Dependence Analysis

Motivating question

- Can the loops on the right be run in parallel?
- i.e., can different processors run different iterations in parallel?
- What needs to be true for a loop to be parallelizable?
 - Iterations cannot interfere with each other
 - No dependence between iterations

Running a loop in parallel

- If there is a dependence in a loop, we cannot guarantee that the loop will run correctly in parallel
- What if the iterations run out of order?
 - Might read from a location before the correct value was written to it
- What if the iterations do not run in lock-step?
 - Same problem!

Other kinds of dependence

- Anti dependence – When an iteration reads a location that a later iteration writes (why is this a problem?)

```
for (i = 1; i < N; i++) {
    a[i - 1] = b[i];
    c[i] = a[i];
}
```

- Output dependence – When an iteration writes a location that a later iteration reads (why is this a problem?)

```
for (i = 1; i < N; i++) {
    a[i] = b[i];
    a[i + 1] = c[i];
}
```

Data dependence concepts

- Dependence source is the earlier statement (the statement at the tail of the dependence arrow)
- Dependence sink is the later statement (the statement at the head of the dependence arrow)

```
i = 1           i = 2           i = 3           i = 4           i = 5
W(a[1])       W(a[2])       W(a[3])       W(a[4])       W(a[5])
R(b[1])       R(b[2])       R(b[3])       R(b[4])       R(b[5])
W(c[1])       W(c[2])       W(c[3])       W(c[4])       W(c[5])
R(a[0])       R(a[1])       R(a[2])       R(a[3])       R(a[4])
```
Using dependences

- If there are no dependences, we can parallelize a loop
- None of the iterations interfere with each other
- Can also use dependence information to drive other optimizations
 - Loop interchange
 - Loop fusion
 - (We will discuss these later)
- Two questions:
 - How do we represent dependences in loops?
 - How do we determine if there are dependences?

Representing dependences

- Focus on flow dependences for now
- Dependences in straight line code are easy to represent:
 - One statement writes a location (variable, array location, etc.) and another reads that same location
 - Can figure this out using reaching definitions
- What do we do about loops?
 - We often care about dependences between the same statement in different iterations of the loop!

```plaintext
for (i = 1; i < N; i++) {
  a[i + 1] = a[i] + 2
}
```

Iteration space graphs

- Represent each dynamic instance of a loop as a point in a graph
- Draw arrows from one point to another to represent dependences

```plaintext
for (i = 0; i < N; i++) {
  a[i + 2] = a[i]
}
```

- Step 1: Create nodes, 1 for each iteration
 - Note: not 1 for each array location!

```plaintext
0 1 2 3 4 5
```

- Step 2: Determine which array elements are read and written in each iteration

```
0: R: a[0], W: a[2]
1: R: a[1], W: a[3]
5: R: a[5], W: a[7]
```

- Step 3: Draw arrows to represent dependences
2-D iteration space graphs

- Can do the same thing for doubly-nested loops
- 2 loop counters

```c
for (i = 0; i < N; i++)
    for (j = 0; j < N; j++)
        a[i+1][j-2] = a[i][j] + 1
```

Iteration space graphs

- Can also represent output and anti dependences
- Use different kinds of arrows for clarity. E.g.
 - for output
 - for anti

- Crucial problem: Iteration space graphs are potentially infinite representations!
 - Can we represent dependences in a more compact way?

Distance and direction vectors

- Compiler researchers have devised compressed representations of dependences
 - Capture the same dependences as an iteration space graph
 - May lose precision (show more dependences than the loop actually has)
- Two types
 - Distance vectors: captures the “shape” of dependences, but not the particular source and sink
 - Direction vectors: captures the “direction” of dependences, but not the particular shape

Distance vector

- Represent each dependence arrow in an iteration space graph as a vector
- Captures the “shape” of the dependence, but loses where the dependence originates

2-D distance vectors

- Distance vector for this graph:
 - (1, -2)
 - +1 in the i direction, -2 in the j direction
- Crucial point about distance vectors: they are always “positive”
 - First non-zero entry has to be positive
 - Dependences can’t go backwards in time

More complex example

- Can have multiple distance vectors

```c
for (i = 0; i < N; i++)
    for (j = 0; j < N; j++)
        a[i+1][j-2] = a[i][j] + a[i-1][j-2]
```
More complex example

- Can have multiple distance vectors
  ```
  for (i = 0; i < N; i++)
  for (j = 0; j < N; j++)
  a[i+1][j-2] = a[i][j] + a[i-1][j-2]
  ```
- Distance vectors
 - (1, -2)
 - (2, 0)
- Important point: order of vectors depends on order of loops, not use in arrays

Problems with distance vectors

- The preceding examples show how distance vectors can summarize all the dependences in a loop nest using just a small number of distance vectors
- Can't always summarize as easily
- Running example:
  ```
  for (i = 0; i < N; i++)
  a[2*i] = a[i];
  ```

Loss of precision

- What are the distance vectors for this code?
 - (1), (2), (3), (4) ...
- Note: we have information about the length of each vector, but not about the source of each vector
- What happens if we try to reconstruct the iteration space graph?

Direction vectors

- The whole point of distance vectors is that we want to be able to succinctly capture the dependences in a loop nest
- But in the previous example, not only did we add a lot of extra information, we still had an infinite number of distance vectors
- Idea: summarize distance vectors, and save only the direction the dependence was in
 - (2, -1) → (+, –)
 - (0, 1) → (0, +)
 - (0, -2) → (0, –)
 - (can't happen; dependences have to be positive)
- Notation: sometimes use '<' and '>' instead of '+' and '-'

Why use direction vectors?

- Direction vectors lose a lot of information, but do capture some useful information
- Whether there is a dependence (anything other than a '0' means there is a dependence)
- Which dimension and direction the dependence is in
- Many times, the only information we need to determine if an optimization is legal is captured by direction vectors
 - Loop parallelization
 - Loop interchange
Loop parallelization

The key concept for parallelization is the loop carried dependence.

A dependence that crosses loop iterations.

If there is a loop carried dependence, then that loop cannot be parallelized.

Some iterations of the loop depend on other iterations of the same loop.

Loop-carried dependence

Examples

```
for (i = 0; i < N; i++)
a[2*i] = a[i];
```

Later iterations of i loop depend on earlier iterations.

```
for (i = 0; i < N; i++)
    for (j = 0; j < N; j++)
a[i+1][j-2] = a[i][j] + 1
```

Later iterations of both i and j loops depend on earlier iterations.

Some subtleties

- Dependences might only be carried over one loop!

```
for (i = 0; i < N; i++)
    for (j = 0; j < N; j++)
a[i][j+1] = a[i][j] + 1
```

- Can parallelize i loop, but not j loop.

```
for (i = 0; i < N; i++)
    for (j = 0; j < N; j++)
a[i+1][j] = a[i-1][j] + 1
```

Direction vectors

- So how do direction vectors help?

 - If there is a non-zero entry for a loop dimension, that means that there is a loop carried dependence over that dimension.
 - If an entry is zero, then that loop can be parallelized.
 - May be able to parallelize inner loop even if entry is not zero, but you have to carefully structure parallel execution.
Other loop optimizations

Loop interchange

- We’ve seen this one before
- Interchange doubly-nested loop to
 - Improve locality
 - Improve parallelism
 - Move parallel loop to outer loop (coarse grained parallelism)

Loop interchange legality

- We noted that loop interchange is not always legal, because it reorders a computation
- Can we use dependences to determine legality?

Loop interchange dependences

- Consider interchanging the following loop, with the dependence graph to the right:

 for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 a[i+1][j+2] = a[i][j] + 1

 - Distance vector (1, 2)
 - Direction vector (+, +)

 - Distance vector gets swapped!

Loop interchange legality

- Interchanging two loops swaps the order of their entries in distance/direction vectors
 - (0, +) → (+, 0)
 - (+, 0) → (0, +)

 - But remember, we can’t have backwards dependences
 - (+, -) → (-, +)

 - Illegal dependence → Loop interchange not legal!
Loop interchange dependences

- Example of illegal interchange:

  ```
  for (i = 0; i < N; i++)
  for (j = 0; j < N; j++)
  a[i+1][j-2] = a[i][j] + 1
  ```

Loop fusion/distribution

- Loop fusion: combining two loops into a single loop
 - Improves locality, parallelism
- Loop distribution: splitting a single loop into two loops
 - Can increase parallelism (turn a non-parallelizable loop into a parallelizable loop)
 - Legal as long as optimization maintains dependences
 - Every dependence in the original loop should have a dependence in the optimized loop
 - Optimized loop should not introduce new dependences

Fusion/distribution example

- Code 1:
  ```
  for (i = 0; i < N; i++)
  a[i] = a[i - 1]
  ```
  ```
  for (j = 0; j < N; j++)
  c[j] = a[j]
  ```

- Code 2:
  ```
  for (i = 0; i < N; i++)
  a[i] = a[i - 1]
  ```
  ```
  for (j = 0; j < N; j++)
  c[j] = a[j]
  ```

Fusion/distribution utility

- Fusion and distribution both legal
- Right code has better locality, but cannot be parallelized due to loop carried dependences
- Left code has worse locality, but blue loop can be parallelized