
Building configuration sets

• To close a configuration
 \[B \rightarrow \alpha \cdot A \beta, l \]

• Add all configurations of the form \(A \rightarrow \cdot \gamma, u \) where \(u \in \text{First}(\beta l) \)

• Intuition: the parse could apply the production for A, and
 the lookahead after we apply the production should match
 the next token that would be produced by B
Example

closure l \{\{S \rightarrow E \cdot$, $\lambda}\} =

S \rightarrow E $
E \rightarrow E + T | T
T \rightarrow ID | (E)
Example

\[
\text{closure}_I \left(\{ S \rightarrow \cdot \ E \$, \{\lambda}\} \right) =
\]

\[
S \rightarrow \cdot \ E \$, \{\lambda}\n\]
Example

closure1 ({\(S \rightarrow \cdot E \), \{\(\lambda\)\}}) =

<table>
<thead>
<tr>
<th>Rule</th>
<th>Left Hand Side</th>
<th>Right Hand Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(S \rightarrow \cdot E)</td>
<td>{(\lambda)}</td>
</tr>
<tr>
<td>2</td>
<td>(E \rightarrow \cdot E + T)</td>
<td>{$}</td>
</tr>
</tbody>
</table>
Example

closure_1(\{S \rightarrow \cdot E \$, \{\lambda\}\}) =

<table>
<thead>
<tr>
<th>Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>S \rightarrow \cdot E $, {\lambda}</td>
</tr>
<tr>
<td>E \rightarrow \cdot E + T, {$}$</td>
</tr>
<tr>
<td>E \rightarrow \cdot T, {$}$</td>
</tr>
<tr>
<td>T \rightarrow \cdot ID \mid (E)</td>
</tr>
</tbody>
</table>

S \rightarrow E \$
E \rightarrow E + T \mid T
T \rightarrow ID \mid (E)
Example

\[
\text{closure} I (\{S \rightarrow \cdot E \$, \{\lambda}\}) = \\
\begin{align*}
S & \rightarrow \cdot E \$, \{\lambda}\ \\
E & \rightarrow \cdot E + T, \${}
\end{align*}
\]

\[
E & \rightarrow \cdot T, \${}
\]

\[
T & \rightarrow \cdot ID, \${}
\]
Example

\[
\text{closure}_I (\{ S \rightarrow \cdot E \$, \{\lambda}\}) =
\]

\[
\begin{array}{|c|}
\hline
S \rightarrow \cdot E \$, \{\lambda}\ \\
E \rightarrow \cdot E + T, \{$\} \\
E \rightarrow \cdot T, \{$\} \\
T \rightarrow \cdot ID, \{$\} \\
T \rightarrow \cdot (E), \{$\} \\
\hline
\end{array}
\]
Example

closure1({S → • E $, {λ}}) =

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S → • E $, {λ}</td>
<td></td>
</tr>
<tr>
<td>E → • E + T, {$}</td>
<td></td>
</tr>
<tr>
<td>E → • T, {$}</td>
<td></td>
</tr>
<tr>
<td>T → • ID, {$}</td>
<td></td>
</tr>
<tr>
<td>T → • (E), {$}</td>
<td></td>
</tr>
<tr>
<td>E → • E + T, {+}</td>
<td></td>
</tr>
</tbody>
</table>
Example

closure_1 (\{S \to \cdot E \$, \\{\lambda\}\}) =

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S \to \cdot E $, \{\lambda}</td>
<td></td>
</tr>
<tr>
<td>E \to \cdot E + T, \{$}$</td>
<td></td>
</tr>
<tr>
<td>E \to \cdot T, \{$}$</td>
<td></td>
</tr>
<tr>
<td>T \to \cdot ID, \{$}$</td>
<td></td>
</tr>
<tr>
<td>T \to \cdot (E), \{$}$</td>
<td></td>
</tr>
<tr>
<td>E \to \cdot E + T, {+}</td>
<td></td>
</tr>
<tr>
<td>E \to \cdot T, {+}</td>
<td></td>
</tr>
</tbody>
</table>
Example

closure1 (\{ S \rightarrow \cdot E \$, \{\lambda}\}) =

\begin{array}{|c|}
\hline
S \rightarrow \cdot E \$, \{\lambda}\) \\
E \rightarrow \cdot E + T, \{$\} \\
E \rightarrow \cdot T, \{$\} \\
T \rightarrow \cdot ID, \{$\} \\
T \rightarrow \cdot (E), \{$\} \\
E \rightarrow \cdot E + T, \{\} \\
E \rightarrow \cdot T, \{\} \\
T \rightarrow \cdot ID, \{\} \\
\hline
\end{array}
Example

\[
\text{closure}_1(\{S \rightarrow \cdot E \$, \{\lambda}\}) =
\]

<table>
<thead>
<tr>
<th>Rule</th>
<th>Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S \rightarrow \cdot E $, {\lambda}</td>
<td></td>
</tr>
<tr>
<td>$E \rightarrow \cdot E + T$, {$}$</td>
<td></td>
</tr>
<tr>
<td>$E \rightarrow \cdot T$, {$}$</td>
<td></td>
</tr>
<tr>
<td>$T \rightarrow \cdot ID$, {$}$</td>
<td></td>
</tr>
<tr>
<td>$T \rightarrow \cdot (E)$, {$}$</td>
<td></td>
</tr>
<tr>
<td>$E \rightarrow \cdot E + T$, {+}</td>
<td></td>
</tr>
<tr>
<td>$E \rightarrow \cdot T$, {+}</td>
<td></td>
</tr>
<tr>
<td>$T \rightarrow \cdot ID$, {+}</td>
<td></td>
</tr>
<tr>
<td>$T \rightarrow \cdot (E)$, {+}</td>
<td></td>
</tr>
</tbody>
</table>
Building goto and action tables

• The function $\text{goto1}(\text{configuration-set, symbol})$ is analogous to $\text{goto0}(\text{configuration-set, symbol})$ for LR(0)

• Build goto table in the same way as for LR(0)

• Key difference: the action table.

$$\text{action}[s][x] =$$

• **reduce** when • is at end of configuration and $x \in$ lookahead set of configuration

 $$A \rightarrow \alpha \cdot, \{\ldots x \ldots\} \in s$$

• **shift** when • is before x

 $$A \rightarrow \beta \cdot x \gamma \in s$$
Problems with LR(1) parsers

- LR(1) parsers are very powerful ...
- But the table size is much larger than LR(0) — as much as a factor of $|V_t|$ (why?)
- Example: Algol 60 (a simple language) includes several thousand states!
- Storage efficient representations of tables are an important issue
Solutions to the size problem

- Different parser schemes
 - SLR (simple LR): build an CFSM for a language, then add lookahead wherever necessary (i.e., add lookahead to resolve shift/reduce conflicts)
 - What should the lookahead symbol be?
 - To decide whether to reduce using production $A \rightarrow \alpha$, use Follow(A)
 - LALR: merge LR states in certain cases (we won’t discuss this)
Semantic actions

- Recall: in LL parsers, we could integrate the semantic actions with the parser
 - Why? Because the parser was *predictive*
- Why doesn’t that work for LR parsers?
 - Don’t know which production is matched until parser reduces
- For LR parsers, we put semantic actions at the end of productions
 - May have to rewrite grammar to support all necessary semantic actions