Loop optimizations
Agenda

• Low level loop optimizations
 • Code motion
 • Strength reduction
 • Unrolling

• High level loop optimizations
 • Loop fusion
 • Loop interchange
 • Loop tiling
Loop optimization

• Low level optimization
 • Moving code around in a single loop
 • Examples: loop invariant code motion, strength reduction, loop unrolling

• High level optimization
 • Restructuring loops, often affects multiple loops
 • Examples: loop fusion, loop interchange, loop tiling
Low level loop optimizations

- Affect a single loop
- Usually performed at three-address code stage or later in compiler
- First problem: identifying loops
 - Low level representation doesn’t have loop statements!
Identifying loops

• First, we must identify *dominators*

 • Node a dominates node b if every possible execution path that gets to b *must* pass through a

• Many different algorithms to calculate dominators – we will not cover how this is calculated

• A *back edge* is an edge from b to a when a dominates b

• The target of a back edge is a *loop header*
Natural loops

- Will focus on natural loops – loops that arise in structured programs
- For a node n to be in a loop with header h
 - n must be dominated by h
 - There must be a path in the CFG from n to h through a back-edge to h
- What are the back edges in the example to the right? The loop headers? The natural loops?
Loop invariant code motion

- Idea: some expressions evaluated in a loop never change; they are *loop invariant*
- Can move loop invariant expressions outside the loop, store result in temporary and just use the temporary in each iteration
- Why is this useful?
Identifying loop invariant code

• To determine if a statement

\[s: a = b \text{ op } c \]

is loop invariant, find all definitions of \(b \) and \(c \) that reach \(s \)

• A statement \(t \) defining \(b \) reaches \(s \) if there is a path from \(t \) to \(s \) where \(b \) is not re-defined

• \(s \) is loop invariant if both \(b \) and \(c \) satisfy one of the following
 • it is constant
 • all definitions that reach it are from outside the loop
 • only one definition reaches it and that definition is also loop invariant
Moving loop invariant code

- Just because code is loop invariant doesn’t mean we can move it!

- We can move a loop invariant statement $a = b \text{ op } c$ if
 - The statement dominates all loop exits where a is live
 - There is only one definition of a in the loop
 - a is not live before the loop
 - Move instruction to a preheader, a new block put right before loop header
Strength reduction

- Like strength reduction peephole optimization
- Peephole: replace expensive instruction like \(a \times 2 \) with \(a \ll 1 \)
- Replace expensive instruction, multiply, with a cheap one, addition
- Applies to uses of an induction variable
- Opportunity: array indexing

```
for (i = 0; i < 100; i++)
A[i] = 0;
```

```
i = 0;
L2:if (i >= 100) goto L1
j = 4 * i + &A
*j = 0;
i = i + 1;
goto L2
```

L1:
Strength reduction

• Like strength reduction peephole optimization

• Peephole: replace expensive instruction like a * 2 with a << 1

• Replace expensive instruction, multiply, with a cheap one, addition

• Applies to uses of an induction variable

• Opportunity: array indexing

for (i = 0; i < 100; i++)
A[i] = 0;

i = 0; k = &A;
L2: if (i >= 100) goto L1
j = k;
*j = 0;
i = i + 1; k = k + 4;
goto L2
L1:
Induction variables

- A *basic induction variable* is a variable \(i \)
 - whose only definition within the loop is an assignment of the form \(i = i \pm c \), where \(c \) is loop invariant
 - Intuition: the variable which determines number of iterations is usually an induction variable

- A *mutual induction variable* \(j \) may be
 - defined once within the loop, and its value is a linear function of some other induction variable \(i \) such that

 \[j = c_1 \ast i \pm c_2 \text{ or } j = i/c_1 \pm c_2 \]

 where \(c_1, c_2 \) are loop invariant

- A *family* of induction variables include a basic induction variable and any related mutual induction variables
Strength reduction algorithm

Let j be an induction variable in the family of the basic induction variable i, such that \(j = c_1 \times i + c_2 \)

- Create a new variable \(j' \)
- Initialize in preheader
 \[
 j' = c_1 \times i + c_2
 \]
- Track value of i. After \(i = i + c_3 \), perform
 \[
 j' = j' + (c_1 \times c_3)
 \]
- Replace definition of i with
 \[
 j = j'
 \]
- Key: \(c_1, c_2, c_3 \) are all loop invariant (or constant), so computations like \((c_1 \times c_3)\) can be moved outside loop
Linear test replacement

• After strength reduction, the loop test may be the only use of the basic induction variable

• Can now eliminate induction variable altogether

• Algorithm
 • If only use of an induction variable is the loop test and its increment, and if the test is always computed
 • Can replace the test with an equivalent one using one of the mutual induction variables

i = 2
for (; i < k; i++)
j = 50*i
... = j

Strength reduction

i = 2; j’ = 50 * i
for (; i < k; i++, j’ += 50)
... = j’

Linear test replacement

i = 2; j’ = 50 * i
for (; j’ < 50*k; j’ += 50)
... = j’
Loop unrolling

- Modifying induction variable in each iteration can be expensive

- Can instead unroll loops and perform multiple iterations for each increment of the induction variable

- What are the advantages and disadvantages?

```c
for (i = 0; i < N; i++)
A[i] = ...
```

Unroll by factor of 4

```c
for (i = 0; i < N; i += 4)
A[i] = ...
A[i+1] = ...
A[i+2] = ...
A[i+3] = ...
```
High level loop optimizations

• Many useful compiler optimizations require restructuring loops or sets of loops
 • Combining two loops together (loop fusion)
 • Switching the order of a nested loop (loop interchange)
 • Completely changing the traversal order of a loop (loop tiling)
• These sorts of high level loop optimizations usually take place at the AST level (where loop structure is obvious)
Cache behavior

- Most loop transformations target cache performance
 - Attempt to increase spatial or temporal locality
 - Locality can be exploited when there is reuse of data (for temporal locality) or recent access of nearby data (for spatial locality)
- Loops are a good opportunity for this: many loops iterate through matrices or arrays
- Consider matrix-vector multiply example
 - Multiple traversals of vector: opportunity for spatial and temporal locality
 - Regular access to array: opportunity for spatial locality

\[
y[i] += A[i][j] \times x[j]
\]

for \(i = 0; i < N; i++\)
for \(j = 0; j < N; j++\)
\[
y[i] += A[i][j] \times x[j]
\]
Loop fusion

• Combine two loops together into a single loop

• Why is this useful?

• Is this always legal?
Loop interchange

- Change the order of a nested loop
- This is not always legal – it changes the order that elements are accessed!
- Why is this useful?
 - Consider matrix-matrix multiply when A is stored in column-major order (i.e., each column is stored in contiguous memory)

for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 y[i] += A[i][j] * x[j]
Loop interchange

- Change the order of a nested loop
- This is not always legal – it changes the order that elements are accessed!
- Why is this useful?
 - Consider matrix-matrix multiply when A is stored in column-major order (i.e., each column is stored in contiguous memory)

```c
for (j = 0; j < N; j++)
    for (i = 0; i < N; i++)
        y[i] += A[i][j] * x[j]
```
Loop tiling

- Also called “loop blocking”
- One of the more complex loop transformations
- Goal: break loop up into smaller pieces to get spatial and temporal locality
- Create new inner loops so that data accessed in inner loops fit in cache
- Also changes iteration order, so may not be legal

Code example:

```c
for (i = 0; i < N; i++)
    for (j = 0; j < N; j++)
        y[i] += A[i][j] * x[j]
```

Modified:

```c
for (ii = 0; ii < N; ii += B)
    for (jj = 0; jj < N; jj += B)
        for (i = ii; i < ii+B; i++)
            for (j = jj; j < jj+B; j++)
                y[i] += A[i][j] * x[j]
```

Diagram:

```
  j
 / 
( )
 / 
  i
 / 
( )
 / 
  y
 / 
( )
 / 
A
```
Loop tiling

- Also called “loop blocking”
- One of the more complex loop transformations
- Goal: break loop up into smaller pieces to get spatial and temporal locality
- Create new inner loops so that data accessed in inner loops fit in cache
- Also changes iteration order, so may not be legal

```
for (i = 0; i < N; i++)
  for (j = 0; j < N; j++)
    y[i] += A[i][j] * x[j]
```

```
for (ii = 0; ii < N; ii += B)
  for (jj = 0; jj < N; jj += B)
    for (i = ii; i < ii+B; i++)
      for (j = jj; j < jj+B; j++)
        y[i] += A[i][j] * x[j]
```
In a real (Itanium) compiler

GFLOPS relative to -O2; bigger is better

factor faster than -O2

-01 -02 + prefetch + interchange + unroll-jam + blocking = -O3 gcc -O4

92% of Peak Performance
Loop transformations

- Loop transformations can have dramatic effects on performance.
- Doing this legally and automatically is very difficult!
- Researchers have developed techniques to determine legality of loop transformations and automatically transform the loop.
 - Techniques like *unimodular transform framework* and *polyhedral framework*.
 - These approaches will get covered in more detail in advanced compilers course.