Dependence Analysis
Motivating question

• Can the loops on the right be run in parallel?

 • *i.e.*, can different processors run different iterations in parallel?

• What needs to be true for a loop to be parallelizable?

 • Iterations cannot interfere with each other

• No *dependence* between iterations

```c
for (i = 1; i < N; i++) {
    a[i] = b[i];
    c[i] = a[i - 1];
}
```

```c
for (i = 1; i < N; i++) {
    a[i] = b[i];
    c[i] = a[i] + b[i - 1];
}
```
Dependences

- A *flow dependence* occurs when one iteration writes a location that a *later* iteration reads.

```c
for (i = 1; i < N; i++) {
    a[i] = b[i];
    c[i] = a[i - 1];
}
```

<table>
<thead>
<tr>
<th>i = 1</th>
<th>i = 2</th>
<th>i = 3</th>
<th>i = 4</th>
<th>i = 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>W(a[1])</td>
<td>W(a[2])</td>
<td>W(a[3])</td>
<td>W(a[4])</td>
<td>W(a[5])</td>
</tr>
<tr>
<td>R(b[1])</td>
<td>R(b[2])</td>
<td>R(b[3])</td>
<td>R(b[4])</td>
<td>R(b[5])</td>
</tr>
<tr>
<td>W(c[1])</td>
<td>W(c[2])</td>
<td>W(c[3])</td>
<td>W(c[4])</td>
<td>W(c[5])</td>
</tr>
<tr>
<td>R(a[0])</td>
<td>R(a[1])</td>
<td>R(a[2])</td>
<td>R(a[3])</td>
<td>R(a[4])</td>
</tr>
</tbody>
</table>
Running a loop in parallel

• If there is a dependence in a loop, we cannot guarantee that the loop will run correctly in parallel

• What if the iterations run out of order?
 • Might read from a location before the correct value was written to it

• What if the iterations do not run in lock-step?
 • Same problem!
Other kinds of dependence

- **Anti dependence** – When an iteration reads a location that a later iteration writes (why is this a problem?)

```plaintext
for (i = 1; i < N; i++) {
    a[i - 1] = b[i];
    c[i] = a[i];
}
```

- **Output dependence** – When an iteration writes a location that a later iteration writes (why is this a problem?)

```plaintext
for (i = 1; i < N; i++) {
    a[i] = b[i];
    a[i + 1] = c[i];
}
```
Data dependence concepts

- Dependence source is the earlier statement (the statement at the tail of the dependence arrow)
- Dependence sink is the later statement (the statement at the head of the dependence arrow)

Dependences can only go forward in time: always from an earlier iteration to a later iteration.
Using dependences

- If there are no dependences, we can parallelize a loop
 - None of the iterations interfere with each other
- Can also use dependence information to drive other optimizations
 - Loop interchange
 - Loop fusion
 - (We will discuss these later)
- Two questions:
 - How do we represent dependences in loops?
 - How do we determine if there are dependences?
Representing dependences

• Focus on flow dependences for now

• Dependences in straight line code are easy to represent:
 • One statement writes a location (variable, array location, etc.) and another reads that same location
 • Can figure this out using reaching definitions

• What do we do about loops?
 • We often care about dependences between the same statement in different iterations of the loop!

```plaintext
for (i = 1; i < N; i++) {
    a[i + 1] = a[i] + 2
}
```
Iteration space graphs

- Represent each *dynamic* instance of a loop as a point in a graph
- Draw arrows from one point to another to represent dependences

```c
for (i = 0; i < N; i++) {
    a[i + 2] = a[i]
}
```
Iteration space graphs

- Represent each *dynamic* instance of a loop as a point in a graph
- Draw arrows from one point to another to represent dependences

  ```
  for (i = 0; i < N; i++) {
    a[i + 2] = a[i]
  }
  ```

- Step 1: Create nodes, 1 for each iteration
 - Note: not 1 for each array location!
Iteration space graphs

- Represent each *dynamic* instance of a loop as a point in a graph.
- Draw arrows from one point to another to represent dependences.

```java
for (i = 0; i < N; i++) {
    a[i + 2] = a[i]
}
```

- Step 2: Determine which array elements are read and written in each iteration.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Iteration space graphs

- Represent each *dynamic* instance of a loop as a point in a graph.
- Draw arrows from one point to another to represent dependences:

```c
for (i = 0; i < N; i++) {
    a[i + 2] = a[i]
}
```
- Step 3: Draw arrows to represent dependences:

```
0 -> 1
1 -> 2
2 -> 3
3 -> 4
4 -> 5
```

- Read (R): a[0], a[2], a[4], a[6], a[8], a[10]
- Write (W): a[1], a[3], a[5], a[7], a[9], a[11]
2-D iteration space graphs

- Can do the same thing for doubly-nested loops
- 2 loop counters

```cpp
for (i = 0; i < N; i++)
    for (j = 0; j < N; j++)
        a[i+1][j-2] = a[i][j] + 1
```
Iteration space graphs

- Can also represent output and anti dependences
 - Use different kinds of arrows for clarity. E.g.
 - \(\Rightarrow\) for output
 - \(\Leftarrow\) for anti

Crucial problem: Iteration space graphs are potentially infinite representations!

- Can we represent dependences in a more compact way?
Distance and direction vectors

• Compiler researchers have devised compressed representations of dependences
 • Capture the same dependences as an iteration space graph
 • May lose precision (show more dependences than the loop actually has)

• Two types
 • Distance vectors: captures the “shape” of dependences, but not the particular source and sink
 • Direction vectors: captures the “direction” of dependences, but not the particular shape
Distance vector

- Represent each dependence arrow in an iteration space graph as a vector
- Captures the “shape” of the dependence, but loses where the dependence originates

Distance vector for this iteration space: (2)

- Each dependence is 2 iterations forward
2-D distance vectors

- Distance vector for this graph:
 - (1, -2)
 - +1 in the i direction, -2 in the j direction

- Crucial point about distance vectors: they are always “positive”
 - First non-zero entry has to be positive
 - Dependences can’t go backwards in time
More complex example

- Can have multiple distance vectors

```c
for (i = 0; i < N; i++)
    for (j = 0; j < N; j++)
        a[i+1][j-2] = a[i][j] + a[i-1][j-2]
```

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0,4</td>
<td>1,4</td>
<td>2,4</td>
<td>3,4</td>
<td>4,4</td>
</tr>
<tr>
<td>0,3</td>
<td>1,3</td>
<td>2,3</td>
<td>3,3</td>
<td>4,3</td>
</tr>
<tr>
<td>0,2</td>
<td>1,2</td>
<td>2,2</td>
<td>3,2</td>
<td>4,2</td>
</tr>
<tr>
<td>0,1</td>
<td>1,1</td>
<td>2,1</td>
<td>3,1</td>
<td>4,1</td>
</tr>
<tr>
<td>0,0</td>
<td>1,0</td>
<td>2,0</td>
<td>3,0</td>
<td>4,0</td>
</tr>
</tbody>
</table>
More complex example

- Can have multiple distance vectors

for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 a[i+1][j-2] = a[i][j] + a[i-1][j-2]

- Distance vectors
 - (1, -2)
 - (2, 0)

- Important point: order of vectors depends on order of loops, not use in arrays
Problems with distance vectors

- The preceding examples show how distance vectors can summarize all the dependences in a loop nest using just a small number of distance vectors
- Can’t always summarize as easily
- Running example:

\[
\text{for } (i = 0; i < N; i++) \\
\quad a[2*i] = a[i];
\]
Loss of precision

• What are the distance vectors for this code?
 • (1), (2), (3), (4) ...
 • Note: we have information about the length of each vector, but not about the source of each vector
 • What happens if we try to reconstruct the iteration space graph?
Loss of precision

- What are the distance vectors for this code?
 - (1), (2), (3), (4) ...
- Note: we have information about the length of each vector, but not about the source of each vector
- What happens if we try to reconstruct the iteration space graph?
Direction vectors

• The whole point of distance vectors is that we want to be able to succinctly capture the dependences in a loop nest

• But in the previous example, not only did we add a lot of extra information, we still had an infinite number of distance vectors

• Idea: summarize distance vectors, and save only the direction the dependence was in

 • \((2, -1) \rightarrow (+, -)\)

 • \((0, 1) \rightarrow (0, +)\)

 • \((0, -2) \rightarrow (0, -)\)

 • (can’t happen; dependences have to be positive)

• Notation: sometimes use ‘<‘ and ‘>’ instead of ‘+’ and ‘−’
Why use direction vectors?

• Direction vectors lose a lot of information, but do capture some useful information
 • Whether there is a dependence (anything other than a ‘0’ means there is a dependence)
 • Which dimension and direction the dependence is in
• Many times, the only information we need to determine if an optimization is legal is captured by direction vectors
 • Loop parallelization
 • Loop interchange
Loop parallelization
Loop-carried dependence

- The key concept for parallelization is the *loop carried dependence*
 - A dependence that crosses loop iterations
 - If there is a loop carried dependence, then that loop *cannot* be parallelized
 - Some iterations of the loop depend on other iterations of the same loop
Examples

for (i = 0; i < N; i++)
 a[2*i] = a[i];

Later iterations of i loop depend on earlier iterations

for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 a[i+1][j-2] = a[i][j] + 1

Later iterations of both i and j loops depend on earlier iterations
Some subtleties

- Dependences might only be carried over one loop!

```c
for (i = 0; i < N; i++)
    for (j = 0; j < N; j++)
        a[i][j+1] = a[i][j] + 1
```

- Can parallelize i loop, but not j loop
Some subtleties

- Dependences might only be carried over one loop!

```c
for (i = 0; i < N; i++)
    for (j = 0; j < N; j++)
        a[i+1][j] = a[i-1][j] + 1
```

- Can parallelize j loop, but not i loop
Direction vectors

• So how do direction vectors help?
 • If there is a non-zero entry for a loop dimension, that means that there is a loop carried dependence over that dimension
 • If an entry is zero, then that loop can be parallelized!
 • May be able to parallelize inner loop even if entry is not zero, but you have to carefully structure parallel execution
Other loop optimizations
Loop interchange

- We’ve seen this one before
- Interchange doubly-nested loop to
 - Improve locality
 - Improve parallelism
 - Move parallel loop to outer loop (coarse grained parallelism)
Loop interchange legality

- We noted that loop interchange is not always legal, because it reorders a computation.
- Can we use dependences to determine legality?
Loop interchange dependences

- Consider interchanging the following loop, with the dependence graph to the right:

```plaintext
def (i = 0; i < N; i++)
  for (j = 0; j < N; j++)
    a[i+1][j+2] = a[i][j] + 1
```

- Distance vector (1, 2)
- Direction vector (+, +)
Loop interchange dependences

- Consider interchanging the following loop, with the dependence graph to the right:

```plaintext
for (j = 0; j < N; j++)
for (i = 0; i < N; i++)
a[i+1][j+2] = a[i][j] + 1
```

- Distance vector (2, 1)
- Direction vector (+, +)
- Distance vector gets swapped!
Loop interchange legality

- Interchanging two loops swaps the order of their entries in distance/direction vectors
 - $(0, +) \rightarrow (+, 0)$
 - $(+, 0) \rightarrow (0, +)$
- But remember, we can’t have backwards dependences
 - $(+, -) \rightarrow (-, +)$
 - Illegal dependence \rightarrow Loop interchange not legal!
Loop interchange dependences

- Example of illegal interchange:

```c
for (i = 0; i < N; i++)
  for (j = 0; j < N; j++)
    a[i+1][j-2] = a[i][j] + 1
```
Loop interchange dependences

• Example of illegal interchange:

for (j = 0; j < N; j++)
for (i = 0; i < N; i++)
 a[i+1][j-2] = a[i][j] + 1

• Flow dependences turned into anti-dependences

• Result of computation will change!
Loop fusion/distribution

- Loop fusion: combining two loops into a single loop
 - Improves locality, parallelism
- Loop distribution: splitting a single loop into two loops
 - Can increase parallelism (turn a non-parallelizable loop into a parallelizable loop)
- Legal as long as optimization maintains dependences
 - Every dependence in the original loop should have a dependence in the optimized loop
 - Optimized loop should not introduce new dependences
Fusion/distribution example

- Code 1:

 for (i = 0; i < N; i++)
 a[i - 1] = b[i]

 for (j = 0; j < N; j++)
 c[j] = a[j]

- Dependence graph

- All red iterations finish before blue iterations → flow dependence

- Code 2:

 for (i = 0; i < N; i++)
 a[i - 1] = b[i]

 c[i] = a[i]

- Dependence graph

- i iterations finish before i+1 iterations → flow dependence now an anti dependence!
Fusion/distribution utility

for (i = 0; i < N; i++)
a[i] = a[i - 1]

for (j = 0; j < N; j++)
b[j] = a[j]

for (i = 0; i < N; i++)
a[i] = a[i - 1]

Fusion

Distribution

b[i] = a[i]

- Fusion and distribution both legal
- Right code has better locality, but cannot be parallelized due to loop carried dependences
- Left code has worse locality, but blue loop can be parallelized