Announcements

- You may optionally work with a partner on the project
 - Must work with the partner for the entire project
 - Let me know by next Thursday who you are working with (if anyone), and under which username you will be submitting
- I'm trying to get the lectures posted online at least a day before class (some days I'm more successful than others!)

From last time: Lex (Flex)

- Commonly used Unix scanner generator (superseded by Flex)
- Has character classes and regular expressions like ScanGen but some key differences:
 - After each token is matched, calls user-defined "filter" function, which processes identified token before returning it to parser
 - Hence, no "Toss" facility (why?)
 - No exception list
 - Instead, supports matching multiple regexps.
 - Matches longest token (i.e., doesn't think ifa is IF ID(a))
 - In case of tie, returns earliest-defined regexp
 - To treat if as a reserved word instead of an identifier, define token IF before defining identifiers.

Lex operation

Example of Lex input on page 67 of textbook

Agenda

- Terminology
- LL(I) Parsers
- Overview of LR Parsing

- Grammar $G = (V_t, V_n, S, P)$
 - \bullet V_t is the set of terminals
 - V_n is the set of *non-terminals*
 - S is the start symbol
 - P is the set of productions
 - Each production takes the form: $V_n \rightarrow \lambda \mid (V_n \mid V_t) +$
 - Grammar is *context-free* (why?)
- A simple grammar:

$$G = (\{a, b\}, \{S, A, B\}, \{S \rightarrow A B \$, A \rightarrow A a, A \rightarrow a, B \rightarrow B b, B \rightarrow b\}, S)$$

- V is the *vocabulary* of a grammar, consisting of terminal (V_t) and non-terminal (V_n) symbols
- For our sample grammar
 - $\bullet \quad V_n = \{S, A, B\}$
 - Non-terminals are symbols on the LHS of a production
 - Non-terminals are constructs in the language that are recognized during parsing
 - - Terminals are the tokens recognized by the scanner
 - They correspond to symbols in the text of the program

- Productions (rewrite rules) tell us how to derive strings in the language
 - Apply productions to rewrite strings into other strings
- We will use the standard BNF form

```
    P = {
    S → A B $
    A → A a
    A → a
    B → B b
    B → b
```

Generating strings

$$S \rightarrow A B$$
\$

$$A \rightarrow A$$
 a

$$A \rightarrow a$$

$$B \rightarrow B b$$

$$B \rightarrow b$$

- Given a start rule, productions tell us how to rewrite a non-terminal into a different set of symbols
- By convention, first production applied has the start symbol on the left, and there is only one such production

To derive the string "a a b b b" we can do the following rewrites:

$$S \Rightarrow A B \$ \Rightarrow A a B \$ \Rightarrow a a B \$ \Rightarrow a a B b \$ \Rightarrow$$
 $a a B b b \$ \Rightarrow a a b b b \$$

- Strings are composed of symbols
 - AAaaBbbAaisastring
 - We will use Greek letters to represent strings composed of both terminals and non-terminals
- L(G) is the language produced by the grammar G
 - All strings consisting of only terminals that can be produced by G
 - In our example, L(G) = a+b+\$
 - All regular expressions can be expressed as grammars for context-free languages, but not vice-versa
 - Consider: aⁱ bⁱ \$ (what is the grammar for this?)

Parse trees

- Tree which shows how a string was produced by a language
 - Interior nodes of tree: nonterminals
 - Children: the terminals and non-terminals generated by applying a production rule
 - Leaf nodes: terminals

Leftmost derivation

- Rewriting of a given string starts with the leftmost symbol
- Exercise: do a leftmost derivation of the input program

$$F(V + V)$$

using the following grammar:

E	\rightarrow	Prefix (E)
E	\rightarrow	V Tail
Prefix	\rightarrow	F
Prefix	\rightarrow	λ
Tail	\rightarrow	+ E
Tail	\rightarrow	λ

What does the parse tree look like?

Rightmost derivation

- Rewrite using the rightmost non-terminal, instead of the left
- What is the rightmost derivation of this string?

$$F(V + V)$$

E	\rightarrow	Prefix (E)
E	\rightarrow	V Tail
Prefix	\rightarrow	F
Prefix	\rightarrow	λ
Tail	\rightarrow	+ E
Tail	\rightarrow	λ

Top-down vs. Bottom-up parsers

- Top-down parsers use left-most derivation
- Bottom-up parsers use right-looking parse
- Notation:
 - LL(I): Leftmost derivation with I symbol lookahead
 - LL(k): Leftmost derivation with k symbols lookahead
 - LR(I): Right-looking derivation with I symbol lookahead

Micro in standard BNF

```
1 Program
                   = BEGIN Statement-list END
2 Statement-list
                    ::= Statement StatementTail
3 StatementTail
                   ::= Statement StatementTail
4 StatementTail
                   :=\lambda
5 Statement
                   ::= ID := Expression ;
6 Statement
                    ::= READ ( Id-list ) ;
7 Statement
                    ::= WRITE (Expr-list);
8 Id-list
                    ::= ID IdTail
9 IdTail
                    ::= , ID IdTail
10 IdTail
                    :=\lambda
11 Expr-list
                    := Expression ExprTail
12 ExprTail
                    ::=, Expression ExprTail
13 ExprTail
                    = \lambda
14 Expression
                    ::= Primary PrimaryTail
                    := Add-op Primary Primary Tail
15 PrimaryTail
16 PrimaryTail
                    = \lambda
17 Primary
                    ::= ( Expression )
18 Primary
                    ::= ID
19 Primary
                    ::= INTLITERAL
20 Add-op
                    ::= PLUSOP
21 Add-op
                    ::= MINUSOP
22 System-goal ::= Program SCANEOF
```

Compare this to grammar in lecture 2

Micro in standard BNF

```
1 Program
                   = BEGIN Statement-list END
2 Statement-list
                   ::= Statement StatementTail
3 StatementTail := Statement StatementTail
4 StatementTail
                  ::=\lambda
5 Statement
                  ::= ID := Expression ;
6 Statement
                   ::= READ ( Id-list ) ;
7 Statement
                   ::= WRITE (Expr-list);
8 Id-list
                   ::= ID IdTail
9 IdTail
                   ::= , ID IdTail
10 IdTail
                   :=\lambda
11 Expr-list
                  = Expression ExprTail
12 ExprTail
                   ::=, Expression ExprTail
13 ExprTail
                   = \lambda
14 Expression := Primary Primary Tail
                   := Add-op Primary PrimaryTail
15 PrimaryTail
16 PrimaryTail
                   := \lambda
17 Primary
                   ::= ( Expression )
18 Primary
                   ::= ID
19 Primary
                   ::= INTLITERAL
20 Add-op
                   ::= PLUSOP
21 Add-op
                   ::= MINUSOP
22 System-goal ::= Program SCANEOF
```

Compare this to grammar in lecture 2

Micro in standard BNF

```
1 Program
                   = BEGIN Statement-list END
2 Statement-list
                   ::= Statement StatementTail
3 StatementTail := Statement StatementTail
4 StatementTail
                  ::=\lambda
5 Statement
                   ::= ID := Expression ;
6 Statement
                   ::= READ ( Id-list ) ;
7 Statement
                   ::= WRITE (Expr-list);
8 Id-list
                   ::= ID IdTail
9 IdTail
                   ::= , ID IdTail
10 IdTail
                   :=\lambda
11 Expr-list
                  = Expression ExprTail
12 ExprTail
                   ::=, Expression ExprTail
13 ExprTail
                   = \lambda
14 Expression ::= Primary Primary Tail
15 PrimaryTail
                   == Add-op Primary Primary Tail
16 PrimaryTail
                   := \lambda
17 Primary
                   ::= ( Expression )
18 Primary
                   ::= ID
19 Primary
                   ::= INTLITERAL
20 Add-op
                   ::= PLUSOP
21 Add-op
                   ::= MINUSOP
22 System-goal ::= Program SCANEOF
```

```
A ::= B {C}

A ::= B tail
tail ::= C tail
tail ::= λ
```

Compare this to grammar in lecture 2

What is parsing

- Parsing is recognizing members in a language specified/ defined/generated by a grammar
- When a construct (corresponding to a production in a grammar) is recognized, a typical parser will take some action
 - In a compiler, this action generates an intermediate representation of the program construct
 - In an interpreter, this action might be to perform the action specified by the construct. Thus, if a+b is recognized, the value of a and b would be added and placed in a temporary variable

Another simple grammar

```
PROGRAM → begin STMTLIST $

STMTLIST → STMT; STMTLIST

STMTLIST → end

STMT → id

STMT → if (id) STMTLIST
```

- A sentence in the grammar:
 - begin if (id) if (id) id; end; end; end; \$
- What are the terminals and non-terminals of this grammar?

Parsing this grammar

```
PROGRAM → begin STMTLIST $

STMTLIST → STMT; STMTLIST

STMTLIST → end

STMT → id

STMT → if (id) STMTLIST
```

- Note
 - To parse STMT in STMTLIST \rightarrow STMT; STMTLIST, it is necessary to parse either STMT \rightarrow id or STMT \rightarrow if ...
 - Choose the production to parse by finding out if next token is if or id
 - i.e., which production the next input token matches
 - This is the *first* set of the production

Another example

```
S \rightarrow A B \$
A \rightarrow x a A
A \rightarrow y a A
A \rightarrow \lambda
B \rightarrow b
```

- Consider $S \Rightarrow A B \$ \Rightarrow x a A B \$ \Rightarrow x a B \$ \Rightarrow x a b \$$
- When parsing x = b \$ we know from the goal production we need to match an A. The next token is x, so we apply $A \rightarrow x = A$
- The parser matches x, matches a and now needs to parse A again
- How do we know which A to use? We need to use $A \rightarrow \lambda$
 - When matching the right hand side of $A \rightarrow \lambda$, the next token comes from a non-terminal that follows A (i.e., it must be b)
 - Tokens that can follow A are called the follow set of A

First and follow sets

- First(α): the set of terminals that begin all strings that can be derived from α
 - First(A) = $\{x, y\}$
 - First(xaA) = $\{x\}$
 - First (AB) = $\{x, y, b\}$
- Follow(A): the set of terminals that can appear immediately after A in some partial derivation
 - $Follow(A) = \{b\}$

$$S \rightarrow A B$$
\$

$$A \rightarrow x a A$$

$$A \rightarrow y a A$$

$$A \rightarrow \lambda$$

$$B \rightarrow b$$

First and follow sets

- First(α) = { $a \in V_t \mid \alpha \Rightarrow^* a\beta$ } $\cup \{\lambda \mid \text{if } \alpha \Rightarrow^* \lambda\}$
- Follow(A) = $\{a \in V_t \mid S \Rightarrow^+ ... Aa ...\} \cup \{\$ \mid \text{if } S \Rightarrow^+ ... A \$\}$

S: start symbol

a: a terminal symbol

A: a non-terminal symbol

 α,β : a string composed of terminals and

non-terminals (typically, α is the

RHS of a production

derived in 1 step

⇒*: derived in 0 or more steps

⇒⁺: derived in I or more steps

Computing first sets

- Terminal: $First(a) = \{a\}$
- Non-terminal: First(A)
 - Look at all productions for A

$$A \rightarrow X_1 X_2 ... X_k$$

- First(A) \supseteq (First(X₁) λ)
- If $\lambda \in First(X_1)$, $First(A) \supseteq (First(X_2) \lambda)$
- If λ is in First(X_i) for all i, then $\lambda \in \text{First}(A)$
- Computing First(α): similar procedure to computing First(A)

Exercise

 What are the first sets for all the non-terminals in following grammar:

$$S \rightarrow A B$$
\$

$$A \rightarrow x a A$$

$$A \rightarrow y a A$$

$$A \rightarrow \lambda$$

$$B \rightarrow b$$

Computing follow sets

- Follow(S) = $\{\$\}$
- To compute Follow(A):
 - Find productions which have A on rhs. Three rules:
 - 1. $X \rightarrow \alpha A \beta$: Follow(A) \supseteq (First(β) λ)
 - 2. $X \rightarrow \alpha A \beta$: If $\lambda \in First(\beta)$, $Follow(A) \supseteq Follow(X)$
 - 3. $X \rightarrow \alpha A$: Follow(A) \supseteq Follow(X)
- Note: Follow(X) never has λ in it.

Exercise

What are the follow sets for

$$S \rightarrow A B$$
\$

$$A \rightarrow x a A$$

$$A \rightarrow y a A$$

$$A \rightarrow \lambda$$

$$B \rightarrow b$$

Towards parser generators

- Key problem: as we read the source program, we need to decide what productions to use
- Step I: find the tokens that can tell which production P (of the form $A \rightarrow X_1X_2 ... X_m$) applies

$$\begin{cases} \operatorname{First}(X_1 \dots X_m) & \text{if } \lambda \not\in \operatorname{First}(X_1 \dots X_m) \\ (\operatorname{First}(X_1 \dots X_m) - \lambda) \cup \operatorname{Follow}(A) & \text{otherwise} \end{cases}$$

 If next token is in Predict(P), then we should choose this production

Parse tables

- Step 2: build a parse table
 - Given some non-terminal V_n (the non-terminal we are currently processing) and a terminal V_t (the lookahead symbol), the parse table tells us which production P to use (or that we have an error
 - More formally:

$$T:V_n \times V_t \rightarrow P \cup \{Error\}$$

Building the parse table

Start:T[A][t] = //initialize all fields to "error"

foreach A:

foreach P with A on its lhs:

foreach t in Predict(P):

$$T[A][t] = P$$

• Exercise: build parse table for our toy grammar

I.S
$$\rightarrow$$
 A B \$

$$2.A \rightarrow x a A$$

$$3.A \rightarrow yaA$$

$$4.A \rightarrow \lambda$$

$$5.B \rightarrow b$$

Recursive-descent parsers

- Given the parse table, we can create a program which generates recursive descent parsers
 - Remember the recursive descent parser we saw for MICRO
 - If the choice of production is not unique, the parse table tells us which one to take
- However, there is an easier method!

Stack-based parser for LL(I)

- Given the parse table, a stack-based algorithm is much simpler to generate than a recursive descent parser
- Basic algorithm:
 - I. Push the RHS of a production onto the stack
 - 2. Pop a symbol, if it is a terminal, match it
 - 3. If it is a non-terminal, take its production according to the parse table and go to I
- Algorithm on page 121
- Note: always start with start state

I. $S \rightarrow A B$ \$

2. $A \rightarrow x a A$

3. $A \rightarrow y a A$

4. $A \rightarrow \lambda$

5. $B \rightarrow b$

How would a stack-based parser parse:

Parse stack	Remaining input	Parser action
S	x a y a b \$	predict l

I. $S \rightarrow A B \$$

2. $A \rightarrow x a A$

3. $A \rightarrow y a A$

4. $A \rightarrow \lambda$

5. $B \rightarrow b$

How would a stack-based parser parse:

Parse stack	Remaining input	Parser action
S	× a y a b \$	predict I
AB\$	x a y a b \$	predict 2

I. $S \rightarrow A B$ \$

2. $A \rightarrow x a A$

3. $A \rightarrow y a A$

4. $A \rightarrow \lambda$

5. $B \rightarrow b$

How would a stack-based parser parse:

Parse stack	Remaining input	Parser action
S	×ayab\$	predict l
AB\$	×ayab\$	predict 2
xaAB\$	x a y a b \$	match(x)

I. $S \rightarrow A B$ \$

2. $A \rightarrow x a A$

3. $A \rightarrow y a A$

4. $A \rightarrow \lambda$

5. $B \rightarrow b$

How would a stack-based parser parse:

Parse stack	Remaining input	Parser action
S	×ayab\$	predict l
AB\$	×ayab\$	predict 2
xaAB\$	×ayab\$	match(x)
a A B \$	a y a b \$	match(a)

I. $S \rightarrow A B$ \$

2. $A \rightarrow x a A$

3. $A \rightarrow y a A$

4. $A \rightarrow \lambda$

5. $B \rightarrow b$

How would a stack-based parser parse:

Parse stack	Remaining input	Parser action
S	×ayab\$	predict I
A B \$	×ayab\$	predict 2
xaAB\$	×ayab\$	match(x)
a A B \$	a y a b \$	match(a)
A B \$	y a b \$	predict 3

I. $S \rightarrow A B$ \$

2. $A \rightarrow x a A$

3. $A \rightarrow y a A$

4. $A \rightarrow \lambda$

5. $B \rightarrow b$

How would a stack-based parser parse:

Parse stack	Remaining input	Parser action
S	xayab\$	predict l
AB\$	×ayab\$	predict 2
xaAB\$	xayab\$	match(x)
a A B \$	ayab\$	match(a)
AB\$	y a b \$	predict 3
y a A B \$	y a b \$	match(y)

I. $S \rightarrow A B$ \$

2. $A \rightarrow x a A$

3. $A \rightarrow y a A$

4. $A \rightarrow \lambda$

5. $B \rightarrow b$

How would a stack-based parser parse:

Parse stack	Remaining input	Parser action
S	xayab\$	predict l
AB\$	xayab\$	predict 2
xaAB\$	xayab\$	match(x)
a A B \$	ayab\$	match(a)
AB\$	y a b \$	predict 3
y a A B \$	y a b \$	match(y)
a A B \$	a b \$	match(a)

I. $S \rightarrow A B \$$

2. $A \rightarrow x a A$

3. $A \rightarrow y a A$

4. $A \rightarrow \lambda$

5. $B \rightarrow b$

How would a stack-based parser parse:

Parse stack	Remaining input	Parser action
S	xayab\$	predict l
AB\$	xayab\$	predict 2
xaAB\$	xayab\$	match(x)
a A B \$	ayab\$	match(a)
AB\$	y a b \$	predict 3
y a A B \$	y a b \$	match(y)
a A B \$	a b \$	match(a)
AB\$	b \$	predict 4

I. $S \rightarrow A B$ \$

2. $A \rightarrow x a A$

3. $A \rightarrow y a A$

4. $A \rightarrow \lambda$

5. $B \rightarrow b$

How would a stack-based parser parse:

Parse stack	Remaining input	Parser action
S	xayab\$	predict l
A B \$	xayab\$	predict 2
xaAB\$	xayab\$	match(x)
a A B \$	ayab\$	match(a)
A B \$	y a b \$	predict 3
y a A B \$	yab\$	match(y)
a A B \$	a b \$	match(a)
A B \$	b \$	predict 4
В\$	b \$	predict 5

I. $S \rightarrow A B$ \$

2. $A \rightarrow x a A$

3. $A \rightarrow y a A$

4. $A \rightarrow \lambda$

5. $B \rightarrow b$

How would a stack-based parser parse:

Parse stack	Remaining input	Parser action
S	xayab\$	predict I
A B \$	xayab\$	predict 2
×aAB\$	xayab\$	match(x)
a A B \$	ayab\$	match(a)
A B \$	y a b \$	predict 3
y a A B \$	y a b \$	match(y)
a A B \$	a b \$	match(a)
A B \$	b \$	predict 4
В\$	b \$	predict 5
b \$	b \$	match(b)

I. $S \rightarrow A B$ \$

2. $A \rightarrow x a A$

3. $A \rightarrow y a A$

How would a stack-based parser parse:

4. $A \rightarrow \lambda$

5. $B \rightarrow b$

Parse stack	Remaining input	Parser action
S	xayab\$	predict I
A B \$	xayab\$	predict 2
×aAB\$	xayab\$	match(x)
a A B \$	ayab\$	match(a)
A B \$	y a b \$	predict 3
y a A B \$	y a b \$	match(y)
a A B \$	a b \$	match(a)
A B \$	b \$	predict 4
В\$	b \$	predict 5
b \$	b \$	match(b)
\$	\$	Done!

LL(k) parsers

- Can use similar techniques for LL(k) parsers
- Use more than one symbol of look-ahead to distinguish productions
- Why might this be bad?

Dealing with semantic actions

- Recall: we can annotate a grammar with action symbols
 - Tell the parser to invoke a semantic action routine
- Can simply push action symbols onto stack as well
- When popped, the semantic action routine is called

Non-LL(I) grammars

- Not all grammars are LL(I)!
- Consider

```
<stmt> → if <expr> then <stmt list> endif
<stmt> → if <expr> then <stmt list> else <stmt list> endif
```

- This is not LL(I) (why?)
- We can turn this in to

```
<stmt> → if <expr> then <stmt list> <if suffix> <if suffix> → endif
<if suffix> → else <stmt list> endif
```

Left recursion

- Left recursion is a problem for LL(I) parsers
 - LHS is also the first symbol of the RHS
- Consider:

$$E \rightarrow E + T$$

• What would happen with the stack-based algorithm?

Removing left recursion

Algorithm on page 125

Are all grammars LL(I)?

- No! Consider the if-then-else problem
- if x then y else z
- Problem: else is optional
- if a then if b then c else d
 - Which if does the else belong to?
- This is analogous to a "bracket language": $[i]^j$ ($i \ge j$)

```
S \rightarrow [S C \\ S \rightarrow \lambda  [[] can be parsed: SS\lambda C or SSC\lambda \\ C \rightarrow ] (it's ambiguous!)
C \rightarrow \lambda
```

Solving the if-then-else problem

- The ambiguity exists at the language level. To fix, we need to define the semantics properly
 - "] matches nearest unmatched ["
 - This is the rule C uses for if-then-else
 - What if we try this?

```
S \rightarrow [S \\ S \rightarrow SI \\ SI \rightarrow [SI]
```

This grammar is still not LL(I) (or LL(k) for any k!)

Two possible fixes

- If there is an ambiguity, prioritize one production over another
 - e.g., if C is on the stack, always match "]" before matching "λ"

$$S \rightarrow [SC]$$

$$S \rightarrow \lambda$$

$$C \rightarrow J$$

$$C \rightarrow \lambda$$

- Another option: change the language!
 - e.g., all if-statements need to be closed with an endif

```
S \rightarrow \text{if } S E
S \rightarrow \text{other}
E \rightarrow \text{else } S \text{ endif}
E \rightarrow \text{endif}
```

Parsing if-then-else

- What if we don't want to change the language?
 - C does not require { } to delimit single-statement blocks
- To parse if-then-else, we need to be able to look ahead at the entire rhs of a production before deciding which production to use
 - In other words, we need to determine how many "]" to match before we start matching "["s
- LR parsers can do this!

LR Parsers

- Parser which does a Left-to-right, Right-most derivation
 - Rather than parse top-down, like LL parsers do, parse bottom-up, starting from leaves
- Basic idea: put tokens on a stack until an entire production is found
- Issues:
 - Recognizing the endpoint of a production
 - Finding the length of a production (RHS)
 - Finding the corresponding nonterminal (the LHS of the production)

Data structures

- At each state, given the next token,
 - A goto table defines the successor state
 - An action table defines whether to
 - shift put the next state and token on the stack
 - reduce an RHS is found; process the production
 - terminate parsing is complete

Example

• Consider the simple grammar:

Shift-reduce driver algorithm on page 142

Action and goto tables

	begin	end	;	SimpleStmt	\$	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<stmts></stmts>
0	S/I						
I	S / 4	R4		S / 5			S / 2
2		S / 3					
3					Α		
4	S / 4	R4		S / 5			S / 7
5			S / 6				
6	S / 4	R4		S / 5			S / 10
7		S/8					
8			S / 9				
9	S / 4	R4		S / 6			S/II
10		R2					
П		R3					

Example

Parse: begin SimpleStmt; SimpleStmt; end \$

Step	Parse Stack	Remaining Input	Parser Action
I	0	begin S;S;end\$	Shift I
2	0 1	S ; S ; end \$	Shift 5
3	0 1 5	; S ; end \$	Shift 6
4	0 5 6	S ; end \$	Shift 5
5	0 5 6 5	; end \$	Shift 6
6	0 5 6 5 6	end \$	Reduce 4 (goto 10)
7	0 1 5 6 5 6 10	end \$	Reduce 2 (goto 10)
8	0 5 6 10	end \$	Reduce 2 (goto 2)
9	0 1 2	end \$	Shift 3
10	0 1 2 3	\$	Accept

Announcements

- I will be out of town on Tuesday (9/15)
- Class will be covered by Professor Midkiff

LR Parsers

- Basic idea:
 - shift tokens onto the stack. At any step, keep the set of productions that could generate the read-in tokens
 - reduce the RHS of recognized productions to the corresponding non-terminal on the LHS of the production. Replace the RHS tokens on the stack with the LHS non-terminal.

LR(k) parsers

- LR(0) parsers
 - No lookahead
 - Predict which action to take by looking only at the symbols currently on the stack
- LR(k) parsers
 - Can look ahead k symbols
 - Most powerful class of deterministic bottom-up parsers
 - LR(I) and variants are the most common parsers

Terminology for LR parsers

Configuration: a production augmented with a "•"

$$A \rightarrow X_1 \dots X_i \bullet X_{i+1} \dots X_j$$

- The "•" marks the point to which the production has been recognized. In this case, we have recognized $X_1 ... X_i$
- Configuration set: all the configurations that can apply at a given point during the parse:

$$A \rightarrow B \cdot CD$$

$$A \rightarrow B \cdot GH$$

$$T \rightarrow B \cdot Z$$

 Idea: every configuration in a configuration set is a production that can possibly be matched

Configuration closure set

- Include all the configurations necessary to recognize the next symbol after the •
 - closure0(configuration_set) defined on page 146
- Example:

```
S \rightarrow E $
E \rightarrow E + T \mid T
T \rightarrow ID \mid (E)
```

```
closure0(\{S \rightarrow \bullet E \$\}) = \{S \rightarrow \bullet E \$

E \rightarrow \bullet E + T

E \rightarrow \bullet T

T \rightarrow \bullet ID

T \rightarrow \bullet (E)
```

Successor configuration set

Starting with the initial configuration set

```
s0 = closure0({S \rightarrow • \alpha $}) an LR(0) parser will find the successor given the next symbol X
```

- X can be either a terminal (the next token from the scanner) or a non-terminal (the result of applying a reduction)
- Determining the successor $s' = go_to0(s, X)$:
 - For each configuration in s of the form $A \to \beta \cdot X \gamma$ add $A \to \beta X \cdot \gamma$ to t
 - s' = closure0(t)

CFSM

- CFSM = Characteristic Finite State Machine
- Nodes are configuration sets (starting from s0)
- Arcs are go_to relationships

Building the goto table

We can just read this off from the CFSM

		Symbol		
		ID	\$	S
State	0	I		2
	I			
	2		3	
	3			

Building the action table

- Given the configuration set s:
 - We shift if the next token matches a terminal after the in some configuration
 - $A \rightarrow \alpha \cdot a \beta \in s$ and $a \in V_t$, else error
 - We reduce production P if the is at the end of a production
 - $B \rightarrow \alpha \cdot \in s$ where production P is $B \rightarrow \alpha$
 - Extra actions:
 - shift if goto table transitions between states on a nonterminal
 - accept if we are about to shift \$

Action table

		Symbol		
		Б	\$	S
	0	S		S
State	I	R2	R2	R2
	2		Α	
	3			

Alternate representation

- Some books represent goto and action tables differently
 - Action table only has columns for terminals, and consists of two kinds of actions:
 - shift + state: shift and move to a state
 - reduce + rule: reduce according to rule
 - Goto table only has columns for non-terminals
 - Specifies which state to go to after reducing

State	Act	Goto	
	D	\$	S
0	SI		-
ı	R2	R2	
2		Α	
3			

Conflicts in action table

- For LR(0) grammars, the action table entries are unique: from each state, can only shift or reduce
- But other grammars may have conflicts
 - Reduce/reduce conflicts: multiple reductions possible from the given configuration
 - Shift/reduce conflicts: we can either shift or reduce from the given configuration

Shift/reduce example

Consider the following grammar:

$$S \rightarrow A y$$

 $A \rightarrow \lambda \mid x$

This leads to the following initial configuration set:

$$S \rightarrow A y$$

$$A \rightarrow x$$

$$A \rightarrow \lambda \cdot x$$

Can shift or reduce here

Lookahead

- Can resolve reduce/reduce conflicts and shift/reduce conflicts by employing lookahead
 - Looking ahead one (or more) tokens allows us to determine whether to shift or reduce
 - (cf how we resolved ambiguity in LL(1) parsers by looking ahead one token)
- Note that it is possible to create an LR(0) grammar for any LR(k) grammar (as long as we can determine the end of a program), but it may be very complex!

LR(I) parsing

 Configurations in LR(I) look similar to LR(0), but they are extended to include a lookahead symbol

$$A \rightarrow X_1 \dots X_i \cdot X_{i+1} \dots X_j$$
, I (where $I \in V_t \cup \lambda$)

 If two configurations differ only in their lookahead component, we combine them

$$A \rightarrow X_1 \dots X_i \cdot X_{i+1} \dots X_j, \{I_1 \dots I_m\}$$

Building configuration sets

To close a configuration

$$B \rightarrow \alpha \cdot A \beta, I$$

- Add all configurations of the form $A \rightarrow \bullet \gamma$, u where $u \in First(\beta I)$
- Intuition: the parse could apply the production for A, and the lookahead after we apply the production should match the next token that would be produced by B

closure I (
$$\{S \rightarrow \bullet E \$, \{\lambda\}\}$$
) =

closure I (
$$\{S \rightarrow \bullet E \$, \{\lambda\}\}\) =$$

$$S \rightarrow \bullet E \$, \{\lambda\}$$

closure I (
$$\{S \rightarrow \bullet E \$, \{\lambda\}\}\) =$$

$$S \rightarrow \bullet E \$, \{\lambda\}$$

$$E \rightarrow \bullet E + T, \{\$\}$$

closure I ($\{S \rightarrow \bullet E \$, \{\lambda\}\}$) =
$S \rightarrow \bullet E \$, \{\lambda\}$
E → • E + T, {\$}
E → • T, {\$}

closure I ($\{S \rightarrow \bullet E \$, \{\lambda\}\}$) =
$S \rightarrow \bullet E \$, \{\lambda\}$
E → • E + T, {\$}
E → • T, {\$}
T → • ID, {\$}

closure I ($\{S \rightarrow \bullet E \$, \{\lambda\}\}$) =	
S	$s \to \bullet E \$, \{\lambda\}$
E -	→ • E + T, {\$}
	E → • T, {\$}
	T → • ID, {\$}
-	Γ → • (E), {\$}

closure I ($\{S \rightarrow \bullet E \$, \{\lambda\}\}$)	=
	$S \rightarrow \bullet E \$, \{\lambda\}$
	E → • E + T, {\$}
	E → • T, {\$}
	T → • ID, {\$}
	T → • (E), {\$}
	E → • E + T, {+}

closure I ($\{S \rightarrow \bullet E \$, \{\lambda\}\}$	·) =
	$S \rightarrow \bullet E \$, \{\lambda\}$
	E → • E + T, {\$}
	E → • T, {\$}
	T → • ID, {\$}
	$T \rightarrow \bullet (E), \{\$\}$
	E → • E + T, {+}
	E → • T, {+}

closure I ($\{S \rightarrow \bullet E \$, \{\lambda\}\}$)	=
	$S \rightarrow \bullet E \$, \{\lambda\}$
	E → • E + T, {\$}
	E → • T, {\$}
	T → • ID, {\$}
	$T \to \bullet (E), \{\$\}$
	E → • E + T, {+}
	E → • T, {+}
	T → • ID, {+}

closure I ($\{S \rightarrow \bullet E \$, \{\lambda\}\}\) =$
$S \rightarrow \bullet E \$, \{\lambda\}$
E → • E + T, {\$}
E → • T, {\$}
T → • ID, {\$}
$T \rightarrow \bullet (E), \{\$\}$
E → • E + T, {+}
E → • T, {+}
T → • ID, {+}
$T \rightarrow \bullet (E), \{+\}$

Building goto and action tables

- The function goto I (configuration-set, symbol) is analogous to goto0(configuration-set, symbol) for LR(0)
 - Build goto table in the same way as for LR(0)
- Key difference: the action table.

$$action[s][x] =$$

• reduce when • is at end of configuration and $x \in lookahead$ set of configuration

$$A \rightarrow \alpha \bullet, \{... \times ...\} \in s$$

shift when • is before x

$$A \rightarrow \beta \cdot x \gamma \in s$$

Problems with LR(I) parsers

- LR(I) parsers are very powerful ...
 - But the table size is much larger than LR(0) as much as a factor of $|V_t|$ (why?)
 - Example: Algol 60 (a simple language) includes several thousand states!
- Storage efficient representations of tables are an important issue

Solutions to the size problem

- Different parser schemes
 - SLR (simple LR): build an CFSM for a language, then add lookahead wherever necessary (i.e., add lookahead to resolve shift/reduce conflicts)
 - What should the lookahead symbol be?
 - To decide whether to reduce using production $A \rightarrow \alpha$, use Follow(A)
 - LALR: merge LR states in certain cases (we won't discuss this)

Semantic actions

- Recall: in LL parsers, we could integrate the semantic actions with the parser
 - Why? Because the parser was predictive
- Why doesn't that work for LR parsers?
 - Don't know which production is matched until parser reduces
- For LR parsers, we put semantic actions at the end of productions
 - May have to rewrite grammar to support all necessary semantic actions