1. For the following sub-problems, consider the following context-free grammar:

\[S \rightarrow A\$ \] \hspace{1cm} (1)
\[A \rightarrow xAx \] \hspace{1cm} (2)
\[A \rightarrow C \] \hspace{1cm} (3)
\[B \rightarrow yBy \] \hspace{1cm} (4)
\[B \rightarrow C \] \hspace{1cm} (5)
\[C \rightarrow zBz \] \hspace{1cm} (6)
\[C \rightarrow wAw \] \hspace{1cm} (7)
\[C \rightarrow \lambda \] \hspace{1cm} (8)

(a) What are the terminals and non-terminals of this grammar?

Answer: Terminals: \{x, y, z, w, \$\}, non-terminals: \{S, A, B, C\}

(b) Show the derivation of the string \textit{xzzx\$} starting from \textit{S} (specify which production you used at each step), and give the parse tree according to that derivation.

Answer:

\[
\begin{align*}
S & \rightarrow A\$ \quad \text{Rule 1} \\
 & \rightarrow xAx\$ \quad \text{Rule 2} \\
 & \rightarrow xCx\$ \quad \text{Rule 3} \\
 & \rightarrow xCzBz\$ \quad \text{Rule 6} \\
 & \rightarrow xCzx\$ \quad \text{Rule 5} \\
 & \rightarrow xzzx\$ \quad \text{Rule 8}
\end{align*}
\]

The parse tree follows directly from this derivation.

(c) Give the first and follow sets for each of the non-terminals of the grammar.

Answer:

\[
\begin{align*}
First(S) & = \{x, z, w, \$\} \\
First(A) & = \{x, z, w, \lambda\} \\
First(B) & = \{y, z, w, \lambda\} \\
First(C) & = \{z, w, \lambda\}
\end{align*}
\]
Follow(S) = {}
Follow(A) = \{\$, x, w\}
Follow(B) = \{y, z\}
Follow(C) = \{\$, x, y, z, w\}

(d) What are the predict sets for each production?

Answer:

\begin{align*}
\text{Predict}(1) & \quad \{x, z, w, \$\} \\
\text{Predict}(2) & \quad \{x\} \\
\text{Predict}(3) & \quad \{z, w, x, \$\} \\
\text{Predict}(4) & \quad \{y\} \\
\text{Predict}(5) & \quad \{z, w, y\} \\
\text{Predict}(6) & \quad \{z\} \\
\text{Predict}(7) & \quad \{w\} \\
\text{Predict}(8) & \quad \{\$, x, y, z, w\}
\end{align*}

(e) Give the parse table for the grammar. Is this an LL(1) grammar? Why or why not?

Answer:

\begin{center}
\begin{tabular}{c|ccccc}
 & x & y & z & w & \$ \\
\hline
S & 1 & 1 & 1 & 1 & \\
A & 2, 3 & 3 & 3 & 3 & \\
B & 4, 5 & 5 & 5 & \\
C & 8 & 6, 8 & 7, 8 & 8 & \\
\end{tabular}
\end{center}

This is not an LL(1) grammar, because there are conflicts in the parse table.

(f) Show the steps your parser would take to parse “xzxyzx$”.

Answer: The parser would not be able to parse this string, because there are conflicts in the parse table.
2. for the following sub-problems, consider the following grammar:

\[
\begin{align*}
&S \to AB\$ & (1) \\
&A \to xA & (2) \\
&A \to B & (3) \\
&B \to yzB & (4) \\
&B \to z & (5)
\end{align*}
\]

(a) What are the terminals and non-terminals of this grammar?

Answer: Terminals: \{x, y, z, \$\}; non-terminals: \{S, A, B\}

(b) Show the parse tree for \textit{xyzzz\$}.

Answer:

(c) What are the first and follow sets for each of the non-terminals of the grammar?

Answer:

\[
\begin{align*}
First(S) &= \{x, y, z\} \\
First(A) &= \{x, y, z\} \\
First(B) &= \{y, z\}
\end{align*}
\]

\[
\begin{align*}
Follow(S) &= \{} \\
Follow(A) &= \{y, z\} \\
Follow(B) &= \{y, z, \$\}
\end{align*}
\]
(d) What are the predict sets for each production?

Answer:

\[
\begin{align*}
\text{Predict}(1) & = \{x, y, z\} \\
\text{Predict}(2) & = \{x\} \\
\text{Predict}(3) & = \{y, z\} \\
\text{Predict}(4) & = \{y\} \\
\text{Predict}(5) & = \{z\}
\end{align*}
\]

(e) Give the parse table for this grammar. Is this an LL(1) grammar?

Answer:

\[
\begin{array}{|c|c|c|c|c|}
\hline
 & x & y & z & $ \\
\hline
S & 1 & 1 & 1 & \$ \\
A & 2 & 3 & 3 & \\
B & 4 & 5 & \\
\hline
\end{array}
\]

This is an LL(1) grammar, as there are no conflicts in the parse table.

(f) If we add the rule \(A \to \lambda \), is the grammar still LL(1)? Why or why not?

Answer: Let us call the new rule rule 6. We can rebuild the first, follow, and predict sets:

\[
\begin{align*}
\text{First}(S) & = \{x, y, z\} \\
\text{First}(A) & = \{x, y, z, \lambda\} \\
\text{First}(B) & = \{y, z\}
\end{align*}
\]

Note that the First set of \(A \) changed.

\[
\begin{align*}
\text{Follow}(S) & = \{} \\
\text{Follow}(A) & = \{y, z\} \\
\text{Follow}(B) & = \{y, z, \$\}
\end{align*}
\]

Note that none of the follow sets changed!
\[\text{Predict}(1) = \{x, y, z\} \]
\[\text{Predict}(2) = \{x\} \]
\[\text{Predict}(3) = \{y, z\} \]
\[\text{Predict}(4) = \{y\} \]
\[\text{Predict}(5) = \{z\} \]
\[\text{Predict}(6) = \{y, z\} \]

But the predict set for rule 6 is \text{Follow}(A). If we build the parse table for this new grammar, we get:

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>$$</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>$</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>3, 6</td>
<td>3, 6</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Which means we have a conflict: if we're expanding an A, and we see a y or z, don't know whether to turn it into a B using rule 3 or to remove it (turn it into λ) using rule 6. Thus, the grammar is not LL(1).