Loop optimizations

Agenda

• Low level loop optimizations
 • Code motion
 • Strength reduction
 • Unrolling

• High level loop optimizations
 • Loop fusion
 • Loop interchange
 • Loop tiling

Loop optimization

• Low level optimization
 • Moving code around in a single loop
 • Examples: loop invariant code motion, strength reduction, loop unrolling

• High level optimization
 • Restructuring loops, often affects multiple loops
 • Examples: loop fusion, loop interchange, loop tiling

Low level loop optimizations

• Affect a single loop
 • Usually performed at three-address code stage or later in compiler
 • First problem: identifying loops
 • Low level representation doesn’t have loop statements!

Identifying loops

• First, we must identify dominators

 • Node \(a \) dominates node \(b \) if every possible execution path that gets to \(b \) must pass through \(a \)

 • Many different algorithms to calculate dominators – we will not cover how this is calculated

 • A back edge is an edge from \(b \) to \(a \) when \(a \) dominates \(b \)

 • The target of a back edge is a loop header

Natural loops

• Will focus on natural loops – loops that arise in structured programs

• For a node \(n \) to be in a loop with header \(h \)
 • \(n \) must be dominated by \(h \)
 • There must be a path in the CFG from \(n \) to \(h \) through a back-edge to \(h \)

• What are the back edges in the example to the right? The loop headers? The natural loops?
Loop invariant code motion

• Idea: some expressions evaluated in a loop never change; they are loop invariant
• Can move loop invariant expressions outside the loop, store result in temporary and just use the temporary in each iteration
• Why is this useful?

Identifying loop invariant code

• To determine if a statement $a = b \text{ op } c$ is loop invariant, find all definitions of b and c that reach s
• A statement t defining b reaches s if there is a path from t to s where b is not re-defined
• s is loop invariant if both b and c satisfy one of the following
 • it is constant
 • all definitions that reach it are from outside the loop
 • only one definition reaches it and that definition is also loop invariant

Moving loop invariant code

• Just because code is loop invariant doesn’t mean we can move it!

for (...) do
 if (*) { /* code */ }
 break
 if (*) { /* code */ }
 break
a = c + b
while (*)
 c = a;
for (...) { /* code */ }

• We can move a loop invariant statement $a = b \text{ op } c$ if
 • The statement dominates all loop exits where a is live
 • There is only one definition of a in the loop
 • a is not live before the loop
• Move instruction to a preheader, a new block put right before loop header

Strength reduction

• Like strength reduction peephole optimization
• Peephole: replace expensive instruction like $a \cdot 2$ with $a \ll 1$
• Replace expensive instruction, multiply, with a cheap one, addition
• Applies to uses of an induction variable
• Opportunity: array indexing

for (i = 0; i < 100; i++)
 A[i] = 0;

for (i = 0; i < 100; i++)
 A[i] = 0;
 i = 0;
 k = &A;
L2:if (i >= 100) goto L1
 j = 4 \cdot i + &A
 *j = 0;
 i = i + 1;
 goto L2
L1:

Induction variables

• A basic induction variable is a variable i
• whose only definition within the loop is an assignment of the form $i = i \pm c$, where c is loop invariant
• Intuition: the variable which determines number of iterations is usually an induction variable
• A mutual induction variable j may be
 • defined once within the loop, and its value is a linear function of some other induction variable i such that
 $j = c_1 \cdot i + c_2$ or $j = \frac{i}{c_1} + c_2$
 • where c_1, c_2 are loop invariant
• A family of induction variables include a basic induction variable and any related mutual induction variables

Strength reduction

• Like strength reduction peephole optimization
• Peephole: replace expensive instruction like $a \cdot 2$ with $a \ll 1$
• Replace expensive instruction, multiply, with a cheap one, addition
• Applies to uses of an induction variable
• Opportunity: array indexing

for (i = 0; i < 100; i++)
 A[i] = 0;

for (i = 0; i < 100; i++)
 A[i] = 0;
 i = 0;
 k = &A;
L2:if (i >= 100) goto L1
 j = 4 \cdot i + &A
 *j = 0;
 i = i + 1;
 goto L2
L1:
Strength reduction algorithm

- Let \(j \) be an induction variable in the family of the basic induction variable \(i \), such that \(j = c_1 * i + c_2 \)
- Create a new variable \(j' \)
- Initialize in preheader
 \[j' = c_1 * i + c_2 \]
- Track value of \(i \). After \(i = i + c_3 \), perform
 \[j' = j' + (c_1 * c_3) \]
- Replace definition of \(i \) with
 \[i = j' \]
- Key: \(c_1, c_2, c_3 \) are all loop invariant (or constant), so computations like \((c_1 * c_3)\) can be moved outside loop

Linear test replacement

- After strength reduction, the loop test may be the only use of the basic induction variable
- Can now eliminate induction variable altogether

Algorithm

- If only use of an induction variable is the loop test and its increment, and if the test is always computed
- Can replace the test with an equivalent one using one of the mutual induction variables

High level loop optimizations

- Many useful compiler optimizations require restructuring loops or sets of loops
- Combining two loops together (loop fusion)
- Switching the order of a nested loop (loop interchange)
- Completely changing the traversal order of a loop (loop tiling)
- These sorts of high level loop optimizations usually take place at the AST level (where loop structure is obvious)

Loop unrolling

- Modifying induction variable in each iteration can be expensive
- Can instead unroll loops and perform multiple iterations for each increment of the induction variable
- What are the advantages and disadvantages?

Unroll by factor of 4

- for \((i = 0; i < N; i++)\) \[A[i] = \ldots \]

- for \((i = 0; i < N; i += 4)\)
 \[A[i] = \ldots \]
 \[A[i+1] = \ldots \]
 \[A[i+2] = \ldots \]
 \[A[i+3] = \ldots \]

Cache behavior

- Most loop transformations target cache performance
- Attempt to increase spatial or temporal locality
- Locality can be exploited when there is reuse of data (for temporal locality) or recent access of nearby data (for spatial locality)
- Loops are a good opportunity for this: many loops iterate through matrices or arrays
- Consider matrix-vector multiply example
- Multiple traversals of vectors: opportunity for spatial and temporal locality
- Regular access to array: opportunity for spatial locality

Loop fusion

- Combine two loops together into a single loop
- Why is this useful?
- Is this always legal?
Loop interchange

- Change the order of a nested loop
- This is not always legal – it changes the order that elements are accessed!
- Why is this useful?
 - Consider matrix-matrix multiply when A is stored in column-major order (i.e., each column is stored in contiguous memory)

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
y[i] += A[i][j] * x[j]

Loop tiling

- Also called “loop blocking”
- One of the more complex loop transformations
- Goal: break loop up into smaller pieces to get spatial and temporal locality
 - Create new inner loops so that data accessed in inner loops fit in cache
- Also changes iteration order; so may not be legal

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
y[i] += A[i][j] * x[j]

In a real (Itanium) compiler

![Graph showing performance comparison]

- 92% of Peak Performance

Loop transformations

- Loop transformations can have dramatic effects on performance
- Doing this legally and automatically is very difficult!
- Researchers have developed techniques to determine legality of loop transformations and automatically transform the loop
 - Techniques like unimodular transform framework and polyhedral framework
- These approaches will get covered in more detail in advanced compilers course