What is a parser

® A parser has two jobs:

Pa rse rs I) Determine whether a string (program) is valid (think:

grammatically correct)

2) Determine the structure of a program (think:
diagramming a sentence)

Agenda Languages

e How do we define a language? ® A language is a (possibly infinite) set of strings

® How do we define the set of strings that are

grammatically correct ® Regular expressions describe regular languages

® Fundamental drawback: can only use finite state to

e Context free grammars
recognize whether a string is in the language

® How do we recognize strings in the language?
e Consider this valid piece of C code:

® How can we tell (easily) whether a program is a valid )
o {{{intx}}}

string in the language
® Need to make sure that there are the same number of

® How can we determine the structure of a program? fasy
¢ LLparsersand LR parsers ® How would you write a regular expression to capture that?
Languages Terminology

® Grammar G = (V,V,, S, P)
® Key problem: programming language syntax is recursive ® V.is the set of terminals

® [f statements can be nested inside while loops which can ® Vais the set of non-terminals

themselves be nested inside if statements which can be e Sis the start symbol
nested inside for loops which can be nested inside
switch statements ... ® Pis the set of productions
® Nesting can be arbitrarily deep ® Each production takes the form:V, = X | (Va |Vo)+

® New formalism for specifying these kinds of recursive ¢ Grammar is context-free (why?)

languages: Context-free Grammars ® A simple grammar:
G = ({a,b},{S.A,B},{S *ABA +AaA —>2,B—>BbB b},
S)



Simple grammar Generating strings

S—AB
® Given a start rule, productions tell us
Start symbol AB A—Aa how to rewrite a non-terminal into a
different set of symbols
4@ Terminals A—a 4
® Some productions may rewrite to A.
Non-terminals A—a B—Bb That just removes the non-terminal
B} Bb ]
B—b . - » . .
; To derive the string“a a b b b” we can do the following rewrites:
Production
S=AB=>AaB=aaB=aaBb=
Backus Naur Form (BNF) aaBbb=aabbb

Terminology Why is this useful?

® Strings are composed of symbols statement — statement ; statement

® AAaaBbbAaisastring statement — if_stmt :

® We will use Greek letters to represent strings composed of

both terminals and non-terminals statement — while_loop ;
® [(G) is the language produced by the grammar G statement — id = lit :
e All strings consisting of only terminals that can be produced X . .
by G statement —id =id +id;
® Inour example, L(G) = a+b+ if_stmt — if ( cond_expr ) then statement
® The language of a context-free grammar is a context-free ) .
|anguag§ g g while_loop — while ( cond_expr ) statment
o All regular languages are context-free, but not vice versa cond expr — id < lit
Programming language syntax Parse trees
® Programming language syntax is defined with CFGs ® Tree which shows how a
. . string was produced by a
e Constructs in language become non-terminals language
® May use auxiliary non-terminals to make it easier to e Interior nodes of tree: non-

define constructs terminals

if stmt  —if (cond_expr ) then statement else_part . .
- ( _expr) P ® Children: the terminals

else_part — else statement and non-terminals
generated by applying a
production rule

else_part — A

® Tokens in language become terminals ® | eaf nodes: terminals



Leftmost derivation Rightmost derivation

® Rewriting of a given string starts with the leftmost symbol ® Rewrite using the rightmost non-terminal, instead of the left
® Exercise: do a leftmost derivation of the input program ® What is the rightmost derivation of this string?
F(V +V) F(V +V)
using the following grammar:
E — Prefix (E) E — Prefix (E)
E — VTail E — VTail
Prefix = F Prefix = F
Prefix = A Prefix = A
Tal — +E Tal — +E
Tail = A Tail = A
® What does the parse tree look like?
Simple conversions Top-down vs. Bottom-up parsers
® Top-down parsers expand the parse tree in pre-order
A—B . .
A—B | C _— ® |dentify parent nodes before the children
A—C
® Bottom-up parsers expand the parse tree in post-order

D—E ® |dentify children before the parents
I D—-EF ® Notation:
® LL(l):Top-down derivation with | symbol lookahead
Do A ® LL(k):Top-down derivation with k symbols lookahead
D—-GD ® LR(I):Bottom-up derivation with | symbol lookahead

What is parsing

® Parsing is recognizing members in a language specified/
defined/generated by a grammar

® When a construct (corresponding to a production in a TO P_ d Own Pa I’Si ng

grammar) is recognized, a typical parser will take some
action

® In a compiler, this action generates an intermediate
representation of the program construct

® In an interpreter, this action might be to perform the
action specified by the construct.Thus, if a+b is
recognized, the value of a and b would be added and
placed in a temporary variable



Top-down parsing A simple example

S—2ABc$
A - xaA
® |dea: we know sentence has to start with initial symbol A yaA
® Build up partial derivations by predicting what rules are used A-c
to expand non-terminals B—b ® A sentence in the grammar:
® Often called predictive parsers B — )\ xacc$

® |[f partial derivation has terminal characters, match them
from the input stream

A simple example A simple example

s—-ABcf S—ABcS

A= xaA special “end of input” symbol A= xaA

A—-yaA A—-yaA

A-c A—c

B—b ® A sentence in the grammar: B—b ® A sentence in the grammar:
B— A xacc$ B— A\ xacc$

Current derivation: S

A simple example A simple example

S—ABc$ S—2ABc$

A - xaA A xaA

Ay Gt (A= yan

A-c A—c

B—b ® A sentence in the grammar: B—b ® A sentence in the grammar:
B—A xacc$ B -\ xaccs

Current derivation: ABc $ Current derivation: xaABc$

Predict rule Predict rule based on next token ‘




A simple example
S—ABc$
A= xaA
A-yaA
A—-c

B—b ® A sentence in the grammar:

B— A\ xacc$

Current derivation: xaABc$

Match token ‘

A simple example
S—ABc$

A = xaA

Choose based on
first set of rules

A—-yaA

A—c

B—b ® A sentence in the grammar:

B— A\ xacc$

Current derivation: xacBc $

Predict rule based on next token

A simple example
S2ABc$

A = xaA

Choose based on
follow set

A—-yaA
A—-c

B—b ® A sentence in the grammar:

B— A\ xacc$

Current derivation: xacAc $

Predict rule based on next token

A simple example
S—2ABc$
A - xaA
A—-yaA
A-c
B—b ® A sentence in the grammar:

B— A\ xacc$

Current derivation: xaABc$

Match token ‘

A simple example
S—2ABc$
A - xaA
A—-yaA
A-c
B—b ® A sentence in the grammar:

B— A\ xacc$

Current derivation: xacBc $

Match token

A simple example
S—2ABc$
A - xaA
A—-yaA
A-c
B—b ® A sentence in the grammar:

B— A\ xacc$

Current derivation: xacc $

Match token




A simple example
S—2ABc$
A - xaA
A—-yaA
A-c
B—b ® A sentence in the grammar:

B— A\ xacc$

Current derivation: xacc $

Match token

First and follow sets

® First(@)=f{aeVe|a="aB}u{\|ifa="N}

o Follow(A) =faeV.|S=*.Aa.}u{$|ifS=>* A}

S: start symbol
a: a terminal symbol
A: a non-terminal symbol

&,B:  a string composed of terminals and
non-terminals (typically, & is the
RHS of a production =:  derived in | step

s

=" derived in 0 or more steps

=% derived in | or more steps

Exercise

® What are the first sets for all the non-terminals in following
grammar:

S—ABS$
A — xaA
A—yaA
A=A
B—b
B—A

First and follow sets

® First(X): the set of terminals (and/or

\) that begin all strings that can be
derived from o

-
® First(A) = {x,y, A} S—~ABS
® First(xaA) = {x} A= xah
e First (AB) = {x,y, b} AyaA

® Follow(A): the set of terminals (and/ A=A
or $, but no As) that can appear B—b
immediately after A in some partial
derivation

e Follow(A) = {b}

Computing first sets

e Terminal: First(a) = {a}
® Non-terminal: First(A)
® Look at all productions for A
A = XiXy... Xk
® First(A) 2 (First(X)) - N)
® If A € First(X)), First(A) 2 (First(X2) - A)
® If Nis in First(Xi) for all i, then A € First(A)

® Computing First(x): similar procedure to computing
First(A)

Computing follow sets

e Follow(S) = {}
® To compute Follow(A):
® Find productions which have A on rhs.Three rules:
I. X = A B:Follow(A) 2 (First(B) - N)
2. X = oA B:If A € First(B), Follow(A) 2 Follow(X)
3. X = ot A:Follow(A) 2 Follow(X)

® Note: Follow(X) never has A in it.



Exercise

® What are the follow sets for

S—ABS$
A — xaA
A—yaA
A=A
B—b
B—A

Parse tables

® Step 2:build a parse table

® Given some non-terminal V,, (the non-terminal we are
currently processing) and a terminal V; (the lookahead
symbol), the parse table tells us which production P to
use (or that we have an error

® More formally:

T:Vh XV = P u {Error}

Stack-based parser for LL(1)

® Given the parse table, a stack-based algorithm is much
simpler to generate than a recursive descent parser

® Basic algorithm:
I. Push the RHS of a production onto the stack
2. Pop a symbol, if it is a terminal, match it

3. Ifitis a non-terminal, take its production according to
the parse table and go to |

® Note: always start with start state

Towards parser generators

® Key problem: as we read the source program, we need to
decide what productions to use

® Step I:find the tokens that can tell which production P (of
the form A = X;X; ... Xim) applies

Predict(P) =

First(X; ... X,n)
(First(Xy ... Xpm)

if A ¢ First(X; ... X.m)

— A) UFollow(A) otherwise

® [f next token is in Predict(P), then we should choose this

production

Building the parse table

e Start:T[A][t] = //initialize all fields to “error”

foreach A:

foreach P with A on its |hs:

foreach t in Predict(P):

TIAIR = P

I.S2>ABS$
2.A = xaA

® Exercise: build parse table for our toy grammar ~ 3.A = yaA

4.A - A
5.B—b
I.S2>ABS$
An example "7
3. A yaA
® How would a stack-based parser parse: 4. A
xayab 5.B—b
Parse stack Remaining input Parser action
S xayab$ predict |
ABS$ xayab$ predict 2
xaAB$ xayab$ match(x)
aAB$ ayab$ match(a)
ABS$ yab$ predict 3
yaAB$ yab$ match(y)
aAB$ ab$ match(a)
ABS$ b$ predict 4
B$ b$ predict 5
b$ b$ match(b)
$ $ Done!




Dealing with semantic actions Dealing with semantic actions

® We can annotate a grammar with action symbols
® When a construct (corresponding to a production in a Tell the parser to invoke a semantic action routine
grammar) is recognized, a typical parser will invoke a ® Can simply push action symbols onto stack as well
semantic action

. . ) ) . ® When popped, the semantic action routine is called
® In a compiler, this action generates an intermediate

representation of the program construct ® Routine manipulates semantic records on a stack

® In an interpreter, this action might be to perform the ® Can generate new records (e.g., to store variable info)
action specified by the construct.Thus, if a+b is
recognized, the value of a and b would be added and

placed in a temporary variable ® Example: semantic actions for x =a + 3

® Can generate code using existing records

statement ::= ID = expr #assign
expr = term + term #addop
term = ID | LITERAL

Non-LL(l) grammars Left recursion

® Not all grammars are LL(I)!

o Consider

<stmt> — if <expr> then <stmt list> endif ® |eft recursion is a problem for LL(1) parsers
<stmt> — if <expr> then <stmt list> else <stmt list> endif ® |HS is also the first symbol of the RHS
® This is not LL(I) (why?) e Consider:
® We can turn this in to E-E+T
<stmt> — if <expr> then <stmt list> <if suffix> ® What would happen with the stack-based algorithm?

<if suffix> — endif

<if suffix> — else <stmt list> endif

Removing left recursion LL(k) parsers

® Can look ahead more than one symbol at a time

® k-symbol lookahead requires extending first and follow

E — EI Etail sets
E-E+T - 5 El : -T : ® 2-symbol lookahead can distinguish between more rules:
E-T Etail — +T Etail
. A = ax |ay
Etail = A

® More lookahead leads to more powerful parsers

® What are the downsides?



Are all grammars LL(k)?

® No! Consider the following grammar:

S -E
E - (E+E
E - (E-F
E —x

® When parsing E, how do we know whether to use rule 2 or
3?

® Potentially unbounded number of characters before the
distinguishing ‘+’ or *~’ is found

® No amount of lookahead will help!

Solving the if-then-else problem

® The ambiguity exists at the language level. To fix, we need to
define the semantics properly

® ] matches nearest unmatched [’
® This is the rule C uses for if-then-else

®  What if we try this?

S —[S

S —SlI This grammar is still not LL(1)
SI = [SI] (or LL(k) for any k!)

SI = A

Parsing if-then-else

® What if we don’t want to change the language?
® C does not require { } to delimit single-statement blocks

® To parse if-then-else, we need to be able to look ahead at the
entire rhs of a production before deciding which production
to use

® In other words, we need to determine how many “]” to
match before we start matching “[”’s

® |R parsers can do this!

In real languages?

® Consider the if-then-else problem
e if x then y else z

® Problem: else is optional

e if a then if b then c else d

® Which if does the else belong to?

This is analogous to a “bracket language™: [ ] (i = j)

s -[scC

S =\ [ [ ] can be parsed: SSAC or SSCA
c -] (it's ambiguous!)

C -

Two possible fixes

® If there is an ambiguity, prioritize one production over
another

® e.g,if Cis on the stack, always match “]” before matching

u)\n
s -[scC
S -\
c -]
c -2

® Another option: change the language!

® eg,all if-statements need to be closed with an endif

S —ifSE

S — other

E — else S endif

E — endif
LR Parsers

® Parser which does a Left-to-right, Right-most derivation

® Rather than parse top-down, like LL parsers do, parse
bottom-up, starting from leaves

® Basic idea: put tokens on a stack until an entire production
is found

® |[ssues:
® Recognizing the endpoint of a production
® Finding the length of a production (RHS)

® Finding the corresponding nonterminal (the LHS of the
production)



® Basic idea:

LR Parsers

o shift tokens onto the stack.At any step, keep the set of
productions that could generate the read-in tokens

® reduce the RHS of recognized productions to the
corresponding non-terminal on the LHS of the
production. Replace the RHS tokens on the stack with

the LHS non-terminal.

Simple example

I. P—>S
2. S—x;S
3. S—e
Symbol
X e P Action
0 | 3 Shift
| Shift
2 | 3 Shift
State
3 Reduce 3
4 Reduce 2
5 Accept
Example

® Parse“x;x;e”

Step Parse Stack Remaining Input Parser Action
| 0 X;X;e Shift |
2 0l iXie Shift 2
3 012 x;e Shift |
4 0121 ;e Shift 2
5 01212 e Shift 3
6 012123 Reduce 3 (goto 4)
7 012124 Reduce 2 (goto 4)
8 0124 Reduce 2 (goto 5)
9 05 Accept

Data structures

At each state, given the next token,

® A goto table defines the successor state

® An action table defines whether to
® shift — put the next state and token on the stack
® reduce —an RHS is found; process the production

® terminate — parsing is complete

Parsing using an LR(0) parser

Basic idea: parser keeps track, simultaneously, of all possible
productions that could be matched given what it’s seen so far.When
it sees a full production, match it.

Maintain a parse stack that tells you what state you're in
e Startin state 0
In each state, look up in action table whether to:

® shift: consume a token off the input; look for next state in goto
table; push next state onto stack

® reduce: match a production; pop off as many symbols from state
stack as seen in production; look up where to go according to
non-terminal we just matched; push next state onto stack

® accept: terminate parse

LR(k) parsers

® |R(0) parsers

® No lookahead

® Predict which action to take by looking only at the
symbols currently on the stack

® |R(k) parsers

® Can look ahead k symbols
® Most powerful class of deterministic bottom-up parsers

® LR(I) and variants are the most common parsers



Terminology for LR parsers

g

e Configuration: a production augmented with a
A= XL X0 Xisg "'Xi

yr

® The “s” marks the point to which the production has been
recognized. In this case, we have recognized X ... X;

e Configuration set: all the configurations that can apply at a given
point during the parse:

A—-B-+CD
A —=B+GH
T—-B-Z

® |dea: every configuration in a configuration set is a production
that we could be in the process of matching

Successor configuration set

® Starting with the initial configuration set
s0 = closure0({S — « o $})

an LR(0) parser will find the successor given the next symbol

® X can be either a terminal (the next token from the scanner)
or a non-terminal (the result of applying a reduction)

® Determining the successor s’ = go_to0(s, X):

® For each configuration in s of the formA =  « Xy add
A—-BXeytot

® s’ = closure0(t)

Building the goto table

® We can just read this off from the CFSM

Symbol
ID $ S
0 | 2
|
State
2 3
3

Configuration closure set

® Include all the configurations necessary to recognize the
next symbol after the ¢

® For each configuration in set:
® [f next symbol is terminal, no new configuration added

® If next symbol is non-terminal X, for each production of
the form X = &, add configuration X = &

closure0({S = * E $}) = {

S—<*E$
S—~ES$ E—-E+T
E-E+T|T E— T
T—=ID| (B T--ID

T—"(E)

CFSM

® CFSM = Characteristic Finite State Machine
® Nodes are configuration sets (starting from s0)

® Arcs are go_to relationships

State0 p—ID—>| State1
S—--:5% S—ID-
S—--ID
S$—=S$ T
S— ID i

State2 p—$—>| State3

§—-+S-$% S —+S$-

Building the action table

e Given the configuration set s:

® We shift if the next token matches a terminal after the * in
some configuration

A - ae+afesandacV,else error

® We reduce production P if the « is at the end of a production
B = o * € s where production P is B =

® Extra actions:

e shift if goto table transitions between states on a non-
terminal

® accept if we have matched the goal production



Action table Conflicts in action table

® For LR(0) grammars, the action table entries are unique:

0 Shift from each state, can only shift or reduce
| Reduce 2 ® But other grammars may have conflicts

State ] ® Reduce/reduce conflicts: multiple reductions possible
2 Shift from the given configuration

® Shift/reduce conflicts: we can either shift or reduce from
the given configuration

3 Accept

Shift/reduce conflict Shift/reduce example (2)

® Consider the following grammar: ® Consider the following grammar:
S—oAy S—Ay

A = x| xx A= N|x

® This leads to the following configuration set (after shifting ¢ This leads to the following Initial configuration set:

one “X”: S—o Ay
A2 xe*x A ex
A xe AN
® Can shift or reduce here ® Can shift or reduce here
Lookahead Semantic actions

® Recall:in LL parsers, we could integrate the semantic
actions with the parser

) ) ? icti
® Can resolve reduce/reduce conflicts and shift/reduce ® Why? Because the parser was predictive

conflicts by employing lookahead ® Why doesn’t that work for LR parsers?

® Looking ahead one (or more) tokens allows us to e Don’t know which production is matched until parser
determine whether to shift or reduce reduces

® (cf how we resolved ambiguity in LL(I) parsers by ® For LR parsers, we put semantic actions at the end of
looking ahead one token) productions

® May have to rewrite grammar to support all necessary
semantic actions



Parsers with lookahead

® Adding lookahead creates an LR(1) parser

® Built using similar techniques as LR(0) parsers, but uses
lookahead to distinguish states

® | R(l) machines can be much larger than LR(0) machines,
but resolve many shift/reduce and reduce/reduce
conflicts

® Other types of LR parsers are SLR(I) and LALR(I)
e Differ in how they resolve ambiguities

® yacc and bison produce LALR() parsers

Building configuration sets

® To close a configuration
B— a-AB,I

® Add all configurations of the form A — < y,u where u €

First(Bl)

® Intuition: the lookahead symbol for any configuration is the
terminal we expect to see dfter the configuration has been
matched

® The parse could apply the production for A, and the
lookahead after we apply the production should match
the next token that would be produced by B

Building goto and action tables

® The function goto | (configuration-set, symbol) is analogous to
goto0(configuration-set, symbol) for LR(0)

® Build goto table in the same way as for LR(0)
® Key difference: the action table.
action[s][x] =

® reduce when ¢ is at end of configuration and x €
lookahead set of configuration

A= ae{.x.}es
® shift when ¢ is before x

A—-Bexyes

® Configurations in LR(1) look similar to LR(0), but they are

LR(1) parsing

extended to include a lookahead symbol

A = X X o Xist .. X, | (where [ €Veu N)

® |f two configurations differ only in their lookahead
component, we combine them

A 2 XX e Xisr . X ,{h /m}

SoES
E—E+T|T
T-1ID| ()

Example

closurel({S = < E$,{A}}) =

S—<E${\

E— - E+T {3}

E— T {$}

T — «ID,{$}

T ()8}

E—HE+T,{+)

E— «T.{+}

T — +ID,{+}

T+ (E){+

Example

® Consider the simple grammar:

<program> — begin <stmts> end $

<stmts>

<stmts>

<stmts>

— SimpleStmt ; <stmts>

— begin <stmts> end ; <stmts>



Action and goto tables

<program> — begin <stmts> end $

<stmts>

<stmts>

<stmts> = A

— SimpleStmt ; <stmts>

— begn o> end<somes> = XA ) le

begin end SimpleStmt $ <program>| <stmts> e Parse: begin SimpIeStmt ;SimpIeStmt end $

0 S/l

| S/4 R4 S/s $/2 Step Parse Stack Remaining Input Parser Action
2 S/3 | 0 beginS;S;end $ Shift |

3 A 2 ol S;S;end $ Shift 5

4 S/4 R4 S/5 S/7 3 015 ;S;end $ Shift 6

5 S/6 4 0156 S;end $ Shift 5

6 S/4 R4 S/5 S/10 5 01565 ;end $ Shift 6

7 S/8 6 015656 end $ Reduce 4 (goto 10)
8 S/9 7 01565610 end $ Reduce 2 (goto 10)
9 S/4 R4 S/é S/l 8 015610 end $ Reduce 2 (goto 2)
10 R2 9 012 end $ Shift 3

I R3 10 0123 $ Accept

Problems with

LR(1) parsers

LR(1) parsers are very powerful ...

® But the table size is much larger than LR(0) — as much
as a factor of | V¢| (why?)

® Example:Algol 60 (a simple language) includes several

thousand states!

Storage efficient representations of tables are an important

issue

Solutions to the size problem

e Different parser schemes

® SLR (simple LR): build an CFSM for a language, then add
lookahead wherever necessary (i.e., add lookahead to
resolve shift/reduce conflicts)

® What should the lookahead symbol be?

® To decide whether to reduce using production A —

o, use Follow(A)

® LALR: merge LR states when they only differ by
lookahead symbols




