
More Dataflow Analysis

Steps to building analysis

• Step 1: Choose lattice

• Step 2: Choose direction of dataflow (forward or 
backward)

• Step 3: Create transfer function

• Step 4: Choose confluence operator (i.e., what to do at 
merges)

• Let’s walk through these steps for a new analysis

Liveness analysis

• Which variables are live at a particular program point?

• Used all over the place in compilers

• Register allocation

• Loop optimizations

Choose lattice

• What do we want to know?

• At each program point, 
want to maintain the set 
of variables that are live

• Lattice elements: sets of 
variables

• Natural choice for lattice: 
powerset of variables!

{ }

{a}      {b}      {c}

{a,b}     {a,c}      {b,c}

{a,b,c}

Choose dataflow direction

• A variable is live if it is used later in the program without 
being redefined

• At a given program point, we want to know information 
about what happens later in the program

• This means that liveness is a backwards analysis

• Recall that we did liveness backwards when we 
looked at single basic blocks

Create x-fer functions

• What do we do for a statement like: 

x = y + z

• If x was live “before” (i.e., live after the statement), it isn’t 
now (i.e., is not live before the statement)

• If y and z were not live “before,” they are now

• What about: 

x = x



Create x-fer functions
• Let’s generalize

• For any statement s, we can look at which live variables are killed, and 
which new variables are made live (generated)

• Which variables are killed in s?

• The variables that are defined in s: DEF(s)

• Which variables are made live in s?

• The variables that are used in s: USE(s)

• If the set of variables that are live after s is X, what is the set of variables 
live before s?  
 
 
 
 

Ts(X) = use(s) ⇥ (X � def(s))

Dealing with aliases
• Aliases, as usual, cause problems

• Consider 

• What should USE(*z = *w) and DEF(*z = *w) be?

• Keep in mind: the goal is to get a list of variables that may 
be live at a program point

• For now, assume there is no aliasing

int x, y, r, s
int *z, *w;
if (...) z = &y else z = &x
if (...) w = &r else w = &s
*z = *w; //which variable is defined? which is used?

Dealing with function calls
• Similar problem as aliases:

• Simple solution: functions can do anything – redefine 
variables, use variables

• So DEF(foo()) is { } and USE(foo()) is V

• Real solution: interprocedural analysis, which determines what 
variables are used and defined in foo

int foo(int &x, int &y); //pass by reference!

void main() {
int x, y, z;
z = foo(x, y);

}

Choose confluence operator
• What happens at a merge 

point?

• The variables live in to a 
merge point are the 
variables that are live 
along either branch

• Confluence operator: Set 
union (⊔) of all live sets of 
outgoing edges

y = x y = w

?

x = w

Tmerge =
�

X�succ(merge)

X

How to initialize analysis?

• At the end of the program, we know no variables are live 
→ value at exit point is { }

• What about if we’re analyzing a single function? Need to 
make conservative assumption about what may be live

• What about elsewhere in the program?

• We should initialize other sets to { }

READ(Z)

READ(N)

X = 2

X < N?X = X + Z

PRINT(X)

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }



An alternate approach

• Dataflow analyses like live-variable analysis are bit-vector 
analyses: are even more structured than regular dataflow 
analysis

• Consistent lattice: powerset

• Consistent transfer functions

• Many sources only talk about bitvector dataflow

Bit-vector lattices

• Consider a single element, V, of the powerset(S) lattice

• Each item in S either appears in V or does not: can 
represent using a single bit

• Can represent V as a bit vector

• {a, b, c} = <1, 1, 1>

• { } = <0, 0, 0>

• {b, c} = <0, 1, 1>

• ⊔ and ⊓ (which are just ∪ and ∩) are simply bitwise ⋁ and 
⋀, respectively

Eliminating merge nodes
• Many dataflow presentations do not 

use explicit merge nodes in CFG

• How do we handle this?

• Problem: now a node may be a 
statement and a merge point

• Solution: compose confluence 
operator and transfer functions

• Note: non-merge nodes have just 
one successor; this equation works 
for all nodes!

X = X + Z

X = X + Z

T (s) = use(s) ⇥ ((
�

X�succ(s)

X)� def(s))

Simplifying matters

• Lets split this up into two different sets

• OUT(s): the set of variables that are live immediately after 
a statement is executed

• IN(s): the set of variables that are live immediately before 
a statement is executed

T (s) = use(s) ⇥ ((
�

X�succ(s)

X)� def(s))

IN(s) = use(s) ⇥ (OUT (s)� def(s))
OUT (s) =

�
t�succ(s) IN(t)

• USE(s) are the variables that become live due to a 
statement—they are generated by this statement

• DEF(s) are the variables that stop being live due to a 
statement—they are killed by this statement

Generalizing

IN(s) = gen(s) ⇥ (OUT (s)� kill(s))
OUT (s) =

�
t�succ(s) IN(t)

Bit-vector analyses
• A bit-vector analysis is any analysis that

• Operates over the powerset lattice, ordered by ⊆ and 
with ∪ and ∩ as its meet and join

• Has transfer functions that can be written in the form:

• gen and kill are dependent on the statement, but not on 
IN or OUT

• Things are a little different for forward analyses, and some 
analyses use ∩ instead of ∪

IN(s) = gen(s) ⇥ (OUT (s)� kill(s))
OUT (s) =

�
t�succ(s) IN(t)



Reaching definitions
• What definitions of a variable reach a particular program point

• A definition of variable x from statement s reaches a statement 
t if there is a path from s to t where x is not redefined

• Especially important if x is used in t

• Used to build def-use chains and use-def chains, which are key 
building blocks of other analyses

• Used to determine dependences: if x is defined in s and that 
definition reaches t then there is a flow dependence from s 
to t

• We used this to determine if statements were loop invaraint

• All definitions that reach an expression must originate from 
outside the loop, or themselves be invariant

Creating a reaching-def analysis

• Can we use a powerset lattice?

• At each program point, we want to know which definitions 
have reached a particular point

• Can use powerset of set of definitions in the program

• V is set of variables, S is set of program statements

• Definition: d ∈ V × S

• Use a tuple, <v, s>

• How big is this set?

• At most |V × S| definitions

Forward or backward?

• What do you think?

Choose confluence operator

• Remember: we want to know if a definition may reach a 
program point

• What happens if we are at a merge point and a definition 
reaches from one branch but not the other?

• We don’t know which branch is taken!

• We should union the two sets – any of those definitions 
can reach

• We want to avoid getting too many reaching definitions → 
should start sets at ⊥

Transfer functions for RD
• Forward analysis, so need a slightly different formulation

• Merged data flowing into a statement

• What are gen and kill?

• gen(s): the set of definitions that may occur at s

• e.g., gen(s1: x = e) is <x, s1>

• kill(s): all previous definitions of variables that are definitely 
redefined by s

• e.g., kill(s1: x = e) is <x, *>

IN(s) =
�

t�pred(s) OUT (t)
OUT (s) = gen(s) ⇥ (IN(s)� kill(s))

Available expressions

• We’ve seen this one before

• What is the lattice? powerset of all expressions appearing 
in a procedure

• Forward or backward?

• Confluence operator?



Transfer functions for meet
• What do the transfer functions look like if we are doing a meet?

• gen(s): expressions that must be computed in this statement

• kill(s): expressions that use variables that may be defined in this statement

• Note difference between these sets and the sets for reaching definitions or 
liveness

• Insight: gen and kill must never lead to incorrect results

• Must not decide an expression is available when it isn’t, but OK to be safe 
and say it isn’t

• Must not decide a definition doesn’t reach, but OK to overestimate and say 
it does

IN(S) = ⇤t�pred(s) OUT (t)
OUT (S) = gen(s) ⇥ (IN(S)� kill(s)

Analysis initialization
• How do we initialize the sets?

• If we start with everything initialized to ⊥, we compute the smallest 
sets

• If we start with everything initialized to ⊤, we compute the largest

• Which do we want? It depends!

• Reaching definitions: a definition that may reach this point

• We want to have as few reaching definitions as possible → ⊥

• Available expressions: an expression that was definitely computed 
earlier

• We want to have as many available expressions as possible → ⊤

• Rule of thumb: if confluence operator is ⊔, start with ⊥, otherwise 
start with ⊤

Analysis initialization (II)

• The set at the entry of a program (for forward analyses) or 
exit of a program (for backward analyses) may be different

• One way of looking at this: start statement and end 
statement have their own transfer functions

• General rule for bitvector analyses: no information at 
beginning of analysis, so first set is always { }

Very busy expressions

• An expression is very busy if it is computed on every path 
that leads from a program point

• Why does this matter?

• Can calculate very busy expressions early without 
wasting computation (since the expression is used at 
least once on every outgoing path) – this can save space

• Good candidates for loop invariant code motion

Very busy expressions

• Lattice?

• Direction?

• Confluence operator?

• Initialization?

• Transfer functions?

• Gen? Kill?

Four types of dataflow
• Analysis can either be forward or backward

• Analysis can either be over all paths or over any path

• All paths: merges consider values from all paths

• Any path: merges consider values from any path

All paths Any path

Forward available 
expressions

reaching 
definitions

Backward very busy 
expressions

liveness analysis


