
ECE 468/573
Problem Set 5: Dataflow analysis

Consider the following code:

1: READ(x);

2: READ(y);

L1 3: if (x > 9) goto L4

4: if (y > 3) goto L2

5: x = 3 + x;

6: b = y + x;

7: goto L3

L2 8: y = 3 + x;

9: b = y + x;

L3 10: y = x + y;

11: goto L1;

L4 12: WRITE(b)

13: halt

1. Draw the CFG for this piece of code.

We’ll “draw” the CFG by giving the predecessor(s) and successor(s) for each state-
ment in the program.

Statement Predecessor Successor
1 — 2
2 1 3
3 2, 11 4, 12
4 3 5, 8
5 4 6
6 5 7
7 6 10
8 4 9
9 8 10
10 7, 9 11
11 10 3
12 3 13
13 12 —

2. Show the results of running a reaching definitions analysis on this code. For each line
of code, show what definitions reach that line. Assume this is the only code in the
program.

We will represent a definition by [v, n], meaning variable v was defined at line n. For
each statement, we will show the GEN and KILL sets, with [v, *] meaning that all
definitions of x are killed.

1



Statement Predecessor Successor GEN KILL
1 — 2 [x, 1] [x, *]
2 1 3 [y, 2] [y, *]
3 2, 11 4, 12 — —
4 3 5, 8 — —
5 4 6 [x, 5] [x, *]
6 5 7 [b, 6] [b, *]
7 6 10 — —
8 4 9 [y, 8] [y, *]
9 8 10 [b, 9] [b, *]
10 7, 9 11 [y, 10] [y, *]
11 10 3 — —
12 3 13 — —
13 12 — — —

Reaching definitions is a forward analysis that uses ∪ to merge information. That
means that the two dataflow equations we will use to compute IN and OUT sets for
each statement are:

IN(s) =
⋃

t∈pred(s)

OUT (t)

OUT (s) = (IN(s)−KILL(s)) ∪GEN(s)

We will iterate these equations, updating every statements IN and OUT sets, until
the values stop changing. When we’re done, we get:

Statement IN OUT
1 — [x, 1]
2 [x, 1] [x, 1], [y, 1]
3 [x, 1], [x, 5], [y, 1], [y, 10], [b, 6], [b, 9] [x, 1], [x, 5], [y, 1], [y, 10], [b, 6], [b, 9]
4 [x, 1], [x, 5], [y, 1], [y, 10], [b, 6], [b, 9] [x, 1], [x, 5], [y, 1], [y, 10], [b, 6], [b, 9]
5 [x, 1], [x, 5], [y, 1], [y, 10], [b, 6], [b, 9] [x, 5], [y, 1], [y, 10], [b, 6], [b, 9]
6 [x, 5], [y, 1], [y, 10], [b, 6], [b, 9] [x, 5], [y, 1], [y, 10], [b, 6]
7 [x, 5], [y, 1], [y, 10], [b, 6] [x, 5], [y, 1], [y, 10], [b, 6]
8 [x, 1], [x, 5], [y, 1], [y, 10], [b, 6], [b, 9] [x, 1], [x, 5], [y, 8], [b, 6], [b, 9]
9 [x, 1], [x, 5], [y, 8], [b, 6], [b, 9] [x, 1], [x, 5], [y, 8], [b, 9]
10 [x, 1], [x, 5], [y, 1], [y, 8], [y, 10], [b, 6], [b, 9] [x, 1], [x, 5], [y, 10], [b, 6], [b, 9]
11 [x, 1], [x, 5], [y, 10], [b, 6], [b, 9] [x, 1], [x, 5], [y, 10], [b, 6], [b, 9]
12 [x, 1], [x, 5], [y, 1], [y, 10], [b, 6], [b, 9] [x, 1], [x, 5], [y, 1], [y, 10], [b, 6], [b, 9]
13 [x, 1], [x, 5], [y, 1], [y, 10], [b, 6], [b, 9] [x, 1], [x, 5], [y, 10], [b, 6], [b, 9]

3. Show the results of running a liveness analysis on this code. For each line of code,

2



show what variables are live out for that line (i.e., what variables are live immediately
after that line would execute)

As before, we start by constructing the GEN and KILL sets for each statement:

Statement Predecessor Successor GEN KILL
1 — 2 — x
2 1 3 — y
3 2, 11 4, 12 x —
4 3 5, 8 y —
5 4 6 x x
6 5 7 y, x b
7 6 10 — —
8 4 9 x y
9 8 10 x, y b
10 7, 9 11 x, y y
11 10 3 — —
12 3 13 b —
13 12 — —

Liveness is a backwards analysis that uses ∪ to merge together information, so the
equations for IN and OUT are:

IN(s) = (OUT (s)−KILL(s)) ∪GEN(s)

OUT (s) =
⋃

t∈succ(s)

IN(t)

When we iterate these equations, we get:

Statement IN OUT
1 b b, x
2 b, x b, x, y
3 b, x, y b, x, y
4 x, y x, y
5 x, y x, y
6 x, y b, x, y
7 b, x, y b, x, y
8 x x, y
9 x, y b, x, y
10 b, x, y b, x, y
11 b, x, y b, x, y
12 b —
13 — —

3


