Dependence Analysis
Motivating question

• Can the loops on the right be run in parallel?

 • *i.e.*, can different processors run different iterations in parallel?

• What needs to be true for a loop to be parallelizable?

 • Iterations cannot interfere with each other

• No *dependence* between iterations

```c
for (i = 1; i < N; i++) {
    a[i] = b[i];
    c[i] = a[i - 1];
}

for (i = 1; i < N; i++) {
    a[i] = b[i];
    c[i] = a[i] + b[i - 1];
}
```
Dependences

- A *flow dependence* occurs when one iteration writes a location that a *later* iteration reads

```plaintext
for (i = 1; i < N; i++) {
    a[i] = b[i];
    c[i] = a[i - 1];
}
```

- Summary of dependence:
 - **i = 1**:
 - W(a[1])
 - R(b[1])
 - W(c[1])
 - R(a[0])
 - **i = 2**:
 - W(a[2])
 - R(b[2])
 - W(c[2])
 - R(a[1])
 - **i = 3**:
 - W(a[3])
 - R(b[3])
 - W(c[3])
 - R(a[2])
 - **i = 4**:
 - W(a[4])
 - R(b[4])
 - W(c[4])
 - R(a[3])
 - **i = 5**:
 - W(a[5])
 - R(b[5])
 - W(c[5])
 - R(a[4])
```
Running a loop in parallel

- If there is a dependence in a loop, we cannot guarantee that the loop will run correctly in parallel
- What if the iterations run out of order?
  - Might read from a location before the correct value was written to it
- What if the iterations do not run in lock-step?
  - Same problem!
Other kinds of dependence

- *Anti dependence* – When an iteration *reads* a location that a later iteration *writes* (why is this a problem?)

```c
for (i = 1; i < N; i++) {
 a[i - 1] = b[i];
 c[i] = a[i];
}
```

- *Output dependence* – When an iteration *writes* a location that a later iteration *writes* (why is this a problem?)

```c
for (i = 1; i < N; i++) {
 a[i] = b[i];
 a[i + 1] = c[i];
}
```
Data dependence concepts

- Dependence source is the earlier statement (the statement at the tail of the dependence arrow)
- Dependence sink is the later statement (the statement at the head of the dependence arrow)

Dependences can only go forward in time: always from an earlier iteration to a later iteration.
Using dependences

• If there are no dependences, we can parallelize a loop
  • None of the iterations interfere with each other

• Can also use dependence information to drive other optimizations
  • Loop interchange
  • Loop fusion
  • (We will discuss these later)

• Two questions:
  • How do we represent dependences in loops?
  • How do we determine if there are dependences?
Representing dependences

- Focus on flow dependences for now
- Dependences in straight line code are easy to represent:
  - One statement writes a location (variable, array location, etc.) and another reads that same location
  - Can figure this out using reaching definitions
- What do we do about loops?
  - We often care about dependences between the same statement in different iterations of the loop!

```c
for (i = 1; i < N; i++) {
 a[i + 1] = a[i] + 2
}
```
Iteration space graphs

- Represent each *dynamic* instance of a loop as a point in a graph
- Draw arrows from one point to another to represent dependences

```plaintext
for (i = 0; i < N; i++) {
 a[i + 2] = a[i]
}
```
Iteration space graphs

- Represent each *dynamic* instance of a loop as a point in a graph
- Draw arrows from one point to another to represent dependences

```plaintext
for (i = 0; i < N; i++) {
 a[i + 2] = a[i]
}
```

- Step 1: Create nodes, 1 for each iteration
  - Note: not 1 for each array location!
Iteration space graphs

- Represent each dynamic instance of a loop as a point in a graph
- Draw arrows from one point to another to represent dependences

```
for (i = 0; i < N; i++) {
 a[i + 2] = a[i]
}
```

- Step 2: Determine which array elements are read and written in each iteration
Iteration space graphs

- Represent each *dynamic* instance of a loop as a point in a graph
- Draw arrows from one point to another to represent dependences

```c
for (i = 0; i < N; i++) {
 a[i + 2] = a[i]
}
```

- Step 3: Draw arrows to represent dependences
2-D iteration space graphs

- Can do the same thing for doubly-nested loops
- 2 loop counters

```c
for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 a[i+1][j-2] = a[i][j] + 1
```
Iteration space graphs

• Can also represent output and anti dependences
  • Use different kinds of arrows for clarity. E.g.
    • \[\rightarrow\rightarrow\] for output
    • \[\rightarrow\rightarrow\] for anti

• Crucial problem: Iteration space graphs are potentially infinite representations!

• Can we represent dependences in a more compact way?
Distance and direction vectors

- Compiler researchers have devised compressed representations of dependences
  - Capture the same dependences as an iteration space graph
  - May lose precision (show more dependences than the loop actually has)
- Two types
  - Distance vectors: captures the “shape” of dependences, but not the particular source and sink
  - Direction vectors: captures the “direction” of dependences, but not the particular shape
Distance vector

- Represent each dependence arrow in an iteration space graph as a vector
- Captures the “shape” of the dependence, but loses where the dependence originates

- Distance vector for this iteration space: (2)
- Each dependence is 2 iterations forward
2-D distance vectors

- Distance vector for this graph:
  - $(1, -2)$
  - $+1$ in the $i$ direction, $-2$ in the $j$ direction

- Crucial point about distance vectors: they are always "positive"
  - First non-zero entry has to be positive
  - Dependences can’t go backwards in time
More complex example

• Can have multiple distance vectors

```
for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 a[i+1][j-2] = a[i][j] +
 a[i-1][j-2]
```
More complex example

- Can have multiple distance vectors

```java
for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 a[i+1][j-2] = a[i][j] + a[i-1][j-2]
```

- Distance vectors
  - (1, -2)
  - (2, 0)
- Important point: order of vectors depends on order of loops, not use in arrays
Problems with distance vectors

• The preceding examples show how distance vectors can summarize all the dependences in a loop nest using just a small number of distance vectors.

• Can’t always summarize as easily.

• Running example:

```plaintext
for (i = 0; i < N; i++)
 a[2*i] = a[i];
```
Loss of precision

• What are the distance vectors for this code?

• (1), (2), (3), (4) ...

• Note: we have information about the length of each vector, but not about the source of each vector

• What happens if we try to reconstruct the iteration space graph?
Loss of precision

- What are the distance vectors for this code?
  - (1), (2), (3), (4) ...

- Note: we have information about the length of each vector, but not about the source of each vector

- What happens if we try to reconstruct the iteration space graph?
Direction vectors

• The whole point of distance vectors is that we want to be able to succinctly capture the dependences in a loop nest

• But in the previous example, not only did we add a lot of extra information, we still had an infinite number of distance vectors

• Idea: summarize distance vectors, and save only the direction the dependence was in

  • $(2, -1) \rightarrow (+, -)$
  • $(0, 1) \rightarrow (0, +)$
  • $(0, -2) \rightarrow (0, -)$

  • (can’t happen; dependences have to be positive)

• Notation: sometimes use ‘<‘ and ‘>’ instead of ‘+’ and ‘−’
Why use direction vectors?

- Direction vectors lose a lot of information, but do capture some useful information
  - Whether there is a dependence (anything other than a ‘0’ means there is a dependence)
  - Which dimension and direction the dependence is in
- Many times, the only information we need to determine if an optimization is legal is captured by direction vectors
  - Loop parallelization
  - Loop interchange
Loop parallelization
Loop-carried dependence

- The key concept for parallelization is the loop carried dependence
- A dependence that crosses loop iterations
- If there is a loop carried dependence, then that loop cannot be parallelized
- Some iterations of the loop depend on other iterations of the same loop
Examples

for (i = 0; i < N; i++)
    a[2*i] = a[i];

Later iterations of i loop depend on earlier iterations

for (i = 0; i < N; i++)
    for (j = 0; j < N; j++)
        a[i+1][j-2] = a[i][j] + 1

Later iterations of both i and j loops depend on earlier iterations
Some subtleties

- Dependences might only be carried over one loop!

```plaintext
for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 a[i][j+1] = a[i][j] + 1
```

- Can parallelize i loop, but not j loop
Some subtleties

- Dependences might only be carried over one loop!

for (i = 0; i < N; i++)
    for (j = 0; j < N; j++)
        a[i+1][j] = a[i-1][j] + 1

- Can parallelize j loop, but not i loop
Direction vectors

• So how do direction vectors help?
  • If there is a non-zero entry for a loop dimension, that means that there is a loop carried dependence over that dimension
  • If an entry is zero, then that loop can be parallelized!
  • May be able to parallelize inner loop even if entry is not zero, but you have to carefully structure parallel execution
Data Dependence Tests
Problem formulation

- Given the loop nest:

  ```
 for (i = 0; i < N; i++)
 a[f(i)] = ...
 ...
 = a[g(i)]
  ```

- A dependence exists if there exist an integer $i$ and an $i'$ such that:
  - $f(i) = g(i')$
  - $0 \leq i, i' < N$
  - If $i < i'$, write happens before read (flow dependence)
  - If $i > i'$, write happens after read (anti dependence)
Loop normalization

• Loops that skip iterations can always be normalized to loops that don’t, so we only need to consider loops that have unit strides

• Note: this is essentially of the reverse of linear test replacement

```c
for (i = L; i < U; i += S)
 ... a[i] ...
```

```c
for (i = 0; i < (U - L)/S; i += 1)
 ... a[S*i + L] ...
```
Diophantine equations

- An equation whose coefficients and solutions are all integers is called a *Diophantine equation*

- Our question:

  \[ f(i) = a*i + b \quad g(i) = c*i + d \]

  Does \( f(i) = g(i') \) have a solution?

- \( f(i) = g(i') \Rightarrow ai + b = ci' + d \Rightarrow a_1*i + a_2*i' = a_3 \)
Solutions to Diophantine eqns

• An equation $a_1i + a_2i' = a_3$ has a solution iff $\gcd(a_1, a_2)$ evenly divides $a_3$

• Examples
  - $15i + 6j - 9k = 12$ has a solution ($\gcd = 3$)
  - $2i + 7j = 3$ has a solution ($\gcd = 1$)
  - $9i + 6j = 10$ has no solution ($\gcd = 3$)
Why does this work?

• Suppose \( g \) is the gcd\( (a, b) \) in \( a*i + b*j = c \)

• Can rewrite equation as
  \[
g*(a'\cdot i + b'\cdot j) = c
  \]
  \[
a' \cdot i + b' \cdot j = c/g
  \]

• \( a' \) and \( b' \) are integers, and relatively prime (\( \text{gcd} = 1 \)) so by choosing \( i \) and \( j \) correctly, can produce \textit{any} integer, but \textit{only} integers

• Equation has a solution provided \( c/g \) is an integer
Finding the GCD

- Finding GCD with Euclid’s algorithm

- Repeat
  
  \[ a = a \mod b \]

  swap a and b

  until b is 0 (resulting a is the gcd)

- Why? If g divides a and b, then g divides a mod b

\[
gcd(27, 15): a = 27, b = 15
\]
\[
a = 27 \mod 15 = 12
\]
\[
a = 15 \mod 12 = 3
\]
\[
a = 12 \mod 3 = 0
\]
\[
gcd = 3
\]
Downsides to GCD test

• If \( f(i) = g(i') \) fails the GCD test, then there is no \( i, i' \) that can produce a dependence \( \rightarrow \) loop has no dependences

• If \( f(i) = g(i') \), there might be a dependence, but might not

• \( i \) and \( i' \) that satisfy equation might fall outside bounds

• Loop may be parallelizable, but cannot tell

• Unfortunately, most loops have \( \gcd(a, b) = 1 \), which divides everything

• Other optimizations (loop interchange) can tolerate dependences in certain situations
Other dependence tests

- GCD test: doesn’t account for loop bounds, does not provide useful information in many cases
- Banerjee test (Utpal Banerjee): accurate test, takes directions and loop bounds into account
- Omega test (William Pugh): even more accurate test, precise but can be very slow
- Range test (Blume and Eigenmann): works for non-linear subscripts

- Compilers tend to perform simple tests and only perform more complex tests if they cannot prove non-existence of dependence
Other loop optimizations
Loop interchange

- We've seen this one before
- Interchange doubly-nested loop to
  - Improve locality
  - Improve parallelism
  - Move parallel loop to outer loop (coarse grained parallelism)
Loop interchange legality

- We noted that loop interchange is not always legal, because it reorders a computation
- Can we use dependences to determine legality?
Loop interchange dependences

- Consider interchanging the following loop, with the dependence graph to the right:

```plaintext
for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 a[i+1][j+2] = a[i][j] + 1
```

- Distance vector (1, 2)
- Direction vector (+, +)
Loop interchange dependences

• Consider interchanging the following loop, with the dependence graph to the right:

```plaintext
for (j = 0; j < N; j++)
 for (i = 0; i < N; i++)
 a[i+1][j+2] = a[i][j] + 1
```

• Distance vector (2, 1)
• Direction vector (+, +)
• Distance vector gets swapped!
Loop interchange legality

- Interchanging two loops swaps the order of their entries in distance/direction vectors
  - \((0, +) \rightarrow (+, 0)\)
  - \((+, 0) \rightarrow (0, +)\)
- But remember, we can’t have backwards dependences
  - \((+, -) \rightarrow (-, +)\)
- Illegal dependence \(\rightarrow\) Loop interchange not legal!
Loop interchange dependences

- Example of illegal interchange:

```plaintext
for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 a[i+1][j-2] = a[i][j] + 1
```

Loop interchange dependences

• Example of illegal interchange:

```cpp
for (j = 0; j < N; j++)
for (i = 0; i < N; i++)
a[i+1][j-2] = a[i][j] + 1
```

• Flow dependences turned into anti-dependences

• Result of computation will change!
Loop fusion/distribution

- Loop fusion: combining two loops into a single loop
  - Improves locality, parallelism

- Loop distribution: splitting a single loop into two loops
  - Can increase parallelism (turn a non-parallelizable loop into a parallelizable loop)

- Legal as long as optimization maintains dependences
  - Every dependence in the original loop should have a dependence in the optimized loop
  - Optimized loop should not introduce new dependences
Fusion/distribution example

• Code 1:
  for (i = 0; i < N; i++)
    a[i - 1] = b[i]
  for (j = 0; j < N; j++)
    c[j] = a[j]

• Code 2:
  for (i = 0; i < N; i++)
    a[i - 1] = b[i]
  c[i] = a[i]

• Dependence graph
  ![Dependence graph for Code 1]
  ![Dependence graph for Code 2]

• All red iterations finish before blue iterations → flow dependence
• i iterations finish before i+1 iterations → flow dependence now an anti dependence!
Fusion/distribution utility

\[
\text{for } (i = 0; i < N; i++) \\
\quad a[i] = a[i - 1] \\
\text{for } (j = 0; j < N; j++) \\
\quad b[j] = a[j]
\]

- **Fusion and distribution both legal**
- **Right code has better locality, but cannot be parallelized due to loop carried dependences**
- **Left code has worse locality, but blue loop can be parallelized**