Loop transformations
For the following problems, consider the code below:

1. X = 2;
2. Y = 10;
3. Y = X * Y;
4. A = Y * X - 2 * Y;
5. B = X / 2 + Y;
6. Z = 10;
7. if (B < Z) goto 12
8. D = Y - Z * Y;
9. Q = Y - 8;
10. Z = Z - Q;
11. goto 7;
12. X = X + A*Y;
13. if (X < Z*100) goto 4;
14. Y = D;
15. halt;

1. Draw the CFG for the code above. Identify the loops in the code.
 Answer:
The loops are: lines 4–13 and lines 7–11.

2. Which statements are loop invariant? Can they be moved outside their enclosing loop? Show the code that results after hoisting any loop invariant code outside the loop.

Answer: Statements 6 and 9 are loop invariant. Statement 9 can be hoisted outside of its loop (indeed, it can be hoisted outside of both loops), but Statement 6 cannot, because Z is defined more than once within the loop.

The resulting code is:

1. \(X = 2; \)
2. \(Y = 10; \)
3. \(Y = X \times Y; \)
4. \(A = Y \times X - 2 \times Y; \)
5. \(B = X / 2 + Y; \)
6. \(Z = 10; \)
7. if \(B < Z \) goto 12
8. \(D = Y - Z \times Y; \)
9. \(Q = Y - 8; \)
10. \(Z = Z - Q; \)
11. goto 7;
12. \(X = X + A \times Y; \)
13. if \(X < Z \times 100 \) goto 4;
14. \(Y = D; \)
15. halt;
5. \(B = \frac{X}{2} + Y; \)
6. \(Z = 10; \)
7. if \(B < Z \) goto 12
8. \(D = Y - Z \times Y; \)
9. \(// Q = Y - 8; \)
10. \(Z = Z - Q; \)
11. goto 7;
12. \(X = X + A \times Y; \)
13. if \(X < Z \times 100 \) goto 4;
14. \(Y = D; \)
15. halt;

3. Identify the induction variables in this code. Show the code that results after performing any possible strength reduction.

Answer: There is only one induction variable: \(Z \), in line 10. Note that \(X \) is *not* an induction variable: \(A \) is not loop invariant, so \(X \) does not increment by a fixed amount each iteration. The rewritten code looks like (note the signs! \(Z \) decrements by \(Q \) each time, so we multiply \(-Q \) by \(-Y\)):

1. \(X = 2; \)
2. \(Y = 10; \)
3. \(Y = X \times Y; \)
3'. \(Q = Y - 8; \)
4. \(A = Y \times X - 2 \times Y; \)
5. \(B = \frac{X}{2} + Y; \)
6. \(Z = 10; \)
6'. \(D' = Y - Z \times Y; \)
7. if \(B < Z \) goto 12
8. \(D = D'; \)
9. \(// Q = Y - 8; \)
10. \(Z = Z - Q; \)
10'. \(D' = D' + Q \times Y; \)
11. goto 7;
12. \(X = X + A \times Y; \)
13. if \(X < Z \times 100 \) goto 4;
14. \(Y = D; \)
15. halt;

4. Show the code after performing any possible linear test replacement.

Answer: Note that the comparison operation switched directions! To do linear test replacement, we had to multiply both sides by \(-Y\), which flips the inequality.
1. X = 2;
2. Y = 10;
3. Y = X * Y;
3'. Q = Y - 8;
4. A = Y * X - 2 * Y;
5. B = X / 2 + Y;
6. Z = 10;
6'. D' = Y - Z * Y;
7. if (Y - B * Y > D') goto 12
8. D = D'
9. // Q = Y - 8;
10. Z = Z - Q;
10'. D' = D' + Q * Y;
11. goto 7;
12. X = X + A*Y;
13. if (X < Z*100) goto 4;
14. Y = D;
15. halt;

5. Draw the iteration space graph for the following piece of code (be careful about the index expressions and the loop order!):

\[
\text{for (} j = 0; j < 5; j++ \text{)} \\
\quad \text{for (} i = 0; i < 5; i++ \text{)} \\
\quad \quad A[j+2][i+1] = A[j-1][i+1] + A[j+1][i+2];
\]

\textbf{Answer:}
6. What are the distance vectors? The direction vectors?
 Answer: Distance vectors: (3, 0), (1, -1) Direction vectors: (+, 0), (+, -)

7. Can the loops be interchanged? Why or why not?
 Answer:
 The loops cannot be interchanged, because the (+, -) dependence would break.

8. Can the following two loops be fused? Why or why not? Explain your answer in terms of dependences between the loops.

   ```c
   for (i = 1; i < 10; i++)
       A[i - 1] = B[i + 1]
   
   for (i = 1; i < 10; i++)
   ```

 Answer: They cannot be interchanged. There is a dependence from the i=3 iteration of the first loop (which writes to A[2]) and the i=1 iteration of the second loop (which writes to A[3]). In the transformed code, the second write will happen before the first write, generating incorrect code.

9. Show the results of running an *available expressions* analysis on the following piece of code: for each line of code, show which expressions are available in that line of code.
Answer: To solve these problems, it’s best to start by figuring out the predecessors, successors, gen and kill sets for each instruction:

<table>
<thead>
<tr>
<th>Stmt</th>
<th>Pred</th>
<th>Succ</th>
<th>Gen</th>
<th>Kill</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>—</td>
<td>2</td>
<td>4</td>
<td>(a + x, x > c, x + 1)</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>(y > 3)</td>
</tr>
<tr>
<td>3</td>
<td>2, 11</td>
<td>4, 12</td>
<td>(x > c)</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>5, 8</td>
<td>(y > 3)</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>6</td>
<td>(x + 1)</td>
<td>(x > c)</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>7</td>
<td>(a + x)</td>
<td>—</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>10</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>9</td>
<td>—</td>
<td>(a + x)</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>10</td>
<td>(x + 1)</td>
<td>—</td>
</tr>
<tr>
<td>10</td>
<td>7, 9</td>
<td>11</td>
<td>(a + x)</td>
<td>(y > 3)</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>13</td>
<td>(a + x)</td>
<td>(x > c)</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

From here, it’s a matter of iterating the dataflow equations for available expressions. Available expressions is a forward analysis that uses intersection, so the dataflow equations are:

\[
IN(s) = \bigcap_{t \in \text{pred}(s)} \text{OUT}(t)
\]
\[\text{OUT}(S) = \text{gen}(s) \cup (\text{IN}(s) - \text{kill}(s)) \]

We iterate those equations until things stop changing. After iterating those equations, we get:

<table>
<thead>
<tr>
<th>Stmt</th>
<th>IN</th>
<th>OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>─</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4, 7</td>
</tr>
<tr>
<td>3</td>
<td>4, 7</td>
<td>4, 7, x > c</td>
</tr>
<tr>
<td>4</td>
<td>4, 7, x > c</td>
<td>4, 7, x > c, y > 3</td>
</tr>
<tr>
<td>5</td>
<td>4, 7, x > c, y > 3</td>
<td>4, 7, y > 3, x + 1</td>
</tr>
<tr>
<td>6</td>
<td>4, 7, y > 3, x + 1</td>
<td>4, 7, y > 3, x + 1, a + x</td>
</tr>
<tr>
<td>7</td>
<td>4, 7, y > 3, x + 1, a + x</td>
<td>4, 7, y > 3, x + 1, a + x</td>
</tr>
<tr>
<td>8</td>
<td>4, 7, x > c, y > 3</td>
<td>4, 7, x > c, y > 3</td>
</tr>
<tr>
<td>9</td>
<td>4, 7, x > c, y > 3</td>
<td>4, 7, x > c, y > 3, x + 1</td>
</tr>
<tr>
<td>10</td>
<td>4, 7, y > 3, x + 1</td>
<td>4, 7, x + 1, a + x</td>
</tr>
<tr>
<td>11</td>
<td>4, 7, y > 3, x + 1, a + x</td>
<td>4, 7, y > 3, x + 1, a + x</td>
</tr>
<tr>
<td>12</td>
<td>4, 7, x > c</td>
<td>4, 7, a + x</td>
</tr>
<tr>
<td>13</td>
<td>4, 7, a + x</td>
<td>4, 7, a + x</td>
</tr>
</tbody>
</table>