ECE 468/583
Problem Set 6: Loop Optimization and Pointer Analysis

Loop transformations
For the following problems, consider the code below:

1. X =2;

2. Y = 10;

3. Y=Xx*xY;

4. A=Y xX-2=xY;
5. B=X/2+Y,;

6. Z = 10;

7. if (B < Z) goto 12
8. D=Y-7ZxY;

9. Q=Y - 8;

10. Z =72 -Q;

11. goto 7;

12, X = X + AxY;

13. if (X < Z*100) goto 4;
14. Y = D;

15. halt;

1. Draw the CFG for the code above. Identify the loops in the code.
Answer:

N
~< =<
[
S

8. D=Y -Z7Z*Y;
9. Q=Y - 8

10. 7 =7 - Q;

11. goto 7;

12. X = X + A*Y;
13. if (X<Z*100) goto 4;

14. Y = D;
15. halt;

The loops are: lines 4-13 and lines 7-11.

. Which statements are loop invariant? Can they be moved outside their enclosing
loop? Show the code that results after hoisting any loop invariant code outside the
loop.

Answer: Statements 6 and 9 are loop invariant. Statement 9 can be housted outside
of its loop (indeed, it can be hoisted outside of both loops), but Statement 6 cannot,
because Z is defined more than once within the loop.

The resulting code is:

1. X =2;

2. Y = 10;

3. Y=Xx*Y;

3’ Q=Y -8;

4. A=Y *xX-2xY;

5. B=X/2+Y,;

6. Z = 10;

T. if (B < Z) goto 12
8. D=Y -7 x%xY;

9. // Q=Y - 8;

10. Z =272 -Q;

11. goto 7;

12. X = X + AxY;

13. if (X < Zx100) goto 4;
14. Y = D;

15. halt;

. Identify the induction variables in this code. Show the code that results after per-
forming any possible strength reduction.

Answer: There is only one induction variable: Z, in line 10. Note that X is not
an induction variable: A is not loop invariant, so X does not increment by a fixed
amount each iteration. The rewritten code looks like (note the signs! Z decrements
by Q each time, so we multiply -Q by -Y):

1. X =2;

2. Y = 10;

3. Y =Xx1Y;

3’. Q=Y - 8;

4. A=Y *xX-2xY;
5. B=X/2+1Y;

6. Z = 10;

6’ D>’ =Y -Z *Y;

7. if (B < Z) goto 12
8. D=D

9. // Q=Y - 8;

10. Z =12 - Q;

10°. D> =D’ + Q *x Y;
11. goto 7;

12. X = X + AxY;

13. if (X < Zx100) goto 4;
14. Y = D;

15. halt;

. Show the code after performing any possible linear test replacement.
Answer: Note that the comparison operation switched directions! To do linear test
replacement, we had to multiply both sides by -Y, which flips the inequality.

1. X =2;

2. Y = 10;

3. Y =X *xY;

3’ Q=Y -8;

4. A=Y xX-2x%xY;

5. B=X/2+1Y;

6. Z = 10;

6’ D> =Y -Z x*xY;

7. if (Y -B *Y >D’) goto 12
8. D =D’

9. // Q=Y - 8;

10. Z =7 - Q;

10°. D’ =D’ + Q * Y;

11. goto 7;

12. X = X + AxY;

13. if (X < Z*x100) goto 4;
14. Y = D;

15. halt;

. Draw the iteration space graph for the following piece of code (be careful about the
index expressions and the loop order!):

for (j = 0; j < 5; j++)

for (1 = 0; i < 5; i++)
A[j+2] [i+1] = A[j-11[i+1] + A[j+1]1[i+2];

Answer:

O O O O O

6. What are the distance vectors? The direction vectors?
Answer: Distance vectors: (3, 0), (1, -1) Direction vectors: (+, 0), (+, -)

7. Can the loops be interchanged? Why or why not?
Answer:

The loops cannot be interchanged, because the (+, -) dependence would break.

8. Can the following two loops be fused? Why or why not? Explain your answer in
terms of dependences between the loops.

for (i = 1; i < 10; i++)
Ali - 1] = B[1i + 1]

for (i = 1; i < 10; i++)
Ali + 2] = A[i]

Answer: They cannot be interchanged. There is a dependence from the i=3 iteration
of the first loop (which writes to A[2]) and the i=1 iteration of the second loop (which
writes to A[3]). In the transformed code, the second write will happen before the
first write, generating incorrect code.

9. Draw the points-to-graph at the end of this piece of code for a flow-sensitive pointer
analysis (assume the variables have all been declared appropriately beforehand)

10.

X = &a;

y = &b;

z = &q;

if (c <d) {
z = &x;

else {
z = &y;

}

*xz = &c;

Answers below. I have shown the points-to graph after each statement is executed.

Draw the points-to-graph you would get if you ran a flow-insensitive pointer analysis
on the same code.

Answers below, in inset.

a6l 6%

e

(€= af]

\ Shong vpdate 5\1w¢)upda}{
FR ATIE -) S N
e <@>~@> 7 84| (4 -®

@ g\ow wsensirve rgu\\':
rep\ace <xvong \;QMS

vong dode
; Oé} o Wh eeck PAAES.
\ = s 5 ws to ¢
2 7% Ths, 2 W o
@C> e en exeahing ¥2=C o

reccde over —s\&}cwm\s onkil

(D)
> @r cow'k Gxﬁd
(%)/7 & % s !

