
Parsers

What is a parser

• A parser has two jobs:  
 
1) Determine whether a string (program) is valid (think: 
grammatically correct)  
 
2) Determine the structure of a program (think: 
diagramming a sentence)  

Agenda

• How do we define a language?

• How do we define the set of strings that are 
grammatically correct

• Context free grammars

• How do we recognize strings in the language?

• How can we tell (easily) whether a program is a valid 
string in the language

• How can we determine the structure of a program?

• LL parsers and LR parsers

Languages

• A language is a (possibly infinite) set of strings

• Regular expressions describe regular languages

• Fundamental drawback: can only use finite state to 
recognize whether a string is in the language

• Consider this valid piece of C code:

• { { { int x; } } }

• Need to make sure that there are the same number of 
‘{‘ as ‘}’

• How would you write a regular expression to capture that?

Languages

• Key problem: programming language syntax is recursive

• If statements can be nested inside while loops which can 
themselves be nested inside if statements which can be 
nested inside for loops which can be nested inside 
switch statements ...

• Nesting can be arbitrarily deep

• New formalism for specifying these kinds of recursive 
languages: Context-free Grammars 

Terminology
• Grammar G = (Vt, Vn, S, P)

• Vt is the set of terminals

• Vn is the set of non-terminals

• S is the start symbol

• P is the set of productions

• Each production takes the form: Vn ➝ λ | (Vn | Vt)+

• Grammar is context-free (why?)

• A simple grammar: 

G = ({a, b}, {S, A, B}, {S ➝ A B, A ➝ A a, A ➝ a, B ➝ B b, B ➝ b}, 
S)



S ➝ A B 

A ➝ A a 

A ➝ a 

B ➝ B b 

B ➝ b

Simple grammar

Non-terminals

Start symbol

Terminals

Production

Backus Naur Form (BNF)

Generating strings

• Given a start rule, productions tell us 
how to rewrite a non-terminal into a 
different set of symbols

• Some productions may rewrite to λ. 
That just removes the non-terminal

S ➝ A B 

A ➝ A a 

A ➝ a 

B ➝ B b 

B ➝ b

To derive the string “a a b b b” we can do the following rewrites:

S ⇒ A B ⇒ A a B ⇒ a a B ⇒ a a B b ⇒ 

a a B b b ⇒ a a b b b

Terminology
• Strings are composed of symbols

• A A a a B b b A a is a string

• We will use Greek letters to represent strings composed of 
both terminals and non-terminals

• L(G) is the language produced by the grammar G

• All strings consisting of only terminals that can be produced 
by G

• In our example, L(G) = a+b+

• The language of a context-free grammar is a context-free 
language

• All regular languages are context-free, but not vice versa

Why is this useful?
statement ➝ statement ; statement

statement ➝ if_stmt ;

statement ➝ while_loop ;

statement ➝ id = lit ;

statement ➝ id = id + id ; 

if_stmt ➝ if ( cond_expr ) then statement

while_loop ➝ while ( cond_expr ) statment

cond_expr ➝ id < lit

Programming language syntax

• Programming language syntax is defined with CFGs

• Constructs in language become non-terminals

• May use auxiliary non-terminals to make it easier to 
define constructs 
 
 
 
 

• Tokens in language become terminals

if_stmt ➝ if ( cond_expr ) then statement else_part

else_part ➝ else statement

else_part ➝ λ

Parse trees

• Tree which shows how a 
string was produced by a 
language

• Interior nodes of tree: non-
terminals

• Children: the terminals 
and non-terminals 
generated by applying a 
production rule

• Leaf nodes: terminals

S

A B

A a B b

B b

b

a



Leftmost derivation
• Rewriting of a given string starts with the leftmost symbol

• Exercise: do a leftmost derivation of the input program 

F(V + V) 

using the following grammar:

• What does the parse tree look like?

E → Prefix (E)

E → V Tail
Prefix → F
Prefix → λ
Tail → + E
Tail → λ

Rightmost derivation
• Rewrite using the rightmost non-terminal, instead of the left

• What is the rightmost derivation of this string? 

F(V + V) 

E → Prefix (E)

E → V Tail
Prefix → F
Prefix → λ
Tail → + E
Tail → λ

Simple conversions

A → B | C
A → B
A → C

D → E
D → E FD → E F?

D → λ
D → G DD → G*

Top-down vs. Bottom-up parsers

• Top-down parsers expand the parse tree in pre-order

• Identify parent nodes before the children

• Bottom-up parsers expand the parse tree in post-order

• Identify children before the parents

• Notation:

• LL(1): Top-down derivation with 1 symbol lookahead

• LL(k): Top-down derivation with k symbols lookahead

• LR(1): Bottom-up derivation with 1 symbol lookahead

What is parsing

• Parsing is recognizing members in a language specified/
defined/generated by a grammar

• When a construct (corresponding to a production in a 
grammar) is recognized, a typical parser will take some 
action

• In a compiler, this action generates an intermediate 
representation of the program construct

• In an interpreter, this action might be to perform the 
action specified by the construct. Thus, if a+b is 
recognized, the value of a and b would be added and 
placed in a temporary variable

Top-down parsing



Top-down parsing

• Idea: we know sentence has to start with initial symbol

• Build up partial derivations by predicting what rules are used 
to expand non-terminals

• Often called predictive parsers

• If partial derivation has terminal characters, match them 
from the input stream

A simple example
S → A B c $ 

A → x a A 

A → y a A

A → c 

B → b

B → λ
• A sentence in the grammar: 

x a c c $

A simple example
S → A B c $ 

A → x a A 

A → y a A

A → c 

B → b

B → λ
• A sentence in the grammar: 

x a c c $

special “end of input” symbol

A simple example
S → A B c $ 

A → x a A 

A → y a A

A → c 

B → b

B → λ
• A sentence in the grammar: 

x a c c $

Current derivation:  S

A simple example
S → A B c $ 

A → x a A 

A → y a A

A → c 

B → b

B → λ
• A sentence in the grammar: 

x a c c $

Current derivation:  A B c $

Predict rule

A simple example
S → A B c $ 

A → x a A 

A → y a A

A → c 

B → b

B → λ
• A sentence in the grammar: 

x a c c $

Current derivation:  x a A B c $

Predict rule based on next token

Choose based on
first set of rules



A simple example
S → A B c $ 

A → x a A 

A → y a A

A → c 

B → b

B → λ
• A sentence in the grammar: 

x a c c $

Current derivation:  x a A B c $

Match token

A simple example
S → A B c $ 

A → x a A 

A → y a A

A → c 

B → b

B → λ
• A sentence in the grammar: 

x a c c $

Current derivation:  x a A B c $

Match token

A simple example
S → A B c $ 

A → x a A 

A → y a A

A → c 

B → b

B → λ
• A sentence in the grammar: 

x a c c $

Current derivation:  x a c B c $

Predict rule based on next token

Choose based on
first set of rules

A simple example
S → A B c $ 

A → x a A 

A → y a A

A → c 

B → b

B → λ
• A sentence in the grammar: 

x a c c $

Current derivation:  x a c B c $

Match token

A simple example
S → A B c $ 

A → x a A 

A → y a A

A → c 

B → b

B → λ
• A sentence in the grammar: 

x a c c $

Current derivation:  x a c λ c $

Predict rule based on next token

Choose based on
follow set

A simple example
S → A B c $ 

A → x a A 

A → y a A

A → c 

B → b

B → λ
• A sentence in the grammar: 

x a c c $

Current derivation:  x a c c $

Match token



A simple example
S → A B c $ 

A → x a A 

A → y a A

A → c 

B → b

B → λ
• A sentence in the grammar: 

x a c c $

Current derivation:  x a c c $

Match token

First and follow sets
• First(α): the set of terminals (and/or 
λ) that begin all strings that can be 
derived from α
• First(A) = {x, y, λ}

• First(xaA) = {x}

• First (AB) = {x, y, b}

• Follow(A): the set of terminals (and/
or $, but no λs) that can appear 
immediately after A in some partial 
derivation

• Follow(A) = {b}

S → A B $ 

A → x a A 

A → y a A 

A → λ 

B → b

First and follow sets

• First(α) = {a ∈ Vt | α ⇒* aβ} ∪ {λ | if α ⇒* λ}

• Follow(A) = {a ∈ Vt | S ⇒+ ... Aa ...} ∪ {$ | if S ⇒+ ...A $}

S: start symbol
a: a terminal symbol
A: a non-terminal symbol
α,β: a string composed of terminals and 

non-terminals (typically, α is the 
RHS of a production ⇒: derived in 1 step

⇒*: derived in 0 or more steps

⇒+: derived in 1 or more steps

Computing first sets

• Terminal: First(a) = {a}

• Non-terminal: First(A)

• Look at all productions for A 

A → X1X2 ... Xk

• First(A) ⊇ (First(X1) - λ)

• If λ ∈ First(X1), First(A) ⊇ (First(X2) - λ)

• If λ is in First(Xi) for all i, then λ ∈ First(A)

• Computing First(α): similar procedure to computing 
First(A)

Exercise
• What are the first sets for all the non-terminals in following 

grammar:

S → A B $ 

A → x a A 

A → y a A 

A → λ 

B → b

B → A

Computing follow sets

• Follow(S) = {}

• To compute Follow(A):

• Find productions which have A on rhs. Three rules:

1. X → α A β: Follow(A) ⊇ (First(β) - λ)

2. X → α A β: If λ ∈ First(β), Follow(A) ⊇ Follow(X)

3. X → α A: Follow(A) ⊇ Follow(X)

• Note: Follow(X) never has λ in it.



Exercise
• What are the follow sets for

S → A B $ 

A → x a A 

A → y a A 

A → λ 

B → b

B → A

Towards parser generators

• Key problem: as we read the source program, we need to 
decide what productions to use

• Step 1: find the tokens that can tell which production P (of 
the form A → X1X2 ... Xm) applies

• If next token is in Predict(P), then we should choose this 
production

�
First(X1 . . . Xm) if � ⇤⇥ First(X1 . . . Xm)
(First(X1 . . . Xm)� �) ⌅ Follow(A) otherwise

Predict(P ) =

Parse tables

• Step 2: build a parse table

• Given some non-terminal Vn (the non-terminal we are 
currently processing) and a terminal Vt (the lookahead 
symbol), the parse table tells us which production P to 
use (or that we have an error

• More formally: 

T: Vn × Vt → P ∪ {Error}

Building the parse table

• Start: T[A][t] = //initialize all fields to “error” 

foreach A: 

foreach P with A on its lhs: 

foreach t in Predict(P): 

T[A][t] = P

• Exercise: build parse table for our toy grammar

1.S → A B $

2.A → x a A

3.A → y a A

4.A → λ
5.B → b

• Given the parse table, a stack-based algorithm is much 
simpler to generate than a recursive descent parser

• Basic algorithm:

1. Push the RHS of a production onto the stack

2. Pop a symbol, if it is a terminal, match it

3. If it is a non-terminal, take its production according to 
the parse table and go to 1

• Note: always start with start state

Stack-based parser for LL(1) An example
• How would a stack-based parser parse: 

x a y a b

Parse stack Remaining input Parser action

S x a y a b $ predict 1

A B $ x a y a b $ predict 2

x a A B $ x a y a b $ match(x)

a A B $ a y a b $ match(a)

A B $ y a b $ predict 3

y a A B $ y a b $ match(y)

a A B $ a b $ match(a)

A B $ b $ predict 4

B $ b $ predict 5

b $ b $ match(b)

$ $ Done!

1. S → A B $

2. A → x a A

3. A → y a A

4. A → λ

5. B → b



Dealing with semantic actions

• When a construct (corresponding to a production in a 
grammar) is recognized, a typical parser will invoke a 
semantic action

• In a compiler, this action generates an intermediate 
representation of the program construct

• In an interpreter, this action might be to perform the 
action specified by the construct. Thus, if a+b is 
recognized, the value of a and b would be added and 
placed in a temporary variable

Dealing with semantic actions
• We can annotate a grammar with action symbols

• Tell the parser to invoke a semantic action routine

• Can simply push action symbols onto stack as well

• When popped, the semantic action routine is called

• Routine manipulates semantic records on a stack

• Can generate new records (e.g., to store variable info)

• Can generate code using existing records

• Example: semantic actions for x = a + 3

statement ::= ID = expr #assign
expr ::= term + term #addop
term ::= ID | LITERAL

Non-LL(1) grammars
• Not all grammars are LL(1)!

• Consider 

<stmt> → if <expr> then <stmt list> endif 

<stmt> → if <expr> then <stmt list> else <stmt list> endif

• This is not LL(1) (why?)

• We can turn this in to 

<stmt> → if <expr> then <stmt list> <if suffix> 

<if suffix> → endif 

<if suffix> → else <stmt list> endif

Left recursion

• Left recursion is a problem for LL(1) parsers

• LHS is also the first symbol of the RHS

• Consider: 

E → E + T

• What would happen with the stack-based algorithm?

Removing left recursion

E → E + T
E → T

E → E1 Etail
E1 → T
Etail → + T Etail
Etail → λ

LL(k) parsers

• Can look ahead more than one symbol at a time

• k-symbol lookahead requires extending first and follow 
sets

• 2-symbol lookahead can distinguish between more rules: 

A → ax | ay

• More lookahead leads to more powerful parsers

• What are the downsides?



Are all grammars LL(k)?

• No! Consider the following grammar:

• When parsing E, how do we know whether to use rule 2 or 
3?

• Potentially unbounded number of characters before the 
distinguishing ‘+’ or ‘–’ is found

• No amount of lookahead will help!

S → E
E → (E + E)
E → (E – E)
E → x

In real languages?
• Consider the if-then-else problem

• if x then y else z

• Problem: else is optional

• if a then if b then c else d

• Which if does the else belong to?

• This is analogous to a “bracket language”: [i ]j (i ≥ j)

S → [ S C
S → λ
C → ]
C → λ

[ [ ] can be parsed: SSλC or SSCλ
(it’s ambiguous!)

Solving the if-then-else problem
• The ambiguity exists at the language level. To fix, we need to 

define the semantics properly

• “] matches nearest unmatched [”

• This is the rule C uses for if-then-else

• What if we try this?

S → [ S
S → S1
S1 → [ S1 ]
S1 → λ

This grammar is still not LL(1)
(or LL(k) for any k!)

Two possible fixes
• If there is an ambiguity, prioritize one production over 

another

• e.g., if C is on the stack, always match “]” before matching 
“λ”

• Another option: change the language!

• e.g., all if-statements need to be closed with an endif

S → [ S C
S → λ
C → ]
C → λ

S → if S E
S → other
E → else S endif
E → endif

Parsing if-then-else

• What if we don’t want to change the language?

• C does not require { } to delimit single-statement blocks

• To parse if-then-else, we need to be able to look ahead at the 
entire rhs of a production before deciding which production 
to use

• In other words, we need to determine how many “]” to 
match before we start matching “[”s

• LR parsers can do this!

LR Parsers

• Parser which does a Left-to-right, Right-most derivation

• Rather than parse top-down, like LL parsers do, parse 
bottom-up, starting from leaves

• Basic idea: put tokens on a stack until an entire production 
is found

• Issues:

• Recognizing the endpoint of a production

• Finding the length of a production (RHS)

• Finding the corresponding nonterminal (the LHS of the 
production)



LR Parsers

• Basic idea: 

• shift tokens onto the stack. At any step, keep the set of 
productions that could generate the read-in tokens

• reduce the RHS of recognized productions to the 
corresponding non-terminal on the LHS of the 
production. Replace the RHS tokens on the stack with 
the LHS non-terminal.

Data structures

• At each state, given the next token,

• A goto table defines the successor state

• An action table defines whether to

• shift – put the next state and token on the stack

• reduce – an RHS is found; process the production

• terminate – parsing is complete

Simple example
1. P → S

2. S → x ; S

3. S → e

Symbol
x ; e P S

State

0 1 3 5
1 2
2 1 3 4
3
4
5

Action
Shift
Shift
Shift

Reduce 3
Reduce 2
Accept

Parsing using an LR(0) parser
• Basic idea: parser keeps track, simultaneously, of all possible 

productions that could be matched given what it’s seen so far. When 
it sees a full production, match it.

• Maintain a parse stack that tells you what state you’re in

• Start in state 0

• In each state, look up in action table whether to:

• shift: consume a token off the input; look for next state in goto 
table; push next state onto stack

• reduce: match a production; pop off as many symbols from state 
stack as seen in production; look up where to go according to 
non-terminal we just matched; push next state onto stack

• accept: terminate parse

Example
• Parse “x ; x ; e”

Step Parse Stack Remaining Input Parser Action

1 0 x ; x ; e Shift 1

2 0 1 ; x ; e Shift 2

3 0 1 2 x ; e Shift 1

4 0 1 2 1 ; e Shift 2

5 0 1 2 1 2 e Shift 3

6 0 1 2 1 2 3 Reduce 3 (goto 4)

7 0 1 2 1 2 4 Reduce 2 (goto 4)

8 0 1 2 4 Reduce 2 (goto 5)

9 0 5 Accept

LR(k) parsers

• LR(0) parsers

• No lookahead

• Predict which action to take by looking only at the 
symbols currently on the stack

• LR(k) parsers

• Can look ahead k symbols

• Most powerful class of deterministic bottom-up parsers

• LR(1) and variants are the most common parsers



Terminology for LR parsers
• Configuration: a production augmented with a “•” 

A → X1 ... Xi • Xi+1 ... Xj

• The “•” marks the point to which the production has been 
recognized. In this case, we have recognized X1 ... Xi

• Configuration set: all the configurations that can apply at a given 
point during the parse: 

A → B • CD 

A → B • GH 

T → B • Z

• Idea: every configuration in a configuration set is a production 
that we could be in the process of matching

Configuration closure set
• Include all the configurations necessary to recognize the 

next symbol after the •

• For each configuration in set:

• If next symbol is terminal, no new configuration added

• If next symbol is non-terminal X, for each production of 
the form X → α, add configuration X → •α

S → E $
E → E + T | T
T → ID | (E)

closure0({S → • E $}) = {
S → • E $
E → • E + T
E → • T
T → • ID
T → • (E)

}

Successor configuration set

• Starting with the initial configuration set 

s0 = closure0({S → • α $}) 

an LR(0) parser will find the successor given the next symbol 
X

• X can be either a terminal (the next token from the scanner) 
or a non-terminal (the result of applying a reduction)

• Determining the successor s’ = go_to0(s, X):

• For each configuration in s of the form A → β • X γ add 
A → β X • γ to t

• s’ = closure0(t)

CFSM
• CFSM = Characteristic Finite State Machine

• Nodes are configuration sets (starting from s0)

• Arcs are go_to relationships

S’ → S $
S → ID

State 0

Sʼ → • S $

S → • ID

State 1

S → ID •

ID

State 2

Sʼ → S • $

State 3

Sʼ → S $ •

S

$

Building the goto table
• We can just read this off from the CFSM

Symbol

ID $ S

State

0 1 2

1

2 3

3

Building the action table

• Given the configuration set s:

• We shift if the next token matches a terminal after the • in 
some configuration 

A → α • a β ∈ s and a ∈ Vt, else error

• We reduce production P if the • is at the end of a production 

B → α • ∈ s where production P is B → α

• Extra actions:

• shift if goto table transitions between states on a non-
terminal

• accept if we have matched the goal production



Action table

State

0 Shift

1 Reduce 2

2 Shift

3 Accept

Conflicts in action table

• For LR(0) grammars, the action table entries are unique: 
from each state, can only shift or reduce

• But other grammars may have conflicts

• Reduce/reduce conflicts: multiple reductions possible 
from the given configuration

• Shift/reduce conflicts: we can either shift or reduce from 
the given configuration

Shift/reduce conflict

• Consider the following grammar: 

S → A y 

A → x | xx

• This leads to the following configuration set (after shifting 
one “x”: 

A → x • x 

A → x •

• Can shift or reduce here

Shift/reduce example (2)

• Consider the following grammar: 

S → A y 

A → λ | x

• This leads to the following initial configuration set: 

S → • A y 

A → • x 

A → λ •

• Can shift or reduce here

Lookahead

• Can resolve reduce/reduce conflicts and shift/reduce 
conflicts by employing lookahead 

• Looking ahead one (or more) tokens allows us to 
determine whether to shift or reduce

• (cf how we resolved ambiguity in LL(1) parsers by 
looking ahead one token)

Semantic actions

• Recall: in LL parsers, we could integrate the semantic 
actions with the parser

• Why? Because the parser was predictive

• Why doesn’t that work for LR parsers?

• Don’t know which production is matched until parser 
reduces

• For LR parsers, we put semantic actions at the end of 
productions

• May have to rewrite grammar to support all necessary 
semantic actions



Parsers with lookahead

• Adding lookahead creates an LR(1) parser

• Built using similar techniques as LR(0) parsers, but uses 
lookahead to distinguish states

• LR(1) machines can be much larger than LR(0) machines, 
but resolve many shift/reduce and reduce/reduce 
conflicts

• Other types of LR parsers are SLR(1) and LALR(1)

• Differ in how they resolve ambiguities

• yacc and bison produce LALR(1) parsers

LR(1) parsing

• Configurations in LR(1) look similar to LR(0), but they are 
extended to include a lookahead symbol 

A → X1 ... Xi • Xi+1 ... Xj , l (where l ∈ Vt ∪ λ)

• If two configurations differ only in their lookahead 
component, we combine them 

A → X1 ... Xi • Xi+1 ... Xj , {l1 ... lm}

Building configuration sets

• To close a configuration 

B → α • A β, l

• Add all configurations of the form A → • γ, u where u ∈ 
First(βl)

• Intuition: the lookahead symbol for any configuration is the 
terminal we expect to see after the configuration has been 
matched

• The parse could apply the production for A, and the 
lookahead after we apply the production should match 
the next token that would be produced by B

Example

S → E $
E → E + T | T
T → ID | (E)

closure1({S → • E $, {λ}}) =

S → • E $, {λ}

E → • E + T, {$}

E → • T, {$}

T → • ID, {$}

T → • (E), {$}

E → • E + T, {+}

E → • T, {+}

T → • ID, {+}

T → • (E), {+}

Building goto and action tables
• The function goto1(configuration-set, symbol) is analogous to 

goto0(configuration-set, symbol) for LR(0)

• Build goto table in the same way as for LR(0)

• Key difference: the action table.  

action[s][x] =

• reduce when • is at end of configuration and x ∈ 
lookahead set of configuration 

A → α •, {... x ...} ∈ s

• shift when • is before x 

A → β • x γ ∈ s

Example

• Consider the simple grammar: 

<program> → begin <stmts> end $ 

<stmts> → SimpleStmt ; <stmts> 

<stmts> → begin <stmts> end ; <stmts> 

<stmts> → λ



Action and goto tables
begin end ; SimpleStmt $ <program> <stmts>

0 S / 1

1 S / 4 R4 S / 5 S / 2

2 S / 3

3 A

4 S / 4 R4 S / 5 S / 7

5 S / 6

6 S / 4 R4 S / 5 S / 10

7 S / 8

8 S / 9

9 S / 4 R4 S / 6 S / 11

10 R2

11 R3

Example
• Parse: begin SimpleStmt ; SimpleStmt ; end $

Step Parse Stack Remaining Input Parser Action

1 0 begin S ; S ; end $ Shift 1

2 0 1 S ; S ; end $ Shift 5

3 0 1 5 ; S ; end $ Shift 6

4 0 1 5 6 S ; end $ Shift 5

5 0 1 5 6 5 ; end $ Shift 6

6 0 1 5 6 5 6 end $ Reduce 4 (goto 10)

7 0 1 5 6 5 6 10 end $ Reduce 2 (goto 10)

8 0 1 5 6 10 end $ Reduce 2 (goto 2)

9 0 1 2 end $ Shift 3

10 0 1 2 3 $ Accept

<program> → begin <stmts> end $ 

<stmts> → SimpleStmt ; <stmts> 

<stmts> → begin <stmts> end ; <stmts> 

<stmts> → λ

Problems with LR(1) parsers

• LR(1) parsers are very powerful ...

• But the table size is much larger than LR(0) — as much 
as a factor of | Vt| (why?)

• Example: Algol 60 (a simple language) includes several 
thousand states!

• Storage efficient representations of tables are an important 
issue

Solutions to the size problem

• Different parser schemes

• SLR (simple LR): build an CFSM for a language, then add 
lookahead wherever necessary (i.e., add lookahead to 
resolve shift/reduce conflicts)

• What should the lookahead symbol be?

• To decide whether to reduce using production A → 
α, use Follow(A)

• LALR: merge LR states when they only differ by 
lookahead symbols


