ECE 468 — Final Exam
December 12, 2011

Name:

Purdue Email:

Please sign the following:

I affirm that the answers given on this test are mine and mine alone.
I did not receive help from any person or material (other than those
explicitly allowed).

X

Part 1: /25
Part 2: /25
Part 3: /15
Part 4: /35
Total: /100




Part 1: Dataflow analysis (25 pts)

In this problem, you will design a dataflow analysis that detects unused declarations.
An unused declaration is a declaration of a variable that is never used in a program
(though it may be defined).

Problem 1 (2 pts): This is a bit vector analysis. Is it forward or backward?
Explain your answer.

Problem 2 (3 pts): What data do you need to keep track of at each program
point?

Problem 3 (1 pts): Should you use union or intersection at merge points?



Problem 4 (4 pts): Assume that each statement in the program has two sets
defined, DEF(s), of all the variables defined in the statement, and USE(s), of all
the variables used in the statement. Using these two sets, define what GEN(s) and
KILL(s) would be for a statement.

Problem 5 (5 pts): Explain how your analysis would be used to detect unused
declarations.



Problem 6 (10 pts): For each statement in the following code, show what infor-
mation your analysis would compute (IN sets, OUT sets, GEN sets and USE sets)
if you used your analysis.

Code GEN KILL IN ouT
1: int x = 3;
2: int y = 6;

3: x = READ();

Il
00

4. int z

5: if (x < y) goto 8;

10: halt;




Part 2: Depedence analysis and loop optimization (25 pts)

For the next four problems, consider the following loop:
;1< 6; i++) {

1; j <6; j++t) {

1] = A[i-11[3j] + A[i+2]1[j-1];

for (int 1 =1
for (int j =
A[i+2] [+
+
b

Problem 1 (10 pts): Below is the iteration space graph for the loop nest (i along
the horizontal axis, j along the vertical axis). Draw the dependence arrows that arise
from analyzing the loop. Use solid arrows for flow dependences, arrows with a slash
through them (as in class) for anti-dependences, and arrows with a circle over them
for output dependences.

" O O O O O

«O O O O
.0 O O O
O O O O

o

o
-0 O
> 9

Problem 2 (2 pts): List the distance vectors that arise from this loop nest, and
mark whether they are flow, anti or output.

Problem 3 (1 pt): List the direction vectors that arise from this loop nest, and
mark whether they are flow, anti or output.



Problem 4 (1 pt): Can the loops in this nest be interchanged? Why or why not?

Problem 5 (3 pts): Assume that loop interchange is legal for the above loop nest.
Suppose array A were laid out in column-major order in memory. Would you want
to do interchange? Why or why not?



Problem 5 (8 pts): What are the distance vectors in the following loop nest? Give
the type of dependence that each vector represents.

for (int i = 1; i < 6; i++) {
for (int j = 1; j < 6; j++) {
ALi+11[j] = A[i][j+1]1;
Ali+11[]1 = A[i+2][j-1];
+

¥



Part 3: Pointer analysis (15 pts)

Problem 1 (5 pts): In a flow-sensitive pointer analysis, why do we perform a weak
update when determining how the expression *x = y changes the points-to graph?

Problem 2 (10 pts): Consider performing instruction scheduling. Which will result
in a better schedule: (a) using a flow-sensitive pointer analysis before scheduling; (b)
using a flow-insensitive pointer analysis before scheduling; or (c¢) would it not make
a difference? Justify your answer.



Part 4: Review (35 pts)

ECE 468 student Cam Piler thinks the following grammar is LR(0) but not LL(1).

1.8
2.A
3.A
4.B —

USRAN
o

Problem 1 (10 pts): Argue that the grammar is not LL(1). Your argument should
make reference to a parse table and predict sets.



Problem 2 (10 pts): Argue that Cam Piler is wrong, and the language is not even
LR(0). Show that he’s wrong in two steps. First, build the LR(0) machine for the
grammar:



Problem 3 (2 pts): Use the LR(0) machine you built above to argue that the
grammar is not LR(0).

Problem 4 (3 pts): Cam Piler wrongly thinks that if a grammar is not LL(1), it
can’t be regular (there is no regular expression that can capture the language). Show
that he’s wrong by providing a regular expression that captures all the strings from
the above grammar.

Problem 5 (10 pts): Consider performing strength reduction (the loop optimiza-
tion, not the peephole optimization) on a piece of code. If your goal is to parallelize
that loop, is strength reduction a good idea or a bad idea? Justify your answer.



